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Abstract

The vision to unravel and develop biological healing mechanisms based on evolving 
molecular and cellular technologies has led to a worldwide scientific endeavor to establish 
regenerative medicine. This is a multidisciplinary field that involves basic and preclinical 
research and development on the repair, replacement, and regrowth or regeneration of 
cells, tissues, or organs in both diseases (congenital or acquired) and traumas. A total of 
over 63,000 patients were officially placed on organs’ waiting lists on 31 December 2013 
in the European Union (European Commission, 2014). Tissue engineering and regen-
erative medicine have emerged as promising fields to achieve proper solutions for these 
concerns. However, we are far from having patient-specific tissue engineering scaffolds 
that mimic the native tissue regarding both structure and function. The proposed chapter 
is a qualitative review over the biomaterials, processes, and scaffold designs for tailored 
bioprinting. Relevant literature on bioengineered scaffolds for regenerative medicine will 
be updated. It is well known that mechanical properties play significant effects on bio-
logic behavior which highlight the importance of an extensively discussion on tailoring 
biomechanical properties for bioengineered scaffolds. The following topics will be dis-
cussed: scaffold design, biomaterials and scaffolds bioactivity, biofabrication processes, 
scaffolds biodegradability, and cell viability. Moreover, new insights will be pointed out.

Keywords: tailored scaffold, biomaterials, bioprinting, biomechanics, regenerative medicine

1. Introduction

In a society that is in constant development, the discovery of “new” scientific and technologi-
cal knowledge must (i) progress at an incredibly fast pace, (ii) target a wide audience, and 

(iii) have a practical impact in the society. The health sciences are naturally a priority area of 
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research, mostly because of the impact they have on the augment human life expectancy, by 

developing advanced and patient-specific therapies.

Only the complexity of human tissues could justify that in the 1980s tissue engineering 
emerged as a scientific field with an enormous potential. Targeting to regenerate the bone, 
cartilage, skin, or other tissues and organs, bridging the anatomy with its physiology/function 

is a paramount challenge to be solved. Several efforts have been made, by research groups 
spread worldwide, to tailor bioengineering scaffolds (sometimes denominated by tissue con-

structs) that could mimic native tissues. However, the achievement of three-dimensional (3D) 
complex organ structures is far from being tangible. Due to its nature, tissue engineering 
gathers scientists, engineers, and physicians in multidisciplinary teams using a variety of 

methods to construct biological substitutes [1]. Indeed, significant efforts are being developed 
worldwide in the fields of tissue engineering and regenerative medicine, but full tissue or 
organ regeneration remains a paramount challenge. Therefore, these multidisciplinary scien-

tific fields apply a wide variety of methodologies, where multidisciplinary research teams can 
provide suitable inputs for its development [2].

One of the major goals is to produce biological substitutes to restore, maintain, or improve 

tissue function, using biocompatible and biodegradable support structures, i.e., scaffolds, in 
conjunction with human cells (Figure 1) [3]. Gathering tissue engineering and regenerative 

medicine, researchers have been interested on developing alternative approaches for restor-

ing functionality. To do so, one of the most promising methodologies involves the use of 

additive manufacturing (AM) processes. AM technologies allow the production of complex 
3D structures concerning mainly a high level of control, predefined geometry, size, and inter-

connected pores in a reproducible way. This optimized controlled organization enhances the 
vascularization and, thus, transports oxygen and nutrients throughout the whole structure, 

Figure 1. Relevant steps based on the use of scaffolds for tissue engineering.
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providing an adequate biomechanical environment for tissue regeneration [4]. However, 

adapting the adequate technology with enhanced biomaterials, in order to obtain customized 
implants that mimic the native tissue, is nowadays a challenge with a huge potential.

This chapter intends to provide a synopses in patient-specific engineering scaffolds. A revi-
sion of the scaffold design, biomaterials, and advanced manufacturing processes will help 
to establish new research paradigms on tailoring bioengineered scaffolds for regenerative 
medicine. Recent advances will be highlighted to stimulate the readers for future insights and 

possibilities.

2. Scaffold design

Scaffold modeling plays a key role in tissue engineering and regenerative medicine. A well-
designed 3D scaffold is a fundamental tool to guide tissue formation both in vitro and in 
vivo. Properties such as high surface-area-to-volume ratio, porosity, pore size, pore design, 
pore interconnectivity, permeability, and degradation should be taken into account when 

designing scaffold for different and tailored applications. These will allow a desirable bio-

logical network for cell migration, nutrient transportation, and the mechanical stiffness, and 
strength can be therefore obtained [5, 6]. Growth factors (GFs) and drug release (DR) should 
also be considered to achieve an optimized tissue growth as scaffold degraded. Moreover, 
some authors have shown the benefits for tissue generation of using curvature and concave 
surfaces compared to convex and planar ones [7].

