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Abstract

The effectiveness of winery operations in a wine cellar and their impact on wine quality
depend closely on the technology used. A correct application of refrigeration systems is
perhaps the best guarantee of a correct processing process. In this work, a review of the
refrigeration engineering in warehouse is carried out, calculating the refrigeration needs
of each one of the main stages of elaboration, according to the different winemakings.
The energy requirements for the cold maceration and debourbage in white winemaking,
the cooling of the crushed-grapes in the elaboration of red wine, as well as for the
temperature control during fermentation and physical-chemical stabilization of the fin-
ished wine are calculated. The main cold production techniques in the winery are also
addressed to respond to those needs.

Keywords: winemaking, refrigeration, fermentation, tartaric stabilization, wine refrig-
eration exchanger

1. Introduction

The temperature control in each one of the winemaking operations is a usual and extended

practice. The thermal conditioning of the grapes on their arrival at the winery is already an

essential requirement in some wineries, and even the grape harvesting systems are adapted to

this factor (early or even night grape harvesting), which is very important in warm regions.

The prefermentation works of cold maceration and debourbage in white winemaking, the

pellicular maceration in red wines, the controlled fermentations, as well as the processes of

finished wine conditioning require a control and maintenance of their optimum temperatures.

Table 1 shows the most important applications of refrigeration in a warehouse, as well as the

optimal temperatures for each operation.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Refrigerating necessities on prefermentative operations

The temperature control can be done from the first stages of winemaking, by cooling the

freshly squeezed grape or the must at the exit of the press. Most authors recommend the entry

Importance

Operation V. in white

wine

V. in red

wine

Optimum

temperature

Effects on wine/must

Cold extraction + � �5/�10�C Must sugar concentration by elimination of frozen

water

Cold maceration ++ ++ 5/10�C Extraction of aromatic precursors

Fermentation delay

Musts Refrigeration +++ +++ 10/18�C Enable the debourbage in white wines

In red wines lower the temperature until the optimum

of fermentation

Deboubarge +++ � 10/15�C Accelerate the sedimentation process

Delay the start of fermentation

Pellicular maceration ++ ++ <15�C Extraction of polyphenolic fraction and aromatic

precursor in red wines before fermentation

Fermentation thermal

control

+++ � 13/20�C Aromatic enhancement in white wines

Avoid fermentation stops

Thermal control of

fermentation and

meccanization

� +++ 25/30�C Decrease aromatic losses

Avoid fermentation losses

Cold storage of

finished wines

+++ +++ 10/15�C Slow down microorganisms metabolism

Decrease oxidation and aromatic losses

Amicrobic

stabilization

+++ ++ <5–10�C Filtration process improvement

Colloidal stabilization � +++ <5–10�C Hasten unstable coloring matter

Tartaric stabilization +++ +++ �5/1�C Hasten tartaric salts of calcium and potassium

Control the oxidation-reduction process and cession

Aging in oak +++ +++ 15–20�C Decrease volume losses

Avoid undesirable microbial development

Second fermentation

in bottle

+++ 12/15�C Control the alcoholic fermentation. Refinement of

sparkling wine by slow transfer of fermentation and

autolysis products.

Bottling + + 15�C Reduce loss of aroma and enable the process

Bottle store +++ +++ 12–18�C Enhance wine stability

Table 1. Applications of cold engineering in a wine cellar: optimum working temperatures in wine cellars and the effect

on must/wine.
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of red wine vintage at 20�C due to an inlet temperature of 26–28�C, this can lead to a difficult

start of fermentation and higher production of volatile acidity [1–3]. The prefermentative

maceration applied to certain varieties (Pinot Noir) for the extraction of polyphenols needs to

bring the crushed-grapes to temperatures below 13�C, to avoid starting fermentation [4].

In white wines, the pellicular maceration of aromatic grapes (Moscatel, Gewürztraminer,

Verdejo, Sauvignon Blanc and Chardonnay) at low temperatures enables the extraction of aro-

matic compounds. The static debourbage is a slow process, which allows in its course the

proliferation of microorganisms. Cold helps to stop or slow the start of fermentation, and the

low temperatures increase the speed of sedimentation. Time and temperature are the keys for a

quality debourbage. The use of pectolytic enzymes allows a considerable reduction of

debourbage times, but on the other hand, the cold slows down the enzymatic phenomena of

despectination. Therefore, in the debourbages with addition of enzymes, the temperature of the

must should not be less than 10�C [5, 6]. The promptness of enzymatic debourbage is doubled

when the temperature rises to 10�C, at the expense of risks of grater microbial proliferation, and

is discouraged for vintages with poor sanitary quality. Temperatures under 8�C promote the

inactivation of the enzymes and lengthen the fermentative latency phase. In any of the above

cases, the refrigeration needs to cool the must or the crushed-grapes to the operating conditions

are defined by the fundamental equations of the energy balance (Eq. (1)) [3, 7–10]:

dQ=dt ¼ m� Ce � Δt (1)

• dQ/dt is the cooling capacity per unit of time (kJ/h).

