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Abstract

Nowadays, mobile applications demand, in large extent, an improvement in the overall
efficiency of systems, in order to diversify the number of applications. For unmanned
aerial vehicles (UAVs), an enhancement in their performance translates into larger pay-
loads and range. These factors encourage the search for novel propulsion architectures,
which present high synergy with the airframe and remaining components and subsys-
tems, to enable a better UAV performance. In this context, technologies broadly examined
are distributed propulsion (DP), thrust split (TS), and boundary layer ingestion (BLI),
which have shown potential opportunities to achieve ambitious performance targets
(ACARE 2020, NASA N+3). The present work briefly describes these technologies and
shows preliminary results for a conceptual propulsion configuration using a set number of
propulsors. Furthermore, the simulation process for a blended wing body (BWB) airframe
using computational fluid dynamics (CFD) OpenFOAM software is described. The latter is
examined due to its advantages in terms of versatility and cost, compared with licensed
CFD software. This work does not intend to give a broad explanation of each of the topics,
but rather to give an insight into the state of the art in modeling of distributed propulsion
systems and CFD simulation using open-source software implemented in UAVs.

Keywords: unmanned aerial vehicles, CFD, distributed propulsion, boundary layer
ingestion, blended wing body, OpenFOAM

1. Distributed propulsion

Distributed propulsion has been studied as a way of improving propulsive efficiency by

increasing the bypass ratio of the turbofan engines, without any design constraints of large

engines’ fan radius. Distributed propulsion has been explored since the 1960s, for commercial

aviation; however, the design complexities involving energy transmission, maintenance, and

fluctuant oil price during the past decades have limited its research. Recently, the growing

environmental awareness has again motivated initiatives for the search of more efficient

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



propulsion systems. Numerous renowned institutions [1–3] have taken the leap to study

concepts with distributed propulsion and observed an achievable 8% benefit in terms of thrust

specific fuel consumption (TSFC) compared with today’s aircraft [2]. However, for civil avia-

tion, the implementation of this technology is still a challenge, due to mechanical design

constraints and safety issues. For unmanned platforms, this technology has been implemented

successfully onmulticopters [4], where multiple rotors are used for propulsion and flight control.

The latter application has arisen as a consequence of suitable and reliable electrical power,

control, and transmission systems, which enable to control pitch, torque, and rotational speed,

to describe the flight envelope. Although distributed propulsion has been well examined in

multicopters, unmanned aerial platforms, using fixed wing configurations, are not well

documented. For fixed wings, the distributed propulsors could be arranged over the airframe [5],

and they could present boundary layer ingestion, which could bring 7% reduction for civil

aviation concepts in TSFC compared with today’s aircraft [6]. Since highly integrated propulsion

configurations have a high synergy with BWB airframes, the latter has been selected for the

assessment of the propulsion configurations, and hence to set the thrust required at cruise

conditions, the aerodynamic characteristics are based on a BWB airframe. A plot of the BWB

airframe selected for this work is shown in Figure 1, and as observed, its selection obeys the

multiple advantages for DP and BLI, such as (i) its uniform planform area in the spanwise

direction, which enables the allocation of an array of propulsors; (ii) the large airframe space to

embed the propulsors at the trailing edge of the airframe, which is beneficial when BLI is

implemented, as more airframe drag is ingested. In the CFD simulation presented in this work,

the BWB configuration is tested using the OpenFOAM open-source software. The aerodynamic

Figure 1. BWB model selected [7].

CDO (zero lift, drag

coefficient)

CL (Lift

coefficient)

e (wing span

efficiency)

AR (aspect

ratio)

Flight

velocity

Wing

span

0.015 0.1 0.72 5.9 20 (m/s) 3 (m)

Table 1. Airframe and aerodynamic data at cruise conditions [8].
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characteristics of the BWB airframe are described in Table 1, which correspond to the UAV case

study. Since agriculture is one of the main applications for this sort of aerial platforms, the

operating conditions are selected based on UAVs used in precision agriculture [5].

In order to clarify the structure of the distributed propulsion configuration, an illustrative

diagram for the electrical propulsion system utilized in this work is shown in Figure 2. As

observed in this figure, the electrical and control system units take the place of the gas turbine

in common turbo-electric distributed propulsion arrangements [9], and hence they supply the

electrical power to the propulsor’s electrical motor. For the sake of clarity, in Figure 2, only one

propulsor (NF = 1) is depicted; nevertheless, this is a design space variable for the UAV concept.

