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Abstract

Photoelastic modulator (PEM)-based ellipsometry employed either lock-in amplifiers or
the Fourier analysis technique to obtain the ellipsometric parameters almost in real-time
that makes the system with a feature of fast measurement speed, higher stability, and
sensitivity at small retardations. Since the PEM modulation frequency is too high to
compare it with the exposure time of the camera, photoelastic modulator–based
approach is not applicable for a two-dimensional ellipsometric measurement. Here, we
represent a novel technique that coordinates with the light pulses and PEM modulation
that can freeze the time-varied signals. Thus, two-dimensional ellipsometric parameters
can be obtained within few seconds. In addition to ellipsometric measurement, this
approach also can be extended to other imaging polarimetry measurements, such as
Stokes parameters and Mueller matrix. Moreover, since the chromatic dispersion of
birefringence was also a significant issue in the polarization modulation systems, we
proposed an equivalent phase retardation technique to deal with this issue. This tech-
nique was confirmed by a dual wavelength measurement result without changing the
optical configuration of the system. The concept and the theory of this system were
indicated in the preceding section, and the passage below described some calibration
issues for the photoelastic modulator. Some measurement results were revealed in the
final part of this chapter.

Keywords: photoelastic modulator, imaging polarimetry, ellipsometric parameters, Stokes
parameter, Mueller matrix, dual wavelength

1. Introduction

Among other optical techniques, ellipsometry is one of the most powerful tools for character-

izing optical properties, including determining film thicknesses and refractive indices with a

high degree of accuracy. Currently, common applications of ellipsometry include measuring

thin films for solar cells, optical coatings, microelectronics, and biosensing applications

[1–3]. However, most ellipsometric measurements are based on a single point and use a

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



single-wavelength or spectroscopic approach [4, 5]. As the size of many electronic devices

becomes smaller, the uniformity of the thin-film thickness, a high degree of resolution, and a

large field of view become more desirable for industrial applications. Therefore, ellipsometry

with a spatially resolved capability to assess two-dimensional morphologies of a surface is a

natural evolution of ellipsometric measurement techniques that extend the single spot

ellipsometric measurement to a tool to visualize and analyze microscopic images for thin

films [6, 7]. Thus far, the commercial imaging ellipsometer usually operated on the principle

of the classical null technique; instruments used are typically equipped with stepping motors

to change the azimuth angle of the polarizer, compensator, or analyzer; and they use charge-

coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) detectors to

take a sequence of images in order to gather enough information to calculate all null posi-

tions [6]. This approach is relatively slow and is limited by the mechanical rotation speed, and

the modulation frequency usually falls within a noise range of other mechanical devices; this

impedes data acquisition and, eventually, system stability. In addition, for a sample with

inhomogeneous surface characteristics, the measurement process may need to collect many

more images to determine the null positions of each measurement point; this makes the

measurements relatively cumbersome and impractical for industrial applications.

Another popular approach for imaging ellipsometry was using photometric measurement

technique, which few intensity images captured at various angles of polarization elements to

deduce ellipsometric distributions of the sample [8–10]. However, this approach requires the

rotation of polarization elements and suffers the issue of beam wander during the rotation,

possibly resulting in mismatching the interest point in a sample and a recording pixel associ-

ated with different images. The above issues make the measurement troublesome especially

for spatially nonuniform objects or imperfectly uniform incident beam. Compared with null

ellipsometry, photometric ellipsometry is faster, and the measurement quality is improved.

Phase modulated apparatus is also involved in the ellipsometric measurement. The

ellipsometer based on the use of a photoelastic modulator (PEM) is the most prevalent config-

uration; it has a typical modulation frequency of 50 kHz with no moving parts [11–13]. For

single spot measurement, one can employ either lock-in amplifiers or the Fourier analysis

technique to obtain the ellipsometric parameters in near real-time, but this approach is not

applicable for a two-dimensional measurement, because the modulation frequency of the PEM

is too high to compare it with the exposure times of the CCD camera. This deficiency was

overcome by replacing the light source with an ultra-stable short pulse, known as the strobo-

scopic illumination technique, which was synchronized with the PEMmodulation to freeze the

intensity signal at specific times in the modulation cycles [14, 15]. As a result, the ellipsometric

images can be obtained in seconds by sequentially taking four images with single wavelength

source. Since Stokes parameters were related to the ellipsometric parameters by their defini-

tions, Stokes parameters also can be measured through the use of the same approach [16]. In

order to remove the chromatism limits of this system, we adopted an equivalent phase retar-

dation technique that used dual wavelength ellipsometric measurement to extend the imaging

ellipsometry technique without any adjustment of the photoelastic modulator or the optical

configuration. Moreover, the image acquisition time for one set of ellipsometric parameters for
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dual-wavelength measurement remained virtually unchanged [17]. This technique was also

applied in Mueller matrix imaging system; we introduced a hybrid phase modulation tech-

nique to evaluate the optical polarization characteristics of the specimens [18]. In this chapter,

we introduced the principle of the system, explained how this concept can be used in imaging

ellipsometric measurement, and demonstrated dynamic measurement results. As PEM is the

crucial component in this system, some calibration processes are also discussed in this chapter.