• m is the mass flow of must or crushed-grapes (kg/h). m = vx
ᵨ
.

• ρ is the density (kg/m3).

• Ce is the specific heat of the must/crushed-grapes/wine, which according to authors is:

• Ce = 4.18 kJ/kg �C [11,12].

• Ce = 3.8 kJ/kg �C for musts with a density of 1090 kg/m3 [13].

• Ce = 4.5 kJ/kg �C for wines with a density of 995 kg/m3 [13].

• Ce = 3.65 kJ/kg �C for musts and 4.15 kJ/kg �C for wine [14, 15].

• ∆t is the (initial temperature–final temperature) of must/crushed-grapes.

3. Refrigeration requirements in prefermentative operations

The fermentation of sugar by the yeast glycolytic allows the cells to transform glucose and

fructose into pyruvic acid and this, through an enzymatic complex of carboxylase activity, will

be transformed into acetaldehyde, which is finally reduced by the alcohol dehydrogenase into

ethanol. This transformation is an exergonic reaction, releasing heat which, when accrues in

the must, causes a thermic elevation.
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The metabolic activity of the yeasts increases in proportion with the temperature with maxi-

mum rates between 25 and 28�C [16]. Temperatures above 32–35�C imply high risks of fer-

mentation stops, as well as further proliferation of acetic and lactic bacteria. Fermentations

below 18�C are distinguished by delayed onset (longer latency phase) and very slow fermen-

tation development. In years of warm harvests, in large deposits or cellars in the middle of the

season with several fermentation tanks, it is easy for the microbial activity itself to pass

through the 35�C barrier, negatively affecting both cellular viability and the sensorial charac-

teristics of the wine [1–3, 16, 17]. On the other hand, fermentations at moderate or even low

temperature (below 18�C) allow preserving the aromatic precursors of the grape varieties and

stimulating the formation of secondary compounds by yeasts. All this underlines the impor-

tance of having a temperature control of fermentation in the wine cellar. It is considered

suitable for fermentation of red wines 28–30�C (aid to maceration), while for fermentation of

white and rose, temperatures below 22�C are recommended. The cooling of the must or the

crushed-grapes, as indicated above, allows the fermentation process to start at the desired

temperature in the case of warm harvests. It is an added advantage in the case of a cold

debourbage.

The low temperature fermentations (13�C or less) have a great interest for the production of

white and rose wines, especially for musts arising from varieties with a great aromatic poten-

tial. In addition to avoiding their evaporation, the low temperatures considerably condition

the bacteria development, allowing the use of less doses of sulfur dioxide.

It does not happen the same with the yeasts. The low temperatures influence in a different way

on the different species which concur in the must. Some yeasts such as Kloeckera apiculata

dominate fermentation at 13�C, according to Heard and Fleet [18].The survival of non-Saccha-

romyces species affects the production of certain undesirable volatile substances such as acetic

acid and ethyl acetate [19]. The temperature affects the biochemical activities of fermentative

yeasts, which in turn affects the wine and its composition. The most notable effect of yeast

adaptation at low temperatures is the increase in the degree of unsaturation of the fatty

acids [20] and the reduction of the synthesis of sterols. Both changes are an important deter-

minant of the membrane fluidity and reduce the transit of nutrients, resulting in an inhibition

of fermentative activity.

According to Suárez and Iñigo [1], not all sugar molecules will follow the equation of Gay-

Lussac, obtaining two molecules of ethanol and two of CO2 for each mole of glucose, but

depending on the metabolism of the yeast, a certain number of molecules are going to be

intended to glycerine and pyruvic acid, which will be the origin of secondary products in

wine. As a consequence, the thermal flow originated during fermentation will depend on the

importance of these secondary reactions.

Bouffards [21] using a sealed calorimetric chamber determines the heat of fermentation reac-

tion between 83.7 and 100.5 kJ/mol. Subsequently, several authors have established a thermal

flow ranking from 71 [22] to 106 kJ/mole [1], according to the purity of the fermentative process

and the derivation of the glucose molecules toward other secondary metabolic routes. Assum-

ing the most thermodynamically adverse case and the known parallel reactions always occur-

ring to the alcoholic fermentation, the average mean value of heat flow most widely accepted

by the various experts is 100.32 kJ/mole [2, 3, 10, 19, 23].
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This heat released by mole of transferred sugar corresponds to the theoretical case of an instant

fermentation process. In fact, the process lasts several days in which heat dissipation takes place

by contact of the tank walls with the outside and by the release of volatile products released

during the transformation. According to this, the data referred to by the authors mentioned

above as energy released during the process are modified by a factor corresponding to the

rate of consumption of sugars throughout the fermentation process with units of [mole/m3.h].

This aspect, directly related to the concentration of ethanol and CO2 produced per unit of

time, depends on the physical and chemical conditions of the fermenting must (content in

sugars, temperature, acidity, pH and richness in nitrogen sources), operating conditions (yeast

morphology population, temperature, agitation and oxygenation) and fermentation time.