To address and fulfill aforementioned requirements, two scaffold design approaches can be 
used according to the flowchart presented in Figure 2. The first one is based on the native tis-

sue, whereas the second one is based on the unit digital cell model, both addressing tailored 

scaffold geometry. The geometry obtained can then be used on computer-aided engineer-

ing studies to optimize the performance of the tailored bioengineering scaffold. Finally, a 
physical optimized scaffold can be produced using 3D printing or AM technology before in 
vitro and/or in vivo implantation of the scaffold. Accordingly, several research works have 
been developed concerning tailored scaffold geometry and its fabrication. In these studies, 
physical scaffolds have been used directly for in vitro and/or in vivo studies. Nevertheless, 
the link between computer modeling and computer-aided engineering to tailor bioengineer-

ing scaffold remains a paramount challenge. When solved, it can significantly reduce animal 
experimental studies.

In the computer modeling based on native tissue, different noninvasive 3D scanning tech-

niques can be considered to obtain the 3D anatomical geometric model. The most used are 
computed tomography (CT), μCT (micro-CT), and nCT (nano-CT), which considered different 
scale levels [8–10], as well as magnetic resonance image (MRI) and 3D optical techniques. All 
these techniques used different physical principles to obtain a series of two-dimensional (2D) 
images or a 3D point cloud of the sample of the native tissue studied. CT requires the exposi-
tion of the sample of the native tissue to ionizing radiation, whereas MRI uses a magnetic field 
and pulses of radio wave energy (avoiding radiation) both obtaining a series of 2D images. In 
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CT, these images are displayed by density, while in MRI they are compiled and segmented by 
its signal intensity. Additionally, both techniques can be differentiated by its resolution. The 
high resolution of CT allows the characterization of the micro-architecture and the mechani-
cal properties of the tissue scaffolds [11]; however, this technique has a drawback regarding 

soft tissues of similar density. It is more efficient in differentiating hard tissues with sharply 
defined density changes, such as the interface between bone and soft tissues. To overcome 
this problem, contrast agents can be added [6]. Although the resolution of MRI is inferior to 
CT scans, with the advance of technology, it is improving, allowing the 3D representation of 

Figure 2. Computer modeling and simulation to tailor bioengineering scaffolds.
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internal structures, such as the central nervous system, heart, and kidneys of a rat [9]. The 2D 
individual images obtained using the previous techniques described are then assembled and 

realigned, and therefore a 3D geometric anatomical model distinguishing different types of 
tissue is obtained.

Microscopy optical technique is also used to obtain the 3D anatomical geometric model of the 
native tissue. However, it can only differentiate every type of tissue down to the level of the 
individual cell at the cost of a huge computational effort. Other 3D optical techniques, such 
as 3D structured light, cannot differentiate the types of tissues presented and only allow the 
generation of the outer 3D geometric model of the native sample. In the case of the native tis-

sue sample (temporomandibular joint disc (TMJ disc)) presented in the flowchart of Figure 2, 

a 3D point cloud was obtained using a white light 3D scanning system (Steinbichler—COMET 
5®), and then an appropriate software was applied to replicate the 3D geometric anatomical 
model of the TMJ disc [12].

Hybrid modalities can also be used to construct the 3D model of the same specimen in order 
to take the advantage of each technique to differentiate the different types of tissues [9].

The second approach uses computer-aided design (CAD) techniques to create a 3D unit cell 
which is used as pattern. Then, a desired number of patterns are automatically generated and 
combined until a complete 3D geometric model of the scaffold is obtained with controlled 
architecture (Figure 2). Following this approach, the main scientific achievements reported 
are based on permanent or temporary scaffolds.