2. Theory and optical configuration of the photoelastic modulated

imaging ellipsometry

Ellipsometry measures the changes of a polarized light that is reflected from the sample surface;

such changes can be used to deduce the optical parameters of the sample. The ellipsometric

parameters,Ψ and Δ, are defined as:

tanΨeiΔ ¼

rp

rs
(1)

where rp and rs are the complex Fresnel reflection coefficients for polarized light that is parallel

and perpendicular to the plane of incidence, respectively [4]. The compensator was replaced by

a PEM in the polarizer-compensator-sample-analyzer setup, as shown in Figure 1. The output

polarization state can be represented by the operation of their corresponding Mueller matrices;

i.e., the polarization state can be expressed as:

Figure 1. Experimental setup of the photoelastic modulated imaging ellipsometry by stroboscopic illumination tech-

nique.
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Sf ¼ MA Að Þ � RSAM Ψ;Δð Þ �MPEM θ;ΔPð Þ � SP (2)

where Sf and SP are Stokes vectors of the output polarization state and the incident linearly

polarized light at the azimuth angle of P, respectively. Moreover, MPEM(θ,ΔP), RSAM (Ψ, Δ), and

MA(A) represent the Mueller matrix of the PEM, the sample, and the analyzer, respectively. In

this configuration, the optic axis of the PEM is at 0� with respect to the incident plane. When

P = �45� and A = 45�, the reflected intensity can be found to be:

I tð Þ ¼
I0

2
1þ sin 2Ψ cos Δ� ΔPð Þ½ (3)

where I0 is the normalized output intensity, and ΔP is the phase retardation of the PEM, which

is modulated as δ0sinωt. If one set of the amplitude of modulation δ0 equals π, the temporal

intensity behavior can be formulated as:

I tð Þ ¼
I0

2
1þ sin 2Ψ cos Δ� π sinωtð Þ½ � (4)

When the temporal phase angles ωt in Eq. (4) are 0 and 90�, the corresponding intensities can

be expressed as:

I0� ¼
I0

2
1þ sin 2Ψ cosΔ½ � (5)

and

I90� ¼
I0

2
1� sin 2Ψ cosΔ½ � (6)

respectively. It is easy to prove that:

sin 2Ψ cosΔ ¼
I0� � I90�

I0� þ I90�
¼ I

0 (7)

Using the similar process for ωt at 30 and 210�, one can obtain:

sin 2Ψ sinΔ ¼
I30� � I210�

I30� þ I210�
¼ I

00 (8)

Thus, the ellipsometric parameters can be obtained by measuring the intensity at above four

temporal phases, as follows:

Δ ¼ tan �1 I
00

I
0

� �

(9)

Ψ ¼
1

2
sin �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I
02 þ I

002
p� �

(10)
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The time-varying signal can be frozen at these temporal phases by illuminating the objects

with short synchronized light pulses.

2.1. Interpretation of stroboscopic illumination applied in PEM imaging system

For a conventional phase modulated ellipsometer, photoelastic modulator is the most preva-

lent modulator installed in the ellipsometric system. The photoelastic modulator oscillates at

its resonance frequency (typically around 50 kHz), and the response time of the phase modu-

lated ellipsometer can reach as short as 1 ms/point to achieve the requirement for real-time

monitoring and dynamic studies [19–21]. Although the ellipsometer using photoelastic modu-

lator to modulate or examine polarization states has the advantages of being very fast, having

no moving elements for acquiring signals, the high frequency of modulation was also an issue

for the two-dimensional measurement due to the fact that the modulation frequency is much

higher than the image sensor frame rate. To overcome this issue, two approaches are devel-

oped in recent days. One approach was using two or four PEMs and field-programmable gate

array (FPGA)-assisted sequential time gating approach. In that configuration, four PEMs are

set at different azimuths, and their modulation frequencies also have to be different from each

other. The frequency drift of PEMs and image recovery were taken more effort on calibration

and measurement [22–25]. We adopted a simple approach by just changing the manner of light

illumination from continuous mode to pulse mode, which coordinates with the reference

signal of the PEM modulator, known as the stroboscopic illumination technique [14–18].