To identify and quantify the influence of these factors on the amount of heat energy released

throughout the fermentation time, several authors have developed simulations and mathemat-

ical models.

Boulton [24] establishes that the loss of heat throughout the fermentation process is defined by

Eq. (2):

dQ=dt ¼ ΔH � dS=dt, (2)

• dQ/dt is the energy released per unit of time (kJ/h).

• ∆H is the energy released during fermentation of one glucose mole (kJ/mol).

• dS/dt is the rate of reduction of sugar content by yeast consumption (mol/m3h).

This quantification system of the energy released during the fermentation process is the most

widely accepted by the experts, although there is no consensus regarding the calculation and

valuation of the term dS/dt, that is, to say on the system of calculation of the decrease in the

concentration of fermentable sugars per unit of time. Several authors propose mathematical

models to define this rate of degradation, based on empirical data from different variables.

The model proposed by El Haloui et al. [25] relates the concentration of residual sugars with

the volume of CO2 released, according to Eq. (3):

S ¼ 3:92� VCO2
þ 0:1463� So � 117 (3)

where

S is the sugars consumed in a precise moment (g/L).

VCO2
is the volume of CO2 produced until that moment (L).

So is the initial concentration of sugars (g/L).

The volume of CO2 released can be calculated by empirical analysis in laboratory scale tests

with Muller valve occluded flasks [1] or at the level of experimental microvinifications using

CO2 flowmeters [26, 27].

Afterwards, and based on empirical data, the same authors [28] build a model which relates

fermentation curve with the density and initial concentration of sugars in the initial must

(Eq. (4)):
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S ¼ 0:99109� So � 2:096� 103 � d30� relative must density�wine at 30�C (4)

The concentration of residual sugars in each moment of the fermentative process can be

calculated, establishing the concentration of glucose-fructose by enzymatic methods or by

detection systems based on measurements of radiation in that infrared spectrum.

López and Secanell [15] develop a complex model of the heat evolution curve during fermen-

tation based on physical-chemical parameters such as initial sugar content, total acidity, fer-

mentation temperature and duration of this one. They get expressions such as Eq. (5):

dQ=dt ¼
k1

k2 � k1
ðe�k2t � e�k1tÞ (5)

in which k1 and k2 at the same time are constants representing values of activation energy of

the fermentative chemical reaction and depend on the temperature and the total acidity of the

must. Starting from this equation, the authors calculate the maximum energy evolution during

the process according to the following expression (Eq. (6)):

Qmax ¼ 100:32=180� So � Fc (6)

where

So is the initial sugar concentration (g/L).

Fc is the correction factor depending on initial concentrations.

Avilés [11] states that the heat developed in fermentation of the must is determined by the

probable alcoholic strength of the wine according to Eq. (7):

Q ¼: K �� A� L� P (7)

where

K is the heat transfer coefficient for each probable alcoholic strength depending on the material

of the fermentation tank (1, 3/2, 2).

�A is the probable alcoholic grade of the wine (%vol/vol).

L is the must volume in fermentation (L).

P is the coefficient of thermal development by the metabolic activity of yeasts.

Starting from a wide series of empirical data, and from the equation raised in 1978, Boulton

et al. [10] established that with a fermentation ratio of 2 Brix/day the energy released is

approximately 0.46 kJ/L h for white wines, while for red wine with a ratio reaching 6 �Brix/

day of sugar consumption, the energy released can be set at 1.36 kJ/L h.

According to the Federation Départamentale des Centres d’Etudes et d’Informations

Oenologiques of the Gironde-France, FD-CEIOG [12], the heat released in fermentation is

defined by Eq. (8):
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Q ¼ ρ� Ce �Dt � VF� V=100:32 (8)

ρ is the density of the must-wine (kg/m3).

Ce is the specific heat of the must-wine (kJ/kg �C).

Dt is the elevation of the temperature by %vol (K%vol). The mean value of Dt is 2.8 K/%vol.

VF is the fermentation rate (%vol/J).

V is the total volume (m3).

Flanzy [3] established that the released energy during fermentation can be estimated approx-

imately by knowing the concentration of sugars consumed per hour and liter of must, taking

into account that one mole of glucose is equal to 180 g (Eq. (9)):

Q : ðX=180Þ � V � 100:32 (9)

X is the concentration of sugars consumed per liter of must and hour (g/L h). The value of X

varies according to the activity of fermentation, with mean values of X = 2g/L h for white wines

of slow fermentation at a low temperature and of X = 7 g/L h for red wines.

180 g/mole glucose.

V is the total volume of the must to ferment (L).

100.32 kJ/mole glucose.

These mathematical models are difficult to apply in the cellar, so for practical purposes it is

more interesting to consider the quantity of sugar consumed per liter of must and per hour.

However, there are no reproducible models of the consumption of sugars during fermentation,

but the thermodynamic curve of fermentation must be determined for each specific vinifica-

tion. As an operational parameter for the calculation of cold storage needs of a wine cellar, the

maximum value of energy released must be considered (Eq. (10)).