Permanent tailored engineering scaffolds have been designed mainly for bone repair of large 
segmental defects caused by fracture, tumor, or infection. In 2013, Wieding et al. [13] reported a 

numerical study which is used to determine the suitability of open porous of titanium scaffolds 
to act as bone scaffolds under physiological loading conditions. Uniaxial compression struc-

tural modulus of the titanium scaffolds was tailored ranging from 3.5 to 19.1 GPa as a function 
of the scaffold porosity from 64 to 80%. Results revealed that minimizing the amount of mate-

rial of the inner core had a smaller influence than increasing the porosity when the scaffolds 
were under biomechanical loading. It was also noted that the scaffold design could act similarly 
to the intact bone. In order to tailor the mechanical properties of cellular structured scaffolds, 
[14] designed metal scaffolds with high porosity (62–92%) to tailor both compressive strength 
(4.0–113.0 MPa) and elastic modulus (0.2–6.3 GPa), respectively, were comparable to trabecular 
and cortical bone. Porous titanium scaffolds were also investigated by van der Stok et al. [15, 

16] for grafting large bone defects. Mechanical properties were tailored, whereas high porosity 
of the scaffold allowed the incorporation of colloidal gelatin gels for time- and dose-controlled 
delivery of dual growth factors (bone morphogenetic protein-2 (BMP-2) and/or fibroblast 
growth factor-2 (FGF-2)), promoting a quasi-full bone regeneration. The scaffold was designed 
based on a decahedron pattern and composed by 120-μm-thick titanium struts with porous 
size ranging from 240 to 730 μm. Porous size, porosity, porous volume, compression strength, 
and Young’s modulus were 490 μm, 88%, 55 mm3, 14 MPa, and 0.4 GPa, respectively, allowing 
to achieve an optimized bone volume regeneration (~50 mm3) for a composite scaffold with 
BMP-2/FGF-2. In 2012, Van Bael et al. [17] developed six distinct geometries of Ti6Al4V scaf-
folds in three different pore shapes (triangular, hexagonal, and rectangular) and two different 
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pore sizes (500 and 1000 μm) aiming to understand the effect of pore geometry of Ti6Al4V bone 
scaffolds on the in vitro biological behavior of human periosteum-derived cells. The main result 
showed that a functional Ti6Al4V-graded scaffold, with specific morphological and mechanical 
properties, will contribute to enhance cell seeding and at the same time can maintain nutrient 

transport throughout the whole scaffold during in vitro culturing by avoiding pore occlusion.

Temporary (or biodegradable) tailored engineering scaffolds have been designed as a tissue 
engineering approach that uses degradable porous biomaterial incorporating biological cells 

and/or molecules to regenerate tissues such as the bone, cartilage, skeletal muscle, nerve, and 

blood vessels. Scaffold design must be able to create hierarchical porous structures to fulfill 
all mechanical and biological requirements. In 2005, Hollister [18] introduced the concept of 

hierarchical scaffold design as geometric features at scales from the nanometer to millime-

ter level that will determine how well the scaffold meets conflicting mechanical function and 
mass transport needs. In 2011, Khoda et al. [19] developed a functionally gradient variational 

porosity architecture (hierarchical design) for hollowed scaffolds. In 2014, Giannitelli et al. [20] 

reviewed tailored scaffold architecture with microstructural features. Authors highlighted the 
growing interest in the development of innovative scaffold designs to overcome often con-

flict requirements (such as biological and mechanical ones). Considering different pore size 
gradients, Sobral et al. [21] designed and manufactured. The goal was to enhance cell seeding 

efficiency and control the spatial organization of cells within the scaffold. Some authors [22] 

also emphasized the importance of scaffold pore size gradients in osteogenic differentiation 
of human mesenchymal stromal cells. In 2010, Puppi et al. [23] in deep reviewed the design 

of biodegradable and bioactive polymeric scaffolds, with properly suited architecture and tai-
lored properties for bone and cartilage tissue regeneration. According to the authors, a good 

scaffold design must account that macro- and microstructural properties affect cells survival, 
signaling, growth, propagation, and reorganization and play also a major role in modeling 
cell shape and gene expressions, both related to cell growth and preservation of native phe-

notypes [24, 25]. In addition, several scaffold designs were developed and then manufactured 
using different AM processes. For example, Fierz et al. [26] designed three labeled anisotro-

pic 3D hydroxyapatite scaffolds (pixel-wise and labeled layer-wise) with tailored pores rang-

ing from the nanometer to millimeter scale for the reconstruction of centimeter-sized osseous 
defects. Seventy percent micrometer-wide pores were successfully interconnected, and virtual 

spheres (diameter of up to 350 ± 35 μm) were used to simulate cell migration along the pores 

linked with central channel. Melchels et al. [27] designed poly-dl-lactic acid (PDLLA) porous 
scaffolds with a gyroid architecture. This architecture was mathematically defined, allowing 
a precise control of porosity and pore size of a fully interconnected pore network. As noted 
by the authors, cell seeding of porous structures prepared from hydrophobic polymers, such 

as PDLLA, was difficult. Moreover, the penetration of a cell suspension was further hindered 
by the high tortuosity and poor interconnectivity of pore networks when manufactured by 