Stroboscopic effect is a result of temporal aliasing that occurs when continuous motion is

represented by a series of short samples. If the motion is circular or repeating, such as a

spinning wheel or a vibrating membrane, and the frequency of light pulses and wheel speed

or membrane oscillation are the same, the wheel or the membrane will appear stopped. In our

system, PEM modulator functioned as a resonant device and operated at a fixed frequency

about 50 kHz; therefore, while the light pulses coordinate with the resonant frequency of the

PEM, the phase retardation of the modulator can be fixed at a specific value, rather than a

continuous variation as a function of time. The synchronization process between the light

pulses and PEM modulator was through the square wave reference signal, as the extra-trigger,

of the PEM controller to initiate light pulses whose width was 110 nm (~2� phase change of

modulator) from diode lasers. Another issue to be considered was how to shift the phase of the

modulated optical signal that can generate different polarizations of the outgoing light. This

feature can be achieved by the digital delay function of the pulse generator that provides

defined pulses at four specific intervals, which are 0, 30, 90, and 210�, as shown in Figure 2.

Theωt = 0� pulse, the beginning of a modulation cycle, is generated by the pulse generator, and

then the time shift delays of the pulses are sequentially set on the basis of temporal phase angle

ωt, i.e. 30, 90, and 210�, of the PEM modulation. After setting the light pulses at the proper

triggering and delay outputs, the output polarizations can appear to be frozen by use of the

stroboscopic illumination technique. For the image acquisition, the exposure time Δt of the

CCD camera was at the range of decisecond to several seconds depending on the intensity of

the diode laser and the sensitivity of the camera. For maintaining the intensity in the linear

range, four specific images at different temporal phase angles were obtained to deduce the

two-dimensional ellipsometric parameters.

Photoelastic Modulated Imaging Ellipsometry
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2.2. Issues in calibration of the PEM imaging system

All ellipsometric methods require azimuthal alignment of the polarizers, retarders, and phase

modulators, with respect to the plane of incidence. If this alignment is not accurate, the

systematic error appears in the ellipsometric measurements. Overlooking the azimuthal align-

ment of the polarizer and analyzer, there are some alignment issues that have to be addressed

in a PEM-based ellipsometer and that are discussed below:

2.2.1. Azimuth angle calibration of the photoelastic modulator

It is essential to align the azimuths of the optical components in the ellipsometer for accurate

measurement because any improper azimuth setting in the system can cause significant errors.

The null method, locating the minimum intensity, is a typical azimuthal alignment technique

in most ellipsometric systems. Since the minimum intensity must be determined precisely in

the null method, a highly sensitive detection apparatus is required in those techniques. Instead

of using the null method, we proposed an intensity ratio technique and separately aligned the

azimuths of the polarizer and analyzer to the specimen surface in a polarizer-sample-analyzer

(PSA) system [26, 27]. After precisely locating the incident plane in the PSA system, we then

shift the attention to determine the strain axis of PEM to the incident plane. If the strain axis of

PEM deviates from the incident plane by θ, and the impinging light is a +45� linear polarized

light, the intensity can be reformulated from Eq. (5) as:

I Að Þ ¼ I0 L sin 2AþM cos 2A tan 2
ΨþN sinA cosA

� �

(11)

where

L ¼
1

2
1þ cosΔP þ 1� cosΔPð Þ 1� sin 4θð Þ½ �

M ¼
1

2
1þ cosΔP þ 1� cosΔPð Þ 1þ sin 4θð Þ½ �

N ¼
1

2
1þ cosΔP � 1� cosΔPð Þ cos 4θ½ � tanΨ cosΔ� sinΔP cos 2θ tanΨ sinΔ

Figure 2. The principle of image acquisition: each intensity (I0�, I30�, I90�, I210�) was obtained by the accumulation of N

short pulses of the modulated signal I(t) at a specific temporal phase angle at the fixed exposure time of the camera. The

four intensities were acquired in sequence by the synchronized ultrastable short-pulse illumination. The ellipsometric

images are calculated by these four intensities.
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When the A = 0 and 90�, the expression of intensity can be reduced and expressed as:

I 0�ð Þ ¼
I0
2
tan 2

Ψ 2þ 1� cosΔPð Þ sin 4θ½ � (12)

I 90�ð Þ ¼
I0
2

2� 1� cosΔPð Þ sin 4θ½ � (13)

If the phase modulation ΔP is modulated as δ0cosωt, then the intensity can be Fourier

expanded by its harmonic function:

cosΔP ¼ Jo δoð Þ � 2J2 δoð Þ cos 2ωt (14)

By taking the zero-order Bessel function J0(δ0) at its zero point, i.e., δ0 = 0.383λ, we can simplify

the DC component of its intensity as:

I 0�ð Þ ¼
I0
2
tan 2

Ψ 2þ sin 4θ½ � (15)

I 90�ð Þ ¼
I0
2

2� sin 4θ½ � (16)

From Eqs. (14) and (15), the azimuth deviation of the PEM can be obtained by the DC

component of the intensity, which is taken at two azimuths of the PEM separated by 45�

through the following relation:

sin 4θo ¼ 2
Idc 0�ð Þ

θ¼θ0
� Idc 0�ð Þ

θ¼θ0þ45�

Idc 0�ð Þ
θ¼θ0

þ Idc 0�ð Þ
θ¼θ0þ45�

(17)