Q ¼
100:32

180
� So (10)

This means that for a must of 12� the heat released is 133 kJ/L of must in fermentation,

although for the calculation of cold production equipment it is interesting to refer the total

energy produced during fermentation to the duration of the same Q/t.

Part of this energy produced in fermentation is absorbed by the alcohol, the H2O and the CO2,

which when released into the atmosphere partially or totally cools the system. A total of 180 g of

glucose produces 88 g of CO2 and 92 g of ethanol when they ferment. Each mole of CO2 formed

drags 13.62 kJ for each mole of glucose metabolized. The heat absorbed by the water and the

alcohol is determined by the rate of vaporization of the substances, depending on the tempera-

ture reached during fermentation and the exterior of the premises [11]. Due to the difficulty of

these calculations and the slight thermal decrease, they mean, most authors [2, 3, 10] consider

that the heat lost in form of CO2, ethanol and water equals 10% of the total heat generated.

Refrigeration in Winemaking Industry
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On the other hand, a certain percentage of the energy released in fermentation is dissipated by

the environment, depending on the outside temperature. When the set fermentation tempera-

ture is lower than the environment temperature, it produces a thermal transfer from the

environment to the tank. The calculation of the energy released or absorbed is based on the

conduction/convection heat transfer equations (Eq. (11)) [8–10]:

Q ¼ U � S� ΔT (11)

U is the heat transfer coefficient. It is a function of the material of constitution of the tank as

well as the speed of circulation of the air in the exterior and the presence or not of circulating

currents inside the same. According to various authors, the mean value for stainless steel

tanks, the static regime of outdoor air and must/indoor wine is U = 16.72 kJ/m2 H �C [3, 8-10]

or U = 4.64 w/m2.�K [3, 18].

S is the outer surface of the tank in contact with the environment.

∆T is the temperature difference between the must in fermentation with the exterior (�C or �K).

If fermentation tank (or later of storage) is located outside the winery, the solar thermal input is

important in regions with high isolation. In order to calculate the energy input, it is necessary to

take into account the degree of incidence of the solar rays on the surface of the deposit. Flanzy [3]

considers that this thermal contribution varies between 400 w/m2 in winter and 800 w/m2

in summer for northern countries. Generally speaking, in Spain, the values can vary between

700 and 1100 w/m2, respectively. On the other hand, during the night, a significant cooling of

the fermentation mas takes place. In complex calculations, involving many variables not

always known, this heat dissipation is not taken into account when calculating the cold storage

needs, being a margin of safety of the calculations made.

According to what has been said so far, the heat produced during the fermentation process to

be dissipated by the application of cold is (Eq. (12)):

Qtotal ¼ Qf ermentation–Qdissipated by CO2, H2O and ethanol �Qambient (12)

4. Refrigeration requirements for the chemical stabilization of wines

Freshly fermented wine is a saturated solution of tartaric salts whose solubility depends on the

alcoholic strength and temperature. In order to avoid the presence of soaps once the wine is

bottled, it is necessary to produce in the winery the insolubility and subsequent precipitation

of these tartaric salts, mainly potassium bitartrate and calcium tartrate. For this, the wine is

subjected to low temperatures modifying its solubility. This must refrigeration presents other

side effects of great importance: precipitation of coloring matter and unstable proteins, insolu-

bilization of colloids and reduction of the wine microbial load and facilitates the subsequent

process of microbiological stabilization

According to Boulton [13], Maujean [29] and Moutonet et al. [30, 31], the formation of tartrate

crystals follows a kinetic of the form (Eq. (13)):
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½Tartrates�=t ¼ Kv �N � ðCa � CsÞ
F (13)

Kv is the constant that depends on the concentration in salts of the wine and its temperature.

N is the number of existing crystals per ml of wine.

Ca is the concentration of the existing tartrates.

Cs is the concentration of saturation.

F is the conversion factor. It ranges between 5 and 7.

The tartaric stabilization can be carried out discontinuously and continuously. The traditional

or continuous stabilization is based on cooling the wine to a temperature close to the freezing

temperature set in

Ta ¼
alcoholic degree � 1

2
,

which means reaching temperatures of �5/�6�C. Once the wine has been cooled at this

temperature, it is stored in isothermal tanks and they remain until Tsat control data, conduc-

tivity or other stability tests result in the stabilization of the wine [2, 18, 32]. This guard time

lasts between 7 and 10 days. The modern stabilization systems, continuous or semicontinuous,

are based on the refrigeration of the wine to a temperature close to 0�C or slightly lower

(�2.5�C) with addition of microcrystals of tartrates in variable concentration (generally 4 g/L)

and continuous stirring contact method. With these procedures, the treatment time is reduced

from 7–10 days to 60–90 min [12, 33]. In both cases after the treatment, the wine already treated

gives its cooling energy to the wine that enters by a plate exchanger. Subsequently, it is

subjected to a process of filtration by earth or plates to eliminate crystals.