For the case of study previously mentioned and using the methodology developed in Valencia

et al. [5], the power consumed by the distributed propulsion arrangement using an electrical

power system is shown in Figure 3. The figure shows the power requirement per fan to

achieve the set thrust at cruise condition for four propulsion configurations. In this case, each

configuration uses a different number of propulsors (NF). To calculate the mass flow through

the propulsors, an inner control volume approach is selected [10]. Through this approach, the

propulsor mass flow can be defined based on the set thrust for cruise condition, which is

calculated as a function of the aircraft drag. Eq. (1) is used to calculate the propulsor’s mass

flow. The latter variable enables to calculate the fan diameter through mass conservation and

the fan power based on the isentropic thermodynamic relations for incompressible flow. This

process is further explained in [3]

FN ¼ _m V j � V0

� �

(1)

Electric Motor

Fan

Battery
Electronic Speed 

Control

Micro-controller

Propulsor

Communication

GPS

V0
V1

Distributed propulsor

Figure 2. Distributed propulsion array for an electric-powered UAV.
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In Figure 3(a), the total power remains the same, as it is assumed that the aircraft drag remains

constant (this assumption, however, will depend on the distributed propulsion array); further-

more, for the calculation of the propulsor power, it is assumed that the flow entering the

distributed propulsors presents the same velocity for all the propulsors. In Figure 3(a), it is

observed how the power required per fan reduces as more fans are implemented in the

distributed arrangement and additionally shows the benefit of working with low fan pressure

ratios. In this case, the intake pressure losses assumed are 1%, which is low and hence they do

not restrict to operate at low fan pressure ratios. This, however, will highly depend on the duct

design. It can also be observed from the figure that the total power of the distributed arrange-

ment remains constant for all the configurations. In Figure 3(b), the fan diameter for each

arrangement is plotted and, as expected, a large number of propulsors will reduce their size,

Figure 3. Power required per fan and fan diameter at cruise condition.
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due to the lower mass flow per propulsor. Also, it is important to note that insofar as the

pressure ratio is increased, the fan diameter decreases; this is attributed to the larger energy

that is delivered by the fan to produce the thrust set for cruise condition. To summarize, the

benefits that distributed propulsion brings are (i) enhancement in the distribution of loads

along the spanwise of the airframe, due to the reduction in size and therefore weight of the

propulsors; (ii) suitability of small fans embedded into the airframe to improve its aerody-

namic performance.

In the case of using turbo-electric distributed propulsion, where the energy source is a gas

turbine/turbofan, the propulsive efficiency will improve, due to the increment of energy

transferred to the low momentum flow (cold flow), and hence, the reduction of velocity in the

high speed flow [11]. The latter, also, will contribute to a reduction in noise [12].

BLI configurations having a distributed propulsor array over the airframe sucking the bound-

ary layer induce certain challenges in terms of boundary layer treatment, stability issues,

aerodynamic integration effects propulsors-airframe, among others. It is usually a problem to

deal with the boundary layer around the airframe, as highly coupled configurations ingest the

boundary layer, and hence, the propulsors operate under combined radial and circumferential

distortion patterns, which detriments to large extent fan performance [2, 5]. Figure 4 shows the

total pressure patterns at different radial and circumferential positions for a clean fan and for

the BLI case. As observed, the change in flow properties of each rotational cycle would affect

the fan performance, since blades are designed only for radial distortion, where a set flow

conditions is expected at the design point. There are novel techniques to deal with boundary

layer ingestion and take advantage of a reduced momentum drag for the propulsors. These

alternatives either enhance control of the incoming flow or shift the blade position based on the
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Figure 4. Inlet total pressure for distorted BLI case [15].
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flow conditions [13, 14]. The discussion of these alternatives is beyond the scope of the present

work.

1.1. Thrust split

The concept of thrust split has been well explored in many different manned aerial concepts,

such as the N3-X [1, 6] and Cranfield [3, 16, 17]. This technology, for manned concepts, which

presents distributed propulsion, was observed as a way of enhancing propulsive efficiency and

fuel consumption, while reducing the high transmission losses (electrical transmission systems)

and integration aerodynamic effects between propulsion and airframe [10]. The mentioned

benefits are achieved in civil aviation, by reducing the amount of power required by the distri-

buted propulsion arrangement, and hence decreasing the amount of losses and increasing

weight, which comes from the cryocooling system of the high-temperature superconducting

(HTS) electrical propulsion [18]. Regarding BLI systems, it was observed that ingesting a larger

share of boundary layer freestream determines the performance benefits from BLI [16] and

thus, it is better to have smaller propulsors, which ingest only the boundary layer. The

improvement in propulsive efficiency and energy consumption comes from the lower momen-

tum drag entering the distributed propulsor array. Furthermore, the latter aspect can have

other positive effects with regard to intake pressure losses and distributed array allocation. The

first aspect is due to the reduced mass flow required by the propulsor array operating with

BLI, and hence, less wetted area at the intake. The second aspect is related to the small size of

the propulsors and hence less geometrical constraints for their allocation in the distributed

propulsor unit. Thrust split (TS) is defined by Eq. (2).