In addition to the azimuth determination, the ellipsometric parameter Ψ can also be obtained

by the same measurements as:

tan 2
Ψ ¼

Idc 0�ð Þ
θ¼θoþ45�

Idc 90�ð Þ
θ¼θo

(18)

Eq. (16) is sufficiently general to analyze the error of the azimuth deviation. According to the

intensity ratio of Eq. (16), one can easily prove that the deviation of azimuth δθ0 caused by

those fluctuations is:

δθo ¼
tan 4θ0

4 tan 2Ψ

δI

I
(19)

2.2.2. Amplitude modulation calibration of the photoelastic modulator

Even if all the azimuths of the optical components can be aligned in a PEM ellipsometer at a

fixed incident angle, the modulation amplitude of PEM still needs to be calibrated. The

conventional technique for calibrating the modulation amplitude is to adjust the oscilloscope

waveform of a half-wave modulation in a straightforward setup, and a multiple-paths method

is used to amplify the modulation amplitude for higher resolution. However, this technique

was not proceeded under reflection configuration and did not meet the requirement of in-situ

Photoelastic Modulated Imaging Ellipsometry
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calibration of the ellipsometer. We introduce a technique for the calibration of the modulation

amplitude of PEM by a multiple harmonic intensity ratio (MHIR) technique whose setup was

the same as for the ellipsometric measurement [28]. As a result, the modulation amplitudes of

the PEM can be determined by using the intensity ratios of I1f/I3f (odd ratio) and I2f/I4f (even

ratio) by the following:

I1f

I3f
¼

J1 δ0ð Þ

J3 δ0ð Þ
;
I2f

I4f
¼

J2 δ0ð Þ

J4 δ0ð Þ
(20)

It is clear that these ratios are independent of the azimuth position of the analyzer and the

physical parameters of the examined sample. In this way, the optical characteristics of the PEM

can be completely recognized.

2.2.3. Initial phase determination of the photoelastic modulator

Compared with the conventional continuous wave modulation, our approach employed the

pulse lights initiated at different phase angles. Therefore, the additional condition, initial phase

angle of the pulse light, has to be checked before the measurement. In the previous section, we

demonstrated that four temporal phase angles ωt, 0, 30, 90, and 210�, were set to initiate pulse

lights, triggered by the external square wave, from the PEM controller. However, we found

reference zero of the square wave does not match with the initial phase of optical modulation

signal, as shown in Figure 3, which means further determination of the phase shift of both

signals is required. The determination process was carried out by an additional intensity

Figure 3. The temporal waveform of the Pt/Si thin film and the reference square wave provided by the PEM; the local

minimum intensity does match with the reference zero.
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measurement at ωt = 180�. If the phase shift between the square reference signal and modu-

lated optical signal is x, one can determine x by the following equation:

I210� � I30�

I180� � I0�
¼

sin π sin xð Þð Þ

sin π sin xþ π=6ð Þð Þ
(21)

This ratio can eliminate the effect of ellipsometric parameters and normalized intensity, so it is

free from the material under investigation. As a result, the phase shift can be solved by the

intensity measurements at ωt = 0, 30, 180, and 210� according to Eq. (20). The correction of

phase shift x can also be achieved by the time shift delays of the pulses [15].

3. Two-dimensional measurement results for ellipsometric parameters,

Stokes parameters, and Mueller matrix

3.1. PEM imaging system for the static ellipsometric measurement

An L-shaped SiO2 layer with the thickness of 50 nm on a silicon substrate was set as the static

sample to examine the feasibility of the stroboscopic illumination imaging ellipsometry. Before

the examination, the light beam was expanded to cover the whole L-shaped pattern, and the

deduced thickness profile is shown in Figure 4. One can observe the plateau of the thickness

profile was about 52 nm, which was consistent with the thickness before etching. The inset of

Figure 4 shows the valley of the profile is 2 nm oxide layer after the etching process, and this

result was ignored at the 2� static phase retardation of PEM.

3.2. PEM imaging system for a dynamic ellipsometric measurement

Besides the static measurement, an oil droplet movement sliding on the surface of a vertical

bare silicon wafer was regarded as the dynamic test for this imaging ellipsometric measure-

ment system. This work was carried out at the incident angle of 70�, and 2 μl oil droplet

Figure 4. The L-shaped SiO2 layer: (a) the two-dimensional thickness profile, (b) the photo image, and (c) the thickness

profile of the SiO2 film at x = 1.5 mm.
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(Nikon, nd = 1.515) with high viscosity flowed slowly from the top of the vertically held silicon

wafer. The total acquisition time of one set of ellipsometric parameters is about several tens of

seconds, depending on the frame transfer speed of the camera. Figure 5 demonstrates six sets

of ellipsometric parameters during the oil dropping process.