The refrigeration capacity required to cool the wine until the stabilization temperature of

�5/�6�C (batch system) to �2.5/0�C (continuous system) is defined by the expression

(Eq. (14)) [3, 8–10]:

dQ=dt ¼ m� Ce �Dt (14)

dQ/dt is the cooling capacity per unit of time (kJ/h).

m is the mass flow of wine (kg/h). m = v x r.

v is the volumetric flow rate (m3/h).

r is the density (kg/m3).

Ce is the specific heat of the wine that according to author is Ce = 3.99 kJ/kg
�C [16]; Ce = 4.18 kJ/kg

�C [3, 20]; Ce = 4.5 kJ/kg
�C [10].

Dt is the (initial temperature–final temperature) of the wine.
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5. Refrigeration production techniques for cooling musts and crushed-

grapes in prefermentative operations

For the refrigeration of white wine must, until the temperature of the debourbage or

cryomaceration and for the decrease of the temperature of red wine crushed-grapes to the one

stablished in fermentation, indirect and direct systems of heat transfer may be used. Among

the indirect systems of possible application in the winery, the refrigeration equipment with

scraped surface evaporator or with evaporator of concentric tubes and the exchangers are

described. As direct methods, CO2 solids and liquid CO2, known as carbonic snow, are used.

5.1. Refrigeration of indirect methods

The indirect refrigeration systems most commonly used in the winery are plaque exchangers,

tubular exchangers and spiral exchangers. The tubular exchangers consist of a central conduct, of

small diameter through which the must or wine circulates, which is concentrically in the interior

of a tube of greater diameter through which circulates the refrigerating fluid. The diameter of the

inner tube is determined by the viscosity of the fluid flowing through it. Diameters greater than

75–90 mm are recommended for musts and crushed-grapes; for wine, diameters of 50 mm are

optimal. The exchange surface and the number of tubes required by the thermal transfer equa-

tions will be seen below.

The plaque exchangers consist on fine rectangular surfaces through which the refrigerant and

must circulate counterflow. The separation between the plaques does not exceed 10mm and

have rough surfaces to create turbulence between the exchange fluids

In the spiral exchangers, the must/crushed-grapes enter at one end and run along a spiral path

until it leaves the center axis. At the same time, the refrigerant fluid counterflows on the

opposite side.

The cooling power generated by the refrigerant in the heat exchanger is defined by the general

energy transfer equation (Eq. (15)) [8, 9, 24]:

dQ=dt ¼ ρ� V � dT=dt ¼ FT �U � S� ðΔTÞml ¼ W � Ce � ðt1– t2Þ ¼ W 0 � λ (15)

where

dQ/dt is the dissipated energy per unit of time (kJ/h).

ρ is the must density (kg/m3).

V is the tank volume (m3).

dT/dt is the must temperature variation per unit of time (�C/h).

FT is the correction factor depending on the must and the refrigeration fluid. It is a measure of

the thermal efficiency of the exchange.

U is the global coefficient of heat transfer (w/m2�C). Characteristics of each type of exchanger

and the conditions of vinification and outdoor environment.

S is the exchange surface (m2).
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(∆T)ml is the logarithmic mean temperature difference between glycol water and must

(Eq. (16))

ðΔTÞ
ml

¼ ðtem � tsaÞ � ð tsm � tea Þ
ln ðtem�tsaÞ

ð tsinm�tea Þ
(16)

W is the mass flow of refrigerant (kg/h).

Ce is the specific heat of refrigerant fluid (kJ/kg�C).

tem is the initial temperature of must (�C).

tsm is the final temperature of must (�C).

W’ is the vaporization rate of the refrigerant (kg/h).

λ is the latent heat of vaporization of the refrigerant (kJ/kg).

Geankoplis [9] and McCabe et al. [8] propose a formula (Eq. (17)) for the calculation of the

thermal transfer coefficient U, the Donohue expression applied for low values of the Reynolds

number, Re:

UDo

k
¼ 0:2

Do

ffiffiffiffiffiffi

Ga

p
Gm

μ

� �0:6

Ceμ

k

� �0:33
μ

μw

� �0:14
(17)

U is the thermal exchange coefficient (w/m2�C).

k is the thermal conductivity of the must (w/m2�C).

Do is the outer diameter of the tubes (m).

Ga is the mass transfer rate of the glycol water (kg/m2h) equal to ma/sb.

Gm is the mass transfer speed of must/crushed-grapes (kg/m2h) equal to mm/Sc.

ma, mm is the mass per unit of time of glycol water and must in circulation (kg/h).

Sa, Sc is the internal and external contact surfaces as a function of the number of tubes (m2).

μ: is the must/crushed-grapes viscosity (cP).

Ce is the specific heat of must/crushed-grapes (kJ/kg�C).

μw is the specific heat of glycol water (kJ/kg�C).

This complex expression is difficult to apply in practice by relying on factors not always

known in oenology, so in a generally accepted form empirically obtained values of U are used.