TS ¼
FDP

FN
(2)

where FDP is the thrust delivered by the propulsor array and FN is the net intrinsic net

thrust [3].

In case of battery-powered aerial platforms, which have the configuration presented in

Figure 2, thrust split is an extra design space variable for the configuration of distributed

propulsion systems with BLI. This variable could help heterogeneous fan distributed

propulsors arrangements, where geometric, aerodynamic, and structural constraints can be

satisfied. Figure 5 shows a conceptual configuration of the UAV described in Table 1, with a

thrust split of 50% and 75%. In this case, the main engine is located at the centerline to reduce

stability problems in case of one engine is put off. It is observed from the figures how the

heterogeneous configurations for UAVs could help to better the distribution of loads

(propulsors) within the airframe, versatility in configurations and better aerodynamic design

(smaller propulsors embedded in the airframe). In Figure 5, the main fan power corresponds

to the airframe centerline fan shown in Figure 6.

Illustrative configurations for the three thrust split configurations presented in Figure 5 are

shown in Figure 6. As observed in the figure, insofar as thrust split is reduced, the size of the

main propulsor increases, which is attributed to the large share of thrust that needs to be

delivered by the main propulsor to keep the thrust at cruise condition.
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In unmanned aerial vehicles, which use distributed propulsion, gas turbines or internal com-

bustion engines work as the main power source. These previously mentioned benefits need to

be verified and adapted for the different power settings that UAVs required [5]. First, most of

unmanned systems do not employ turbofans, due to increased cost and complexity of these

Figure 5. Propulsion system configurations for 50 and 75% thrust split.

Figure 6. Illustrative configurations for different thrust splits.
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systems; therefore, the benefit in propulsive efficiency accrued from using large by pass ratio

turbofans in high thrust split configurations will not be present. Nevertheless, UAVs that have

gas turbines and distributed propulsion may have structural issues that come from the load

distribution within the airframe. This latter aspect could be solved by introducing thrust split

as main power source, and the propulsion system (main and distributed) could be sized based

on a thrust schedule where the main engine and the propulsor array can cooperate with a

share of the thrust required at each flight condition during the flight envelope looking for an

optimum in terms of weight and overall performance.

2. CFD simulation

The fixed-wing UAVs can be examined using CFD simulation to reduce cost in investiga-

tion [19, 20]. For that purpose, OpenFOAM have been used to carry out a numerical simulation

for a general shape of UAVs’ wing. OpenFOAM means Open Field Operation and Manipula-

tion and it is not only a software but also a library of C++ solvers for CFD simulations. The

main code is free and open-source software, which allows to modify and to implement equa-

tions and functions without any commercial restriction [20]. In this context, OpenFOAM is an

important tool to carry out numerical simulations for CFD.

2.1. Description of the mathematical model

The turbulence model of SST k � ω has been selected to carry out the numerical simulation to

capture the effects of the boundary layer [21] over the airframe, which in this case presents

geometrical complexity. The adverse pressure gradient and the separating flow can be cap-

tured fairly well with considerations of SST k � ω properties in regions far away from

walls [21]. Moreover, a general expression of the turbulence model is indicated in the filtered

Eq. (3).

ρ
∂φ

∂t
þ ρuj

∂φ

∂xj
�

∂

∂xj
Γφ,eff

∂φ

∂xj

� �

¼ Sφ (3)

where φ represents variables, Γφ,eff represents the effective diffusion coefficient, and Sφ repre-

sents the source term of the equation, which is according to [21].

The OpenFOAM solver called simpleFoam has been used for solving the steady-state

Reynolds-averaged Navier-Stokes equations with the SST k � ω turbulence model [22]. For

that, the coupling between velocity and pressure is treated using the SIMPLE method [23].

2.2. CFD domain

The selected geometry of UAVs for numerical simulations has been based on the design of the

BWB airframe [24, 25] shown in Figure 1. The analyzed 3D model is depicted in Figure 7.

The main dimensions of the domain are indicated in Figure 8, which was based on previous

work focused on drag estimations using CFD [26]. The largest dimension is 15 times the chord

Aerial Robots - Aerodynamics, Control and Applications72



length, l, in the axial direction and the shortest length is 5 times l in the spanwise direction. The

aforementioned configuration was used for the CFD simulation.