3.3. Optimization for PEM Stokes imaging system

The Stokes parameters can be represented in the ellipsometric parameters by their definitions,

as shown in Figure 6. If the input light is the +45� linear polarized light, the normalized output

(reflected or transmitted) Stokes vector S = [S0 S1 S2 S3] can be expressed in the form of

ellipsometric parameters as S = [1 cos(2Ψ) sin(2Ψ)cos(Δ) sin(2Ψ)sin(Δ)] [29]. Using the linear

transformation model of polarimetry, we can write {b} = [A] {s}, where {b} is an N-element

vector of the measured irradiances; [A] is an N � 4 matrix, the measurement matrix [30]; and

{s} is the Stokes vector. Since {s} = [A]�1 {b}, each element represents the response of the unit

stimuli of the system. The noise in the measurement of the Stokes vector can be expressed in a

vector form {n}; therefore, the error {ε} can be expressed as {ε} = [A]�1 {n}. Since all components

of the Stokes vector are weighted in noise production equally, the equally weighted variance

(EWV) [29] figure of merit for N measurements can be expressed as follows:

EWV ¼
X

3

j¼0

X

N�1

k¼0

A½ ��1
� �2

j,k
¼ Tr A½ ��1 A½ ��1

� �T
	 


: (22)

This value demonstrates the measurement errors by summing all entries in the measurement

matrix. The polarization state analysis portion of the PEM polarimetry consists of a

photoelastic modulator and an analyser, whose azimuth angles were set at 0 and 45�, respec-

tively. The kth row of the matrix [A]�1 of the phase lock configuration can be expressed as

[1 0 cos(ΔP) sin(ΔP)]
T, where ΔP = δ0sinωt is the phase retardation of the PEM. By taking the

modulation amplitude to be half-wave (i.e., δo = π), one can set the temporal phase at θ = ωt

instead of moving the conventional rotating angles θ in space.

In this PEM polarimetry, the required minimum measurements for deducing Stokes vectors are

4. The EWV value for those temporal phases at 0, 30, 90, and 210� is 5, which is about one-quarter

of the value for the classical rotating retarder and fixed polarizer system (RRFP) technique, as

shown in Figure 7. Compared with the EWV value of the RRFP system under various configu-

rations, one can observe that the noise is considerably reduced under the optimized phase

retardation condition, but the angular positions have very limited effect on their EWV value.

Since the EWV value can be used to quantitatively evaluate the noise immunity of a polarimetry,

we can conclude that if one wants to achieve the same signal-to-noise ratio for 4 temporal phase

measurements in the PEM polarimetry, one needs 8 measurements in the optimal orientations

under optimal retardation and more than 16 uniformly spaced measurements over 360� in the

RRFP configuration with quarter-wave retardation.

3.4. PEM imaging ellipsometric measurement with the dual-wavelength approach

In the previous section, two-dimensional ellipsometric parameters were determined at a spe-

cific wavelength. In the conventional PEM-based ellipsometric measurement, the modulation
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Figure 5. The movement behavior of an oil droplet: (a) Δ distribution for every 30 s, (b) the cross-sectional distribution of

Δ through the center of the oil droplet at t = 60 s, and (c) the thickness profile across the center of the oil droplet at t = 60 s.
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amplitude is controlled by applying an external voltage for a specific wavelength. However, a

few seconds are required to reach resonance equilibrium and stabilize the modulator, while

there is a change in the modulation amplitude for different wavelength; this procedure signif-

icantly reduced the measurement speed for the multi-wavelength measurement. Here, we

developed an equivalent phase retardation technique that may help prevent the above disad-

vantage of PEM for multi-wavelength measurement [17]. In general, the half-wave modulation

Figure 6. System configuration of the phase-lock PEM polarimetry for Stokes parameters measurement.

Figure 7. Trajectory of the phase-lock PEM polarimetry on the Poincar'e sphere: the four specific polarization states are

indicated in the graph.
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is set at a specific wavelength (λ1). However, while the wavelength of the incident light shifts

to the other shorter wavelength (λ2), the modulation amplitude no longer equals 0.5 waves,

but rather equals 0.5/λ2 waves. We changed the temporal phase angle ωt to maintain a

constant dynamic retardation of the PEM, rather than the applied voltage, while the original

wavelength λ1 switches to the other λ2. Their relation is as follows:

Δp ¼
0:5λ1

λ2
sinωt (23)

According to the Eq. (22), Figure 8 demonstrates that though the wavelength was changed from

one to the other, the output polarizations were kept constant by setting different temporal phase

angles within a modulation cycle. Figure 9 shows the thickness profile of a two-step oxidized

silicon wafer examined using red and blue light, respectively. Table 1 lists the measured

ellipsometric parameters and deduced film thickness from both wavelengths. To sum up, the

film thicknesses measured were close to the theory whether by red or blue lights.