For tubular exchangers used in musts, the value of U is set at 400–1300 w/m2�C for smooth

tubes and at 1700–2400 with rough surface [16], from 500 to 900 w/m2�C [8], from 600 to 900 w/

m2�C [13], from 750 to 1200 w/m2�C [34], from 700 to 1100 w/m2�C [3, 35].
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In plate exchangersU = 2900–4800 w/m2�C [10], at 3500–6500 w/m2�C [8], from 2400 to 2600 w/

m2�C [10, 13], of 2000 w/m2�C [3].

In spiral exchangers U = 1700 w/m2�C [10], of 2000–2100 w/m2�C [8], from 760 to 1060 w/

m2�C [10, 13, 36].

5.2. Direct refrigeration systems

In direct refrigeration system, two fluids that exchange energy are physically in contact. In

oenology, the inert gases N2 and CO2 are used as refrigerating fluids, since when vaporizing at

low temperatures they absorb heat from the must/crushed-grapes.

Of the two inert gases mentioned above, CO2 in solid and liquid forms is the most used in

oenology, due to its low sublimation temperature at atmospheric pressure –72.4�C, added

contribution of inert atmosphere of conservation, possibility of partial freezing of the must

with the consequent sugar concentration, ease of handling and no residues.

The cooling capacity provided by CO2 in solid form is defined by the following expression

(Eq. (18)) [4, 8–10, 13]:

dQ ¼ ρ� V � Ce � ðT1–T2Þ ¼ M� ðλFS þ λVPÞ (18)

If ice is produced due to the freezing of the water from the must to this expression (Eq. (19)),

we must add the energy due to the sublimation heat of CO2:

QH2O ¼ m� λH2O, resultado : dQ ¼ m� λH2O þ ρ� V � Ce � ðT1–T2Þ ¼ M� ðλFS þ λVPÞ

(19)

where

m is the formed ice mass (kg).

λH2O is the latent heat of water fusion (0.108 kJ/kg).

ρ: is the must/crushed-grapes density (�C).

V is the must/crushed-grapes volume (m3).

Ce is the specific heat of must/crushed-grapes (kJ/kg �C).

T1 is the initial temperature of must/crushed-grapes (�C).

T2 is the final temperature of must/crushed-grapes (�C).

M is the mass of CO2 in solid form required for refrigeration (kg).

λFS is the latent heat of fusion of solid CO2 (573 kJ/kg).

λVP is the latent heat of vaporization of liquid CO2 (393 kJ/kg).

To form 1 kg of ice in the must mass, it is necessary to add 0.58 kg of CO2 to the freezing

temperature of the must (–2.5 to 3.0�C). In the refrigeration of musts, wines and crushed-
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grapes, the formation of ice is unadvisable to increase the risk of subsequent physical and

chemical instability, so that for the purpose of calculating the cooling power, generally the

energetic term QSB is not taken into account.

According to Boulton et al. [10, 13], in order to reduce the temperature of a white wine must

(5�C), it is necessary to use 4.42 kg of solid CO2 for each hectoliter of must. Geankoplis [9]

stablishes that due to the energy losses by the deposit walls, this quantity must increase to

4.6 kg/hl.

The use of CO2 in liquid form supposes a decrease of the dissipated energy of the deposit in

relation to the solid ice, since in the energy transfer equation the latent heat of fusion of CO2

does not come into play, resulting (Eq. (20)):

dQ ¼ m� λH2O þ ρ� V � Ce � ðT1–T2Þ ¼ M� λVP (20)

As stated above, it is not advisable to form ice from the water of constitution of the must or

crushed-grapes, whereby the above expression is modified as follows (Eq. (21)):

dQ ¼ ρ� V � Ce � ðT1–T2Þ ¼ M� λVP (21)

ρ: is the must/crushed-grapes density (kg/m3).

V is the must/crushed-grapes volume (m3).

Ce is the must/crushed-grapes specific heat (kJ/kg �C).

T1 is the initial temperature of must/crushedgrapes (�C).

T2 is the final temperature of must/crushed-grapes (�C).

M is the mass of CO2 in solid form required for refrigeration (kg).

λVP is the latent heat of vaporization of liquid CO2 (393 kJ/kg).

6. Cold production techniques for the control of fermentation temperature

In order to dissipate the energy produced during fermentation in the oenological industry,

water spray or shower systems, refrigeration liners and internal plaques or snakes are used.

The external exchangers are also used, the description of which has been made in the previous

section as it is the most used mechanism in the refrigeration of musts and crushed-grapes in

prefermentative operations.

6.1. Water shower

It consists on spraying the walls of the fermentation tank with water from an upper ring

connected to a general feed system. A very fine and homogeneous layer of laminar water is

generated, which descends through the walls and is normally collected in channels arranged in

the lower part of the tank. An automatic control allows the opening and closing of solenoid
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valves according to the temperature inside the tank and the preset. The refrigeration mecha-

nism by conduction and convection is based on the removal of energy from the tank by partial

vaporization of the circulation system water.

Thermodynamically, it is the most unfavorable refrigeration system and the one that uses the

greater volume of water, which supposes a greater environmental cost. These cases are

recommended where no refrigerated water is available (below 20�C). For this reason, it is used

with efficiency in the control of fermentation in red wine vinifications, not being able to be

applied in any case for rose and white wine vinifications.