salt-leaching or freeze-drying conventional methods. Therefore, very open scaffold structure 
of the gyroid architecture that facilitates the penetration of water into PDLLA scaffold was 
manufactured by stereolithography. It was highlighted that the cells were well attached and 
homogeneously distributed throughout the porous scaffold. Good mechanical properties can 
be tailored in predesigned (porous) architectures from PDLLA based on gyroid architecture. 
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In 2012, Melchels et al. [28] reviewed additive manufacturing of tissues and organs. Authors 

also addressed tailored engineering scaffolds for breast reconstruction, focusing pore size 
and porosity for the generation of three scaffold models. Cipitria et al. [29] developed a poly 

(ε-caprolactone) (PCL) scaffold incorporating recombinant human bone morphogenetic pro-

tein 7 (rhBMP-7) for the regeneration of critical-sized defects in sheep tibiae. PCL scaffold with 
b-tricalcium phosphate (mPCL-TCP) to promote bone regeneration was designed based on a 
honeycomb structure with large interconnected pores to facilitate cellular bridging, ingrowth 

of bone tissue, and efficient mass transport and vascular infiltration. Moreover, Domingos et 
al. [30] developed PCL scaffolds for tissue engineering purposes. Authors addressed internal/
external scaffold geometry, different material deposition strategies, and the biocompatibility 
of the material used. 3D PCL porous scaffolds (rectangular porous prisms) were designed with 
an average porosity of ~76% using commercial computer-aided design software. These struc-

tures were then produced via bioextrusion in a 0/90 lay-down pattern trying to reproduce a 
honeycomb-like pattern of fully interconnected square pores. Similar bioextruded scaffolds 
were designed (regular dimensions of 600 × 600 mm) to have a well-defined internal geometry 
with square interconnected pores and uniform distribution. The overall porosity of the struc-

tures was found to be ~76%. In vitro degradation of the scaffold was studied as a function of 
the degradation environment, pore size, and geometry [30, 31]. Scaffold degradation plays a 
key role when tailoring scaffold properties. In 2016, Morouço et al. [32] developed three types 

of PCL scaffolds reinforced with cellulose nanofibers (CNF), with and without the addition of 
hydroxyapatite nanoparticles (HANP), aiming to tailor scaffold properties for tissue engineer-

ing applications. The authors studied scaffold porosity, mechanical properties, and biocom-

patibility as a function of three material combinations. PCL, PCL/CNF, and PCL/CNF/HANP 
scaffolds were described with porous fully interconnected and porosity (%) of 49.0, 49.5, and 
50.0; compressive modulus (MPa) of 54.42, 64.58, and 70.88; and maximum compressive stress 
(MPa) of 10.96, 11.35, and 12.12, respectively. These structures were then produced via bioex-

trusion in a 0/90 lay-down pattern. Some authors [33] studied hybrid hierarchical 3D scaffolds 
with well-controlled architecture for both macro- and microscale. Hybrid and hierarchical 3D 
structures include thick filaments with the diameter of hundreds of microns, and thin filaments 
with sub-10 μm dimensions were developed. The microscale features can help in cell seeding, 
alignment, and guidance. Trying to mimic morphological and mechanical behavior of a blood 

vessel, Vaz et al. [34] proposed a tailored tissue engineering scaffold. Design parameters such 
as bilayered tubular scaffold, stiff and oriented outside fibrous layer, and a pliable and ran-

domly oriented fibrous inner layer were considered, combining two biomaterials (PLA/PCL). 
Structural and mechanical properties of the scaffolds were examined using scanning electron 
microscopy (SEM) and tensile testing. Cell viability was investigated using 3T3 mouse fibro-

blasts and the tubular scaffold in an appropriated in vitro environment. The proposed scaf-
fold presented appropriate characteristics to be considered a candidate for blood vessel tissue 

engineering. Other authors also proposed to tailor tissue engineering scaffolds trying to mimic 
extracellular matrix morphology of natural tissue for blood vessel applications [35, 36].

In 2012, Chantarapanich et al. [37] developed a computer-aided design library based on 

polyhedrons for tissue engineering applications. Close-cellular scaffold included truncated 
octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron, while open-cellular 
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scaffold included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, 
rhombicuboctahedron, and rhombitruncated cuboctahedron. Both relationship between pore 
size and porosity of close-cellular scaffolds and relationship between pore size/beam thickness 
and porosity of open-cellular scaffolds were studied. The study concluded that some design 
combinations were not good for making the open-cellular scaffold, generating enclosed pores 
inside the scaffold, and, therefore, they were excluded from the digital library. Compressive 
stresses were computed as a function of polyhedron-based geometries which can also be help-

ful for tailoring mechanical properties of the scaffolds.