3.5. Full Mueller matrix imaging polarimetry based on the hybrid phase modulation

Mueller matrix imaging contains comprehensive information on the morphological and func-

tional properties of the biological samples as well as the birefringence, dichroism, and depo-

larization of the specimens [31–33]. The conventional Mueller matrix imaging approaches were

based on measurements involving sequential rotation of the polarizer, analyzer, and retarders,

Figure 8. Polarization modulation at peak retardation of half-wave (λ = 658 nm) and the output polarization at four

temporal phase angles of dual-wavelength.

Photoelastic Modulated Imaging Ellipsometry
http://dx.doi.org/10.5772/intechopen.70254

119



but such approach was a time-consuming process that impeded the use of the system for

in vivo imaging studies. In order to improve the speed of measurement, recent development

in the Mueller matrix polarimeter was mainly focused on the process of using liquid crystal to

control and analyze the state of the input or output polarizations. As the measurements with

these approaches usually employed unmodulated light irradiance, the results were more

sensitive to noise than methods using an intensity modulated light, particularly for highly

scattering samples [34, 35]. Moreover, the tuning curve of the liquid crystal variable redarder

(LCVR) was found to be sensitive to its alignment and temperature to result in systematic

errors and also impact the overall performance of the instrument [36].

The deficiency of LCVRs in the Mueller matrix imaging system can be improved by replacing

the LCVRs in the portion of the polarization state analyzer with a PEM, and the modified

configuration is shown in Figure 10 [18]. The polarization state generator of this system is

composed of a linear polarizer and two LCVRs. The azimuth angle of the polarizer was set at

�45� and the slow axis of the two LCVRs was oriented to an angle of 90 and 45�, respectively.

The retardations (δ1, δ2) of both LCVRs are dependent on their driving voltages to generate

four polarizations. Thus, the Mueller matrix of the PSG in terms of the Mueller matrices of their

components can be expressed as:

MPSG ¼ MLCVR2
δ2; 45

∘ð Þ•MLCVR1
δ1; 90

∘ð Þ•MP �45 ∘ð Þ (24)

The polarization state analyzer (PSA) was composed of a PEM and an analyzer. In order to

obtain a complete set of PSA, we set the azimuth angle of the PEM at 0�, and the Mueller

matrix representing the PSA module is obtained from:

Figure 9. Oxide thickness profile of the two-step reference wafer. (a) the deduced thickness profile by 658 nm red light

source and (b) the deduced thickness profile by 405 nm blue light source.

Wavelength (nm) Index of refraction Measured ellipsometric parameters Deduced film thickness (nm)

Δ(�) Ψ(�)

658 Si:3.836-i0.016

SiO2:1.456

166.03 � 1.12 11.69 � 0.08 5.20 � 0.43

405 Si:5.424-i0.330

SiO2:1.469

159.72 � 1.36 22.58 � 0.38 5.57 � 0.45

Table 1. Optical characteristics for the substrate and thin films.
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MPSA ¼ MA Að Þ•MPEM Δp; 0
∘

� �

(25)

where MA and MPEM are the Mueller matrix of the analyzer and PEM, respectively; A is the

azimuth angle of the analyzer; and Δp represents the phase retardation of the PEM, which was

also modulated as δ0sinωp. Here, the amplitude of modulation δ0 is set at π, and the temporal

phase angle refers to Δp. Consequently, the total Mueller matrix of the system is given by:

MT ¼MPSAMSMPSG ¼Ma Að Þ•MPEM Δp;0
∘

� �

•MS•MLCVR2
δ2;45

∘ð Þ•MLCVR1
δ2;90

∘ð Þ•MP �45 ∘ð Þ

(26)

where Ms is represented as the Mueller matrix of the sample being tested. As the system is

based on intensity modulation, only the first element of the Stokes parameters in Eq. (25) has to

be considered. One can formulate the temporal intensity behavior as follows:

IðA,θp, δ1, δ2Þ ¼
I0
4

〈m00 �m02 cos δ1 �
1

2
m01 sin δ1 sin δ2

þ cos 2A m10 �
1

2
m11 sin δ1 sin δ2 �m12 cos δ1 þm13 sin δ1 cos δ2

� �

þ
1

2
sin 2A½ cos ðπ sinθpÞð2m20 �m21 sin δ1 sin δ2 � 2m22 cos δ1Þ

þ sin ðπ sinθpÞð2m30 sin 2A�m31 sin δ1 sin δ2 � 2m32 sin 2AÞ�

þ sin δ1 cos δ2fm03 þ sin 2A½m23 cos ðπ sinθpÞ þm33 sin ðπ sinθpÞ�g〉

(27)

Figure 10. Optical setup for Mueller matrix imaging polarimetry with hybrid phase modulation technique.
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It is well-known principles that at least 16 individual polarization state measurements are

required to determine the full Mueller matrix. The measurements are usually carried out by

generating four specific polarization states from the PSG, and each output polarization can be

determined by at least four intensity measurements. Accordingly, both the PSG and the PSA

must be “complete” to obtain the full Mueller matrix with at least four basic states.