2.3. Mesh generation and boundary conditions

The mesh in Figure 9 was obtained using the OpenFOAM tool snappyHexMesh [27] with 1.3

million cells. Based on previous research [19, 28], the mesh has been divided in two zones,

refined and no-refined, to capture special characteristics of the phenomenon and fluid devel-

opment, respectively. Furthermore, the refined zone close to the wing walls presents a special

Figure 7. 3D model of BWB Mark 2 [24, 25].

Figure 8. Main computational domain.
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treatment to improve the simulation of the boundary layer, which has a y+ equal to 50

according to the requirements of the SST k � ω model [19, 27].

The boundary conditions are based on previous studies for BWB [29] and indicated in Table 2,

where Uin is the inlet velocity, pout is the static pressure in the outlet, ρ
∞
is the estimated density

of the air, and μ
∞
is the dynamic viscosity.

2.4. Results and discussion

Figure 10 shows that the numerical simulation converge after 200 iterations for the pressure

and components of the velocity, U, in the respective axes; hence, 300 iterations can be accept-

able for steady-state results.

According to Figure 11(a), the pressure coefficient (Cp) distribution of the BWB Mark 2 model

changes from the leading edge to the trailing edge. The upper part indicated in Figure 11(b)

shows the Cp decreasing downstream and the lowest Cp was found close to the quarter chord of

wings, maintaining the trends as expected for BWB airframes [8, 26]. Downstream, the minimum

Cp increases in the direction of the trailing edge. The bottom view shows similar Cp distribution

to the upper surface with higher values to give the lifting characteristics of this component.

Furthermore, the CL and CD were calculated in OpenFOAM using the forces library called

libforces. The estimated values are 0.216 and 0.014 for CL and CD, respectively, which matched

fairly well the values obtained by Cisneros [29] using XLFR5. Since the aim of the present work

No-refined zone

Refined zone

Refined zone for the 

boundary layer

Figure 9. Mesh around the BWB Mark 2 model.

Uin pout ρ
∞

μ
∞

[m/s] [m2/s2] [kg/m3] [kg/(ms)]

50 0 0.5895 1.561 � 105

Table 2. Boundary conditions.
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Figure 11. Pressure distribution around the BWB Mark 2 model.
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is to give an insight on high-fidelity aerodynamic assessment using open-source software and

demonstrate the suitability of OpenFOAM, the simulation for other flight conditions is beyond

the scope of the present work.

3. Summary

This study assessed the suitability of alternative propulsion configuration for UAVs, using a

blended wing body (BWB) airframe with distributed propulsion and thrust split. Since the

airframe design influences in the propulsion system, a prototype configuration was tested for

the aerodynamic performance assessment through OpenFOAM, which is a library of C++

solvers for CFD simulation under guidelines of the free and open-source software. In this

context, it was demonstrated that distributed propulsion, together with thrust split, enables

structural, aerodynamic, and performance benefits. The aforementioned was achieved through

a better load distribution along the airframe spanwise and reduction of propulsors’ size to

allow embedding them to attain a low drag propulsion array. Furthermore, these latter config-

urations open the window for BLI installations, which bring important benefits in terms of

propulsive efficiency and drag reduction, but represent challenges from the aerodynamic

integration perspective.

Finally, the research demonstrated the suitability of using OpenFOAM as CFD platform for

aerodynamic performance assessment, which presents significant advantages in terms of

(i) freedom to adapt the main code to our needs and (ii) no license requirement, which is

important to reduce simulation costs.
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Abbreviations and nomenclature

UAVS Unmanned Aerial Vehicle System

BLI Boundary Layer Ingestion

DP Distributed Propulsion

BWB Blended Wing Body

TSFC Thrust Specific Fuel Consumption

FPR Fan Pressure Ratio

CFD Computational Fluid Dynamics
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HTS High Temperature Superconducting

SST Shear Stress Transport

LP Low Pressure

HP High Pressure

CL Lift Coefficient

CD Drag Coefficient

Cp Pressure Coefficient

CDo Zero Lift Drag Coefficient

_m: Mass Flow

AR Aspect Ratio

e Wing Span Efficiency

Pf Power Per Fan

θ Referred Temperature

δ Referred Pressure

D2 Fan Diameter

Nf Number of Fans

TS Thrust Split

FDP Thrust Delivered by the Propulsor Array

FN Net Thrust

V0 Velocity at Propulsor Intake

V1 Velocity at Propulsor Outlet

Uin Air Velocity at Inlet for CFD Simulation

pout Air Gaussian Pressure at Outlet

ρ
∞

Air Density

μ
∞

Air Viscosity

ηf Fan Efficiency

φ Variables

Γφ,eff Effective Diffusion Coefficient

Sφ Source Term
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