In the computer-aided engineering based on tailored scaffold geometry, several digital fea-

tures should be taken into account to obtain computer-tailored bioengineering scaffolds. 
Such features encompass cell and growth factor encapsulating, cell aggregation, cell-cell and 

cell-tissue interaction, vascularization, scaffold degradation (or not if permanent) and tissue 
growth, drug release, and scaffold mechanical behavior (Figure 2). To help digital predic-

tion of cell/tissue phenomena, several automated methods exist, namely, cell counting, cell 

geometry determination, chromosomal counting, correlation of DNA expression determined 
through microarrays, interpreting fluorescence data, determining cell’s lineage, and cross cor-

relating gene expression with predicted in vivo pathology. All of these features have predic-

tive value for determination of tissue viability and the differentiative rate of cells seeded with 
the goal of tissue culture. A detailed description about both accumulation of the expression 

data and large-scale computer cross correlation (between this expression and expressions 

commonly used in pathology) is provided in Ref. [9], as well as a number of specific tools for 
tissue analysis/identification.

Despite of the aforementioned research works, new scaffold designs integrating cell/GF/tissue 
phenomena and scaffold mechanical behavior (geometric characteristics and materials) are 
needed for regenerative medicine. These complex hierarchical 3D structures must be designed 
according to the structural heterogeneity of the host tissue and/or scaffold environment.

3. Biomaterials and scaffold bioactivity

Tissues possess different structures and properties that a tissue engineering scaffold should 
be tailored to. A general requirement for all biomaterial scaffolds is to reproduce an extracel-
lular matrix (ECM) environment for supporting cell growth outside of the body. Moreover, 
scaffold should host cell adhesion, proliferation, and ECM production. Hence, the scaffold 
should surrogate the missing ECM. Tissue engineering products can be designed to conduct, 
induct, or block tissue responses and architectures [38]. Besides providing the three-dimen-

sional growth of cells in an organized way, an ideal scaffold should be characterized by 
biocompatibility, biodegradability, appropriate mechanical properties, interconnectivity of 

pores with appropriate size to retain cells, and low exchanges of nutrients and waste prod-

ucts [39]. Tailoring biomaterials for enhanced biofunctionality can be achieved using a variety 

of approaches that involve the introduction of chemical, topographical, or mechanical cues 

via top-down or bottom-up approaches [40]. Therefore, the selection of the starting materi-

als and of the fabrication techniques is of paramount importance. Numerous natural and 
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synthetic materials can be used for the fabrication of scaffolds including polymers, ceramics, 
bioactive glass, calcium phosphates, and biometals. For example, scaffolds fabricated from 
bioactive ceramic materials such as hydroxyapatite and tricalcium phosphate show promise 

because of their biological ability to support bone tissue regeneration. However, the use of 

ceramics as scaffold materials is limited because of their inherent brittleness and difficult 
processability [39]. In 2006, Rezwan et al.’s [41] review showed that conventional material 

processing methods have been adapted and extended for incorporation of inorganic bioac-

tive phases into porous and interconnected 3D polymer networks. The biomaterials were 
extended from purely synthetic materials to material/biologic hybrids, engineering at the 

same time bioactivity and biodegradability [41]. Addressing this issues, in 2015, Fiedler et al. 
[42] focused on the mechanical characterization of PCL-bioglass composites and concluded 
that the addition of bioglass was found to decrease the elastic gradient and yield stress if two 

scaffolds of the same density are compared and the highest bioglass content (35%) seems 
beneficial as it (i) does not significantly deteriorate the scaffold mechanical properties and 
(ii) promotes bioactivity.

The next generation of synthetic biodegradable, bioactive, living composite biomaterials that 

feature high adaptiveness to the biological environment [41] considers the incorporation of bio-

molecules as promising and is currently under extensive research. Incorporating biomolecules 

such as growth factors during scaffold processing with the aim to accelerate local tissue healing 
however are not simple as biomolecules are sensitive to elevated temperatures and extreme 

chemical conditions. A promising strategy is the immobilization of proteins and growth factors 
in the post-processing phase via surface functionalization of the scaffold [43].

