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Abstract

HMGB proteins are characterized for containing one or more HMG-box domains and 
are well conserved from yeasts to higher eukaryotes. The HMG-box domain is formed 
by three α-helices with an L-shaped fold. Although HMGB proteins also have cytoplas-
mic and extracellular functions, they bind to nuclear or mitochondrial DNA in a highly 
dynamic process that affects chromatin organization. In this review, we mainly focus 
on HMGB proteins from yeast and their human homologs as functionally involved in 
DNA repair and transcriptional regulation. Recent research reveals that these proteins 
participate in epigenetic control of gene expression, aging, disease, or stem-cell biology.

Keywords: nonhistone proteins, epigenetics, transcriptional regulation

1. Introduction

Nucleosomes are fairly stable basic units of DNA packaging. Nevertheless, nucleosomal chro-

matin is surrounded by a highly dynamic protein pool that allows chromatin remodeling 

and favors replication, DNA repair, and gene transcription. Among proteins that transiently 
associate with chromatin are variants of the linker histone H1 family [1–3] and members of 

the high mobility group (HMG) protein superfamily [4–6]. Although HMG motifs are present 
in many nuclear proteins, the classification and nomenclature of the considered “canonical” 
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HMG proteins is organized in three families named HMGA, HMGB, and HMGN, each one 
having a specific functional domain: the “AT hook” in HMGA, the “HMG-box” in HMGB, and 
the “nucleosomal binding domain” in HMGN proteins [7].

Some HMGB proteins have been related to nuclear, extranuclear, and extracellular functions 

during inflammation, cell differentiation, cell migration, and tumor metastasis [8, 9]. Their 

HMG-box domain contains 65–85 amino acids and has a characteristic L-shaped fold formed 
by three α-helices with an angle of ≈80° between the two arms. The long arm, or minor wing, 
is composed by the extended N-terminal strand and third α-helix, while first and second 
α-helices form the short arm, or major wing (Figure 1(a)). Because of protein interaction in 

the minor groove, DNA-bending and widening of the double helix is produced (Figure 1(b)).

There are two broad subfamilies of HMGB-containing proteins, based on structural and phy-

logenetic studies. One class includes those that bind to distorted DNA with low or without 
sequence specificity (nonsequence specificity (NSS), HMG-box domains) and have, in general, 
two or more in tandem arranged HMG-box domains [10, 11]. Examples of proteins without 

sequence specificity are the mammalian Hmgb1-4 and Ubf proteins, Hmgd from Drosophila, 

or Nhp6a and Nhp6b from Saccharomyces cerevisiae. Their role is related to chromatin modi-

fication, participating in many different functions such as co-activation or silencing of tran-

scription and V(D)J junction recombination. A second class of HMGB-containing proteins 
binds to DNA by recognizing a specific DNA sequence (sequence specificity (SS), HMG-box 
domains), and they usually contain a single HMG-box domain [10, 11]. They generally func-

tion as transcription factors, only expressed in a few cell types, and they also contain other 

regulatory associated domain. The determinants for DNA sequence specificity lie mainly in 
the minor wing of the HMG-box. Examples of this kind of HMGB proteins are the mamma-

lian lymphoid enhancer factor (Lef-1), the sex determining factor (Sry), and the Sry-related 
HMG-box (SOX) family, or the hypoxic gene repressor (Rox1) from S. cerevisiae.

In this review, we focus on HMGB proteins from yeast, as functionally involved in DNA repair 
and transcriptional regulation, but also in their homologs from multicellular eukaryotes, with 

special reference to human proteins. Their functions may be modulated by nucleosome posi-

tioning and stability [12]. Interestingly, recent findings support that HMGB proteins may also 

Figure 1. (a) Characteristic HMG-box fold (based on Sox17 protein structure; PDBID: 3F27). (b) Bending and widening 
produced in the double strand of DNA after protein binding.
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play diverse roles in epigenetic control, since their interaction with chromatin affects the level 
of histone modifications [13]. In the light of recently opened research areas, in which HMGB 
proteins are involved, available knowledge is also discussed.

2. HMGB proteins from Saccharomyces cerevisiae

In S. cerevisiae, the genes ABF2, HMO1, IXR1, NHP6A, NHP6B, NHP10, and ROX1 encode 

HMGB proteins [7]. The protein Spp41 also contains a HMG-like motif although homology 

searches reveal that it is far related to the others. The structural characteristics and functions 

of these yeast proteins are shown in Table 1. Only one HMG-box domain is present in most of 

them, but Abf2 and Ixr1 have two in tandem “HMG-box” motifs.

With the exception of Rox1 that behaves as a specific transcriptional regulator of the hypoxic 
yeast regulon [14] and Ixr1 that has a dual function as specific transcription factor and DNA-
binding protein without sequence specificity, also participating in DNA repair [15], the other 

Protein Amino acids Molecular 

weight (Da)

pI Aliphatic index Instability 

index

Domain 

position

Abf2 183 21,575 10.24 67.27 42.94 HMG: 42-112
HMG: 115-183
Coil 89-110

Hmo1 246 27,546 9.11 67.35 45.80 HMG: 105-180
PHHR13711: 
22-185

Nhp6A 93 10,810 10.40 43.13 39.16 HMG: 20-90
PHHR13711: 
7-93

Nhp6B 99 11,485 10.54 37.99 58.30 HMG: 26-96
PTHR13711: 
6-99

Nhp10 203 23,858 8.15 68.12 51.57 Coil: 3-24
HMG: 93-159
PTHR13711: 
74-182

Rox1 368 41,857 10.46 70.38 62.14 Coil: 90-118
HMG: 9-84

Ixr1 597 67,858 8.36 51.20 70.67 HMG: 360-430
HMG: 433-503
Poly-Q: 3 
regions

Coil: 292-313
PTHR13711: 
1-594

Table 1. Characteristics of HMGB proteins in Saccharomyces cerevisiae.