In detail, the four phase retardations (δ1, δ2) = (90�, 0�), (0�, 0�), (75.5�, 206.5�), and (75.5�,

153.5�) were sequentially set for both LCVRs, so that four specific polarization states were

generated from the PSG. In order to characterize the Stokes vectors of the outgoing light from

the sample, four conditions were also set up for the PSA by changing the azimuth of the

analyzer A and the temporal phase angle Δp of the PEM, with the following conditions:

(A, Δp) = (0�, 0), (45�, 0�), (45�, 30�), and (45�, 90�). While capturing the images with different

conditions of the PSG and the PSA, the modulated pulse is achieved by a DC bias current equal

to the threshold value coupled with a programmable pulse generator to drive the laser diode.

The generated and analyzed polarization states, in the order of the optimal optical settings,

and the exact 16 intensity measurements were obtained as shown in Table 2, while the details

for determining individual Mueller matrix elements are listed in Table 3.

Two results were shown by using this Mueller matrix imaging measurement system. The first

results were the measured Mueller matrices of a quarter wave plate and the map of its phase

retardation. We set the azimuth angle of the wave plate at 0�, which makes m23 = 1, m32 = -1,

m22 = 0, and m33 = 0; the values of other elements were the same as those in air. Also, we

rotated the quarter wave plate to set its azimuth angle at 30 and 60� and deduced its phase

retardation by the Lu-Chipman algorithm, as shown in Figure 11. The average value of the

phase retardation, which is close to the ideal condition at around 90�, and the azimuth angle

under different rotation conditions are shown in Figure 12. Disregarding some static areas

with small deviations due to speckles of dust in the imaging elements, the measured distribu-

tions almost matched the theoretical conditions.

The other result was the dynamic optical characteristics of a biopolymer specimen with heat-

induced conformational change. The second test sample, shrimp shell, is composed of chitin,

proteins, lipids, and pigments and with the characteristic of being semi-transparent. Accord-

ingly, we investigated the conformational changes of shrimp shell induced by heat treatment,

PSG

(δ1, δ2)

PSA

(Analyzer, PEM)

(0�, 0�) (45�, 0�) (45�, 30�) (45�, 90�)

(75.5�, 206.5�) I4 I5 I6 I7

(75.5�, 153.5�) I3 I10 I9 I8

(0�, 0�) I2 I11 I12 I13

(90�, 0�) I1 I16 I15 I14

Table 2. Measurement sequence of 16 intensities under the condition of retardation of LCVRs for the chosen set of

analyzer and temporal phase angle of the PEM.

Ellipsometry - Principles and Techniques for Materials Characterization122



Element Intensity calculation

m00 2 � 2I10 � I11 � I13 þ 2I5 þ 2I7 þ 2I8 þ 2
ffiffiffi

3
p

I14 þ I16ð Þ
� �� �

= 2
ffiffiffi

3
p

þ 3
� �

m01 4
ffiffiffi

3
p

� I10 � I5 � I7 þ I8ð Þ

m02 4 � I10 � 2I11 � 2I13 þ I5 þ I7 þ I8 �
ffiffiffi

3
p

I11 þ I13 � I14 � I16ð Þ
� �� �

= 2
ffiffiffi

3
p

þ 3
� �

m03 2 � 2I10 � I11 � I13 � 3I14 � 3I16 þ 2I5 þ 2I7 þ 2I8ð Þð Þ= 2
ffiffiffi

3
p

þ 3
� �

m10 � 2 � 2I10 � I11 � I13 þ 2I2 � 4I3 � 4I4 þ 2I5 þ 2I7 þ 2I8 � 4
ffiffiffi

3
p

I1 þ 2
ffiffiffi

3
p

I14 þ I16ð Þ
� �� �

= 2
ffiffiffi

3
p

þ 3
� �

m11 4
ffiffiffi

3
p

� I10 � 2I2 þ 2I4 � I5 � I7 þ I8ð Þ

m12 � 4 � I10 � 2I11 � 2I13 þ 4I2 � 2I3 � 2I4 þ I5 þ I7 þ I8 � 2
ffiffiffi

3
p

I1 � I2ð Þ �
ffiffiffi

3
p

I11 þ I13 � I14 � I16ð Þ
� �� �

= 2
ffiffiffi

3
p

þ 3
� �

m13 � 2 � 6I1 þ 2I10 � I11 � I13 � 3I14 � 3I16 þ 2I2 � 4I3 þ 2I5 þ 2I7 þ 2I8ð Þð Þ= 2
ffiffiffi