“Soft” material routes like sol-gel processing might be a strategy to incorporate biomolecules 

during scaffold fabrication. To the authors’ knowledge, however, sol-gel-derived bioactive 
organic/inorganic hybrids have not yet been formed into highly interconnected porous struc-

tures, which would be essential for application of these composites as scaffolds. Another 
related challenge was the elucidation of the local impact of growth factors on the cell and tis-

sue systems, including long-term effects [41]. As pointed out in Section 2, mechanical property 
is one of the most critical parameters that determine the performance of a designed implant. 

It mainly depends on the process and structural properties of the biomaterials. Therefore, it 

is possible to achieve desired mechanical properties through modifying the structural char-

acteristics of a biomaterial. Biological behavior of cell assessment after surface modifications 
is required to check its biocompatibility and bioactivity [38]. The study of the interactions 

of biochemical and geometrical cues on stem cell differentiation and alignment should be 
also considered. The capability to spatially control stem cell orientation and differentiation 
toward multiple phenotypes simultaneously, i.e., myocyte, tenocyte, and osteoblast, allows 

cells grown in vitro to more closely mimic aspects of native tissue organization and structure 
[44]. Although the precise mechanism behind geometry-induced cell alignment is presently 

unknown, it is likely that the alignment of cells observed on fibers may be attributed to a com-

bination of factors including physical space constraint and relative stiffness of the underlying 
substrate (fiber); ultimately affecting changes in both cell spreading and cell stiffness, cells 
may be predisposed toward a specific orientation through the modulation of mechanotrans-

duction pathways via cytoskeletal rearrangements [9].
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Multilayer scaffolds and combinations of several biomaterials are a better option to create 
graded structures that resemble the biological interface. The development of multilayer scaf-

folds and the controlled release of bioactive molecules to promote in situ regeneration of 

biological tissues are some of the latest technologies that intended to improve on the available 

traditional treatments. To confirm the potential of these novel approaches, long-term evalu-

ation is necessary with special focus on studying the biological and mechanical properties of 

the synthesized tissues [45].

Scaffolds should be designed more as a bioactive system rather than just passive cell carriers. 
Thus, integration of fabrication techniques with surface modification may also act as route 
to obtain nanofibrous scaffolds with better understanding of cell scaffolds both in vivo and 
in vitro. Similarly and significantly, the biomaterial as design strategy can be used in a better 
way to relate science and engineering, and use this advanced knowledge to engineer more 

advanced tissue scaffolds [46, 47].

4. Biofabrication processes

Aiming to tailor bioengineering scaffolds that closely mimic the native tissues, AM tech-

nologies are suitable to dispense biomaterials (with live cells or cell aggregates) at specific, 
and desired, locations [48]. The usage of these technologies has been commonly divided in 

three categories: (i) the jet-based techniques, (ii) robotic dispensing techniques, and (iii) laser-

induced forward transfer [49, 50]. Each of these techniques has advantages and drawbacks 

(Table 1). Thus, understanding its limitations and potentials is a must-do to choose the right 

approach for the specific tissue that is aimed to regenerate. Furthermore, some advancements 
have been recently achieved with integrated/hybrid systems. These systems combine differ-

ent techniques within the same equipment aiming to generate a multifunctional graded con-

struct with tailored properties similar to the native tissue.

In the available literature, it is possible to find investigations using different approaches, for 
the same type of tissue. In fact, there seems to be a trend to some research groups get special-

ized in some type of technology and use it for various goals.

Jet based Robotic dispensing Laser-induced forward 

transfer

Resolution + +/– ++

Fabrication speed +/– ++ −

Hydrogel viscosity – + +/−

Gelation speed ++ +/– ++

Cell density – + +/–

Adapted from Ref. [51].

Table 1. Comparison of the three AM approaches for tissue engineering.
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Regarding the jet-based techniques, with a common resolution of 10–50 μm, it is difficult to 
obtain an adequate structural support. It consists of dispensing a jet of small droplets of liq-

uid material, also called as bioink, in a spatially controlled manner. There are two different 
approaches, thermal inkjet printing and piezoelectric-actuated inkjet printing, having the for-

mer lower suitability for 3D bioengineering scaffolds. Using a piezoelectric actuator, research 
has been able to suppress some of the thermal constraints [51]. For instance, good viability 

of printed cell populations was obtained for human fibroblast cell line [52], and recently a 

silk-based ink eliminated the usage of any cytotoxic organic or inorganic solvents [53]. Even 

though jet-based techniques are the pioneer techniques used for tissue engineering, translat-

ing it to the construct of large 3D structures is a challenge to overcome, mostly because of the 
low-viscous solutions that do not provide strong and complex 3D structures.