The refrigeration power of the water curtain is defined by the heat of vaporization of the water

at room temperature. The heat of its vaporization is the sum of its sensible heat in liquid state

and the latent heat of vaporization corresponding to the change in water-vapor station. For

calculation purposes, the refrigeration power of the water due to sensible heat is defined by

(Eq. (22)):

Qs ¼ U � S� ðTinside tank–Tcurtain waterÞ (22)

where

K is the thermal transfer coefficient. For stainless steel tanks and water circulation in a thin

layer laminar regime on the surface, the value of U is of the order of 100 w/m2�C [3, 7, 8, 35].

S is the surface of the tank in contact with the water curtain.

The refrigeration power due to the latent heat of water vaporization is (Eq. (23)):

Q1 ¼ H � S� ðTair–Twet air bulbÞ (23)

where

H is the coefficient of thermal transmission by convection between the water curtain and the

tank surface. According to McCabe et al. [8] and Geankoplis [9], Lamúa [37] takes values

between 10 w/m2�C for closed rooms without air circulation and 40 w/m2�C for exterior

conditions subjected to wind action.

S is the surface of the tank in contact with the water curtain.

The wet bulb temperature of the air can be determined on a psychometric diagram and

depends on the room temperature and the relative humidity of the air.

Only if the water temperature exceeds the humid bulb temperature of the air, vaporization has

place and therefore a dissipation of energy of the tank, since if it is lower a condensation of the

air humidity occurs on the tank.

6.2. Refrigerating shirts

The use of refrigeration shirts is currently the most widespread fermentation control system in

both white and red winemaking. Traditionally, they have been constructed in stainless steel

Refrigeration88



and are fixedly arranged in the upper part of the tank, occupying between 15 and 30% of the

surface. In the recent years, some manufacturers are using new polymers of medium rigidity

and high resistance that makes possible their installation on the tank according to the needs of

the campaign. As to their disposition, and in agreement with the results of several investiga-

tions that advise for vinifications in red wine the use of fermentation tanks of equal height and

base diameter, the shirts are installed covering the greatest part of the side surface of the

deposit, reaching in some cases 90% of it. This new system allows a homogeneous control of

fermentation, avoiding the problem of the thermal stratification that takes place with large

diameters.

Similar to the tubular and plaque exchangers, the exchanged energy is defined by the general

energy transfer equation (Eq. (24)) [8, 10, 13, 38]:

dQ=dt ¼ ρ� V � dT=dt ¼ FT �U � S� ðΔTÞml ¼ W � Ce � ðt1– t2Þ ¼ W 0 � λ (24)

dQ/dt is the dissipated energy per unit of time (kJ/h).

ρ: is the must density (kg/m3).

V is the tank volume (m3).

dT/dt is the must temperature variation per unit of time (�C/h).

FT is the correction factor depending on the ratio of the must and coolant velocities. It is a

measure of the thermal efficiency of the exchange.

U is the global coefficient of heat transfer (w/m2�C). The coefficient depends on the type of

refrigeration jacket, vinification and exterior environment conditions. Based on empirical

data, mean values of 12–60 x/m2�C are stablished [10, 13]. Other authors raise the value of

U to 200–600 w/m2�C [3] or 600–1000 [39].

S is the shirt surface (m2).

(ΔT)ml is the logarithmic mean temperature difference between glycol water and must

(Eq. (25))

ðΔTÞml ¼
ðtem � tsaÞ � ðtsm � teaÞ

ln
ðtem�tsaÞ
ðtsm�teaÞ

(25)

W is the mass flow of refrigerant (kg/h).

Ce is the specific heat of refrigerant (kJ/kg
�C).

tem is the must initial temperature (�C).

tsm is the must final temperature (�C).

W’ is the vaporization rate of refrigerant (kg/h).

λ is the vaporization latent heat of refrigerant (kJ/kg).
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Two of the cases that take place, the refrigerating fluid changes of state for example R-717

evaporated to 5–7�C (in that case the fluid temperature is constant) or there is no change of

state (glycol water), producing a heating throughout the cooling process. As approximate data,

it is considered that water enters between 5 and 7�C and exits between 10 and 12�C.

For the purpose of calculating the equipment of the cold production facility, a simplified

equation of the above is used (Eq. (26)):

Qc ¼ U � S� ðTinside tank–Tcirculating waterÞml (26)

Since the must/wine inside the tank is in steady state and this heat exchange equation is applied

for counter current flowing fluids, the term (ΔT)ml is simplified to (Tinside tank�Tcirculating water).

It should be noted that 50% of the refrigerating protein produced by the shirt dissipates in the

environment surrounding the tank if it is not well heat-insulated. In case no insulation is

available, the required shirt surface must be doubled, or, if appropriate, the cooling capacity

is reduced by half for calculation purposes.