3
p

þ 3
� �

m20 2 � 2I10 � I11 þ I13 þ 2I5 � 2I7 � 2I8 � 2
ffiffiffi

3
p

I14 þ I16ð Þ
� �� �

= 2
ffiffiffi

3
p

þ 3
� �

m21 4
ffiffiffi

3
p

� I10 � I5 þ I7 � I8ð Þ

m22 4 � I10 � 2I11 þ 2I13 þ I5 � I7 � I8 �
ffiffiffi

3
p

I11 � I13 þ I14 � I16ð Þ
� �� �

= 2
ffiffiffi

3
p

þ 3
� �

m23 2 � 2I10 � I11 þ I13 þ 3I14 � 3I16 þ 2I5 � 2I7 � 2I8ð Þð Þ= 2
ffiffiffi

3
p

þ 3
� �

m30 � 2 � 2I10 � I11 þ 2I12 � I13 þ 2I5 � 4I6 þ 2I7 þ 2I8 � 4I9 � 4
ffiffiffi

3
p

I15 þ 2
ffiffiffi

3
p

I14 þ I16ð Þ
� �� �

= 2
ffiffiffi

3
p

þ 3
� �

m31 4
ffiffiffi

3
p

� I10 � I5 þ 2I6 � I7 þ I8 � 2I9ð Þ

m32 � 4 � I10 � 2I11 � 2I13 þ 4I12 þ I5 � 2I6 þ I7 þ I8 � 2I9 � 2
ffiffiffi

3
p

I15 � I12ð Þ �
ffiffiffi

3
p

I11 þ I13 � I14 � I16ð Þ
� �� �

= 2
ffiffiffi

3
p

þ 3
� �

m33 � 2 � 2I10 � I11 þ 2I12 � I13 � 3I14 þ 6I15 � 3I16 þ 2I5 � 4I6 þ 2I7 þ 2I8 � 4I9ð Þð Þ= 2
ffiffiffi

3
p

þ 3
� �

Table 3. Set of 16 intensities for calculating the full Mueller matrix elements.

Figure 11. Phase distribution of the measured quarter wave plate while the azimuth angle was set at 0�.
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because shrimp shell is a birefringent biopolymer material, whose absorption spectrum and

transparency could be changed during the heat treatment. Therefore, the optical characteris-

tics, such as diattenuation, depolarization, and phase retardation of the shrimp shell may be

changed by heat treatment. During the examination, the shrimp shell was heated by a thermal

electrical source to make it gradually turn to ruby red with the increase of the temperature.

Meanwhile, a set of 16 images were recorded every 90 seconds to deduce the full elements of

the Mueller matrix images. The retrieved polarization parameters, including retardance (R),

depolarization coefficient (Δ), and diattenuation (d) deduced by the Lu-Chipman algorithm

are shown in Table 4. Since the value of R was mainly related to the change of thickness or

structure of the sample, the average value of R around 50� before and after the heat treatment

of the shrimp shell represents thickness or structure that remained unchanged. Since the heat

Figure 12. Azimuth angle distribution of the measured quarter wave plate while the azimuth angle was set at (a) 0�, (b)

30�, and (c) 60�.

Table 4. Decomposed experimental Mueller matrix images of the shrimp shell by heating treatment.
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source was located below the sample, the depolarization coefficient (Δ) appeared as the

bottom-up change specification. One can observe that the overall trends for depolarization

and diattenuation share common features due to heat treatment that induces the crustacean to

relax its bonds with astaxanthin, which causes the shell to be transformed from almost trans-

parent to red. In this process, the binding of both proteins would increase the scattering effect

of the incident light. However, the behavior of the protein complex and transformation of the

polarization properties associated with the Mueller matrix needs further exploration.

4. Conclusions

The known commercial imaging ellipsometry, usually employing the zone-averaging approach,

is in the order of minutes to obtain two-dimensional optical characteristics of a thin film. In this

chapter, we demonstrate the stroboscopic illumination technique in PEM-based ellipsometry just

by using a limited number of measurements that can reduce the acquisition time in imaging

ellipsometry and carry out the measurement within a few seconds. In addition to making use of

this technique for imaging ellipsometry measurement, this approach was also extended to Stokes

parameters and Mueller matrix imaging. Under the condition of multi-wavelength or spectro-

scopic measurement, polarimetry usually encounters the issue of retardation dispersion, which is

the same situation that one encounters while using the PEM in an ellipsometry system. We

developed the equivalent phase retardation technique, in which retardation dispersion settings

of the PEM for different wavelengths were not required. That is to say, the stability and frame

rate for the multi-wavelength measurement were almost the same as the single wavelength

approach. The ellipsometric parameters of different wavelengths were capable of determining

additional sample parameters, such as surface roughness, multiple film thicknesses, index dis-

persion, and the consistency of deduced results. Since polarization behavior of transmitted or

reflected light was strongly related to their wavelength, multi-wavelength approach for Stokes

parameters and Mueller matrix imaging can enhance the contrasts and increase the sensitivity of

measurements for some features of the biological samples. If the polarimetry system can quickly

obtain the desired images, we believe polarimetry imaging is well placed for in vivo tissue

diagnosis in the forthcoming future [24].
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