The most successful attempts to engineer cell-containing bioengineering scaffolds have been 
achieved through robotic dispensing systems. These technologies are based on a controlled 

extrusion of a material in a continuous fashion, instead of liquid droplets (Figure 3) and are 

developed at the Center for Rapid and Sustainable Development (CDRSP) of the Polytechnic 
Institute of Leiria, Portugal. Therefore, this approach enables the printing of hydrogels encap-

sulating cells in a very controlled architecture [28]. The most common methods are the pneu-

matic [54] or mechanical [55] dispensing systems, comprising (i) a dispensing system and a 

stage with the capability of moving along the x, y, and z axes; (ii) a light source to illuminate 

the working area and/or for photoinitiator activation; and (iii) a piezoelectric humidifier [56], 

with some of them using multiple printing heads to permit the dispensing of various mate-

rials without retooling [57]. However, researcher should bear in mind that optimal balance 

should be aimed between pressure and nozzle size (to obtain higher cell viability).

Figure 3. Equipments developed at the CDRSP, Portugal: (a) one-head extrusion system, (b) dual-head extrusion system, 
(c) system combining an extrusion head and a syringe for hydrogel deposition, and (d) hybrid system combining 

extrusion with up to three hydrogels.
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Recently, a US research group presented an integrated tissue-organ printer (ITOP) for the 

production of human-scale tissue bioengineering scaffolds of any shape, in a single structure 
[50]. Combining different procedures, it was possible to successfully engineer (i) a mandible 
bone, (ii) an ear-shaped cartilage, and (iii) a skeletal muscle. Furthermore, some institutions 

are now combining different technologies, for instance, merging a robotic dispensing system 
with a jet-based printing for muscle-tendon unit repair [58].

Lastly, the laser-induced forward transfer (LIFT) is a not-so-common technology for tissue 
engineering, but is gaining significant importance in this domain [56]. It is based on using 

three layers of different components: the first layer based on a donor slide, covered by a laser 
energy-absorbing layer and completed with a cell-bioink component [51]. There are three 

main advantages for this technology: it is suitable for using (i) a wide range of materials, (ii) a 

very high precise deposition (but in small 3D structures), and (iii) a clog-free process without 
the use of nozzles. However, it requires a rapid gelation process, and researchers should bear 
in mind that several factors should be considered (e.g., laser wavelength, bioink viscosity; for 

more info read Ref. [59]). Apart from these constraints, successful cell viability (>90%) has 
been reported for printing skin cell lines and human mesenchymal stem cells and to prepare 

a cardiac patch [60].

5. Scaffold biodegradability and cell viability

The main objective of tissue engineering is to allow the cells of the body to replace the 

implanted scaffold over a period. Because bioengineering scaffolds are not intended as perma-

nent implants (besides some of them have shown good results mainly in bone regeneration), 

they must therefore be biodegradable, so that the need of surgical removal can be avoided. 

Furthermore, the degradation products should be nontoxic and should be able to swiftly exit 

from the body without interference with other organs. In addition to this, the intermediate 

product, the timing of the degradation process, and the route and mechanism of degradation 

are equally important aspects that need to be taken care [47]. Scaffold materials should fulfill 
several requirements. A scaffold is not just a passive support for cell growth, but a device 
whose properties affects the regeneration cascade. Mechanical properties, surface properties, 
and morphology are in turn relevant to the specific application. Degradation kinetics and 
the rate at which scaffold properties change with degradation should always be predictable. 
In particular, the degradation behavior of biomaterials can follow several mechanisms and 

is controlled by different factors. Understanding the degradation kinetics and mechanism 
of biomaterials is necessary to optimize their possible usage. The rate of degradation is also 
strictly connected to the degree of porosity [38].

One of the general variables that need to be thoroughly considered to successfully bioprint 

viable and functional tissue bioengineering scaffolds is the inclusion of supportive biomateri-
als, generally in the form of proteins and polymers, which (1) facilitate the deposition method 
by mechanical means and (2) provide support and protection to the cells during and after the 
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tissue construct fabrication process. These biomaterials can encompass the physical environ-

ment inside of which the cells will reside, as well as the biochemical signal cells need to func-

tion as they would in the body [46].