The cooling jackets have very low heat transfer coefficients due to the steady state in which the

must/wine is located inside the tank. The effectiveness of the refrigeration decreases propor-

tionally with the diameter of the tank, being considered that for normal temperatures of

circulation water limiting diameters of more than 4 m, due to the vertical thermal stratification

that occurs [10, 13, 35]. If only large diameter tanks are available, the effectiveness decreases in

a high percentage, so to maintain it in appropriate values, very low temperatures are required

in the glycolic water, close to 1–2�C. According to Bouton et al. [10, 13], if the diameter doubles

the surface of the jacket, it is multiplied by four and the volume of the must/wine is refrigerated

by eight, maintaining the ratio surface/volume. As an approximate value and only for approx-

imate calculations, 2 m2 of cooling jacket per 100 hl of must in fermentation is recommended.

The cooling jackets are used in the tartaric stabilization process of the wines by the system of

planting nuclei of crystallization, circulating glycolic water at �7�C to reach temperatures

of �1�C.

6.3. Cooling plaques or submerged coils

The coolant fluid flows through an exchanger (plaque or coil) submerged in the must/wine.

The refrigeration is based on convection and conduction phenomena.

It is a very economical solution as it does not require special tanks and large accessory

installations. It is applied in wine cellars of small and medium capacity that have tanks with

volumes never exceeding 300 hl. As an advantage, the possibility of placing them in the zones

of maximum thermal generation is at any level and from the beginning of fermentation.

Both plates and coils are constructed of stainless steel and are usually mobile structures that

are moved from one tank to another by flexible conducts. Glycol water circulates in its interior

at temperatures of 5–7�C or refrigerating fluids with similar evaporating temperature.
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The refrigeration capacity generated is calculated in the same way as in the case of outer

cooling jackets, taking into account that in this case the exchange surface is double as both

sides are in contact with the must/wine (Eq. (27)):

Qc ¼ U � S� ðTinside tank – Tcirculating waterÞml (27)

taking U as the same values of those mentioned above.

7. Cold production techniques for the tartaric stabilization of wines

To carry out the tartaric stabilization, the wine is cooled to the temperature previously set

according to the system used continuous or discontinuous. The temperature of the wine must

be lowered to �5�C in discontinuous systems and from 0 to �2�C in continuous systems, to

cause the crystallization and precipitation of potassium bitartrate and calcium tartrate. The

required cold is generally supplied by a scraped surface exchanger, with glycol water or with

direct expansion of the refrigerant.

An exchanger with scraped surface is constituted by a cylinder of 0.75–1 m of length and 0.15–

0.20 m of diameter, in whose interior a series of pallets is located around an axial axis with a

rotation movement between 300 and 600 rpm. Inside the cylinder circulates the wine to be

treated. In this way, concentric to the previous one, is arranged a cylinder or cooling jacket

through which the refrigerating fluid is counter flow with the wine. The mission of the pallets

is to remove and circulate the ice formed and deposited on the wall of the exchanger, around

10–20% according to the treatment temperature. According to McCabe et al. [8] and

Geankoplis [9], the energy transferred from the glycolic water or the refrigerating fluid to the

wine in a range t is calculated according to the expression (Eq. (28)):

Q

S
¼ 2 Uk ðTv� TαÞ

ffiffiffiffiffiffi

t

πα

r

(28)

where

Q is the dissipated energy (kJ).

S is the exchange surface (m2).

U is the global coefficient of heat transfer (w/m2�C).

K is the wine thermal conductivity (w/m2�C).

Tv is the wine initial temperature (�C).

T
α
: is the initial temperature of glycol water or refrigeration liquid (�C).

t is the total contact time (h).

α: is the thermal diffusivity of wine (w/m2�C).
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UDα

k
¼ 4:9

DαVρ

μ

� �0:57 Ceμ

K

� �0:47 Dan

V

� �0:17 Da

L

� �0:37

U is the global coefficient of heat transfer (w/m2�C).

K is the wine thermal conductivity (w/m2�C).

Da is the internal diameter of the exchanger (m).

V is the speed of wine circulating (m/h).

ρ: is the wine density (kg/m3).

Ce is the wine specific heat (kJ/kg�C).

m is the wine viscosity (cP).

n is the stirring speed of the blades (rph).

L is the length of the exchanger (m).

Due to the difficulty of calculation, for practical purposes, the dimensioning of a scraped
surface exchanger is performed according to the simplified energy transfer equation (Eq. (29))
[10, 13, 34].

Qc ¼ U � S� ðTwine – Tglycolic waterÞml (29)

Q is the dissipated energy (kJ).

U is the global coefficient of heat transfer (w/m2�C).

S is the exchange surface (m2).

(ΔT)ml is the logarithmic mean temperature difference between glycol water/refrigerant and
wine (Eq. (30)).

ðΔTÞml ¼
ðtem � tsaÞ � ðtsm � teaÞ

ln ðtem �tsaÞ
ðtsm�teaÞ

(30)

As values of U, are taken those empirically calculated by different authors. According to
López [39], U = 580–870 w/m2�C. For McCabe et al. [40], U = 700–900 w/m2�C. Boulton et al.
[10, 13] establish an average value of U = 600–2000 w/m2�C.
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