Scaffolds represent the space available for the tissue to develop and the physical support for 
cell growth. Scaffold mechanical properties should allow shape maintenance during tissue 
regeneration and enable stress transfer and load bearing. Moreover, during the first stage of 
tissue reconstruction, wound contraction forces act against the process, and enough mechani-

cal strength and stiffness of the scaffold is required. Scaffold porosity is a fundamental charac-

teristic for providing available space for cells to migrate and for vascularization of the tissue. 
Furthermore, the larger the surface available, the more cell interactions will arise. In general, 

the biological activity of a scaffold is determined by ligand density. Scaffold composition and 
porous fraction, that is, the total surface of the structure exposed to cells, determine the ligand 

density. Highly specific surface areas allow for cell attachment and anchorage, and a high 
pore volume fraction enables cell growth, migration, and effective transportation of fluids 
and nutrients. In particular, microporosity is important for capillary ingrowth and interac-

tions between cells and matrix, while macroporosity is relevant to nutrient supply and waste 

removal of cell metabolism. The rate of degradation is also strictly connected to the degree of 

porosity [38].

As in the development of the tissue-engineered organs, regeneration of functional tissue 

requires maintenance of cell viability and differentiated function, encouragement of cell prolif-
eration, modulation of the direction and speed of cell migration, and regulation of cellular adhe-

sion [61]. Cell viability may be judged by morphological changes or by changes in membrane 

permeability and/or physiological state inferred from the exclusion of certain dyes or the uptake 

and retention of others. Cultured cells are seeded onto a three-dimensional biocompatible scaf-

fold that will slowly degrade and resorb as the soft and hard structures grow and assimilate in 

vitro and/or in vivo [2]. Cell viability during 3D bioprinting is dependent on the shear stress 
experienced during extrusion, which in turn is dependent on the viscosity of the solution, the 

applied pressure, and the needle diameter. In addition, any post-printing bioink cross-linking 

may also impact on cell viability [62]. Cell viability can be measured with Live/Dead Viability/
Cytotoxicity assay after printing [63] and could vary with dispensing pressure and nozzle diam-

eter. It decreases as the pressure increases and the nozzle diameter decreases, and it is seen that 
the effect of pressure is significantly larger than the effect of the nozzle diameter. At higher pres-

sures, there is an increase in the number of apoptotic cells as well as necrotic cells [64].

Tissue bioengineered scaffolds targeted for in vivo applications are typically restricted to a 
thickness of only a few hundreds of microns, owing to the diffusion limitations of oxygen 
and nutrients [43]. One of the major challenges in tissue engineering for translation in clini-

cal applications is the vascularization of bioengineering scaffolds of clinically relevant size. 
Insufficient vascularization inhibits nutrient and host cell delivery or migrations and leads to 
improper cell integration or cell death. While vascularization remains a challenge to maintain 
viability of large biofabricated tissue bioengineering scaffolds, recent advances in the field 
demonstrate that novel biofabrication techniques may resolve this problem [65].
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6. New insights: 3D to 4D

Doing a survey on the Web of Science®, it is noticeable that the number of original articles on 

tissue engineering and regenerative medicine has experienced a tremendous increase over 

the past 10 years (Figure 4; review papers and proceedings not included). Likewise, bioprint-
ing is attracting a lot of researchers presenting an exponential increase in the last 3 years. 
Meanwhile, 3D bioprinting market was valued at $98.6 million in 2015, and an annual growth 
of 36% for the next 6 years is expected [66].

Nevertheless, 3D bioprinting has been focused on the development of bioengineering scaf-
folds that lack a crucial element for mimicking native live tissues: its ability to acutely change 

according to its function. That is why leading research groups have recently proposed the 

four-dimensional (4D) bioprinting (time is integrated with 3D bioprinting) as an enhanced 
approach for tissue engineering and regenerative medicine: the development of stimuli-

responsive biomaterials that can be printed and dynamic to intended stimulation. However, 

several challenges arise, namely, (i) bioinks have to be optimized to achieve successful bio-

printing; (ii) processes must be mechanically designed to obtain robust shape-changing capa-

bility of the bioengineering scaffolds [67]; (iii) specific bioreactors for complex tissue function 
maturation need to be invented; and (iv) evaluation procedures should be defined to examine 
the functionality response.

Therefore, the most promising approach is to optimize the cell-bioengineering scaffold inter-

actions, becoming feasible to explore the usage of computer modeling to examine the further 

responses. Developing “smart” biomaterials (also referred as “intelligent,” “stimuli respon-

sive,” “stimuli sensitive,” or “environmentally sensitive”) to allow the dynamic changes of 

the structure, upgrade of the printing processes into defined architecture for targeting tissues, 

Figure 4. Number of original articles on tissue engineering and regenerative medicine 2006–2016.
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automation of stimulus, and standardizing the assessment procedures to evaluate the result 
is crucial for enhanced regenerative medicine approaches [68].
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