HMGB Proteins from Yeast to Human. Gene Regulation, DNA Repair and Beyond
http://dx.doi.org/10.5772/intechopen.70126

141



HMGB proteins from S. cerevisiae might be considered as chromatin architectural proteins, 

but with wide influence on gene expression [16]. This is not a HMGB-exclusive mechanism 

since, in eukaryotes, many other chromatin components, such as histones [17], histone chap-

erones and modifiers [18], chromatin remodel complexes [19], and long noncoding RNAs 
[20], affect gene expression by different mechanisms.

Although Abf2 and Ixr1 are considered paralogs, resulting from the whole genome dupli-
cation in an ancestor of Saccharomyces, the function of Abf2 is not related to transcriptional 
regulation of hypoxic regulons. Abf2 is a mitochondrial DNA-binding protein involved in 
mitochondrial DNA replication and recombination [21, 22]. In vivo, PKA-mediated phosphor-

ylation of Abf2 during glucose repression may regulate its functions on maintaining mito-

chondrial DNA content during the shift from gluconeogenic to fermentative growth [21].

Hmo1 is not considered a specific transcriptional factor either, although it regulates rDNA 
transcription from RNA polymerase I promoters and also regulates start site selection of ribo-

somal protein genes by RNA polymerase II [23–25].

Nhp10 (alias Hmo2) is a nonessential subunit of the INO80 chromatin remodeling complex, 
and it affects telomere maintenance via recombination [26, 27].

Nhp6a and Nhp6b are also paralogs and functionally redundant [28], they bind to and 

remodel nucleosomes [29, 30], and both are required for transcriptional initiation fidelity of 
some tRNA genes [31]. Their protein levels increase in response to DNA replication stress [32]. 

Besides, Nhp6a and Nhp6b acting on chromatin tightly repress histone expression; paradoxi-

cally, histone gene overexpression in the double nhp6a∆ nhp6b∆ mutant is compensated by 

downregulation of translation, finally determining a histone-decreased phenotype to avoid 
the toxic effect of histone overproduction [33].

Although few data are available about Ssp41 functions, it has been associated with chromatin 
remodeling [34], transcription, and RNA processing [35, 36]. Besides, overexpression causes 

chromosomal instability [36] and under hypoxia, it is rapidly exported to the cytosol [34].

An intriguing question is whether the S. cerevisiae HMGB proteins contribute altogether to 

regulate specific cell functions. An interesting perspective comes from the terms “environ-

mental stress response” (ESR) or “common environmental response” (CER). These terms 
refer to adaptive yeast responses against acute changes in diverse environmental parameters 

(e.g., O
2
, osmolarity, nutrients, pH, UV, etc.), which evoke a common transcriptional response, 

initially devoted to mitigate the deleterious effect of the specific stressor, but principally to 
balance cell energetics and to coordinate progression through the cell cycle [37]. We have 

summarized the information available in SGD about protein interactants of HMGB proteins 

from S. cerevisiae (http://www.yeastgenome.org/ as accessed date February 22, 2017) and used 
this information to construct a interactome network using STRING facilities (http://string-db.
org/). Figure 2 shows that this network statistically has significantly more interactions among 
HMG-box proteins and their previously reported partners than randomly expected, with a 

p-value < 0.01 according to STRING analysis. This result suggests that yeast HMGB proteins 
are related, not only structurally but also as a functional group. Table 2 summarizes GOTerm 

enrichment analysis among the components of this network and their statistical significances 
evaluated by false discovery rate (FDR) according to STRING analysis [120].
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References to the existence of interplay between the response to hypoxia, oxidative stress, 
and mitochondrial function have been reported, i.e., it is known that when cells experi-

ence hypoxia, up- or downregulation of an important number of oxygen-regulated genes 

in yeast depends on an active mitochondrial respiratory chain [38]. Treatment with anti-

mycin A (respiration inhibitor) or oxygen deprivation cause downregulation of networks 
involved in the G1/S transition of the cell cycle as well as of those involved in energeti-
cally costly programs of ribosomal biogenesis and protein synthesis [37]. Similar regula-

tion occurs in the response to DNA stress [39–41], and therefore, a wide gene-regulatory 

response might engage the functions of the HMGB proteins coordinately. Figure 3 summa-

rizes the participation of HMGB proteins from S. cerevisiae in functional responses against 

external (nutrient availability, oxidants, oxygen levels, DNA damaging agents) or internal 
(replicative stress) stressors.

Figure 2. Network of yeast HMGB interactants according to STRING analysis.
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Pathway ID Biological function; pathway 

description

Observed gene 

count

False discovery rate

GO.0006325 Chromatin organization 50 4.50E-27

GO.0010468 Regulation of gene expression 81 5.85E-25

GO.0051171 Regulation of nitrogen compound 
metabolic process

84 5.85E-25

GO.0051276 Chromosome organization 63 5.85E-25

GO.0006355 Regulation of transcription, 
DNA-templated

71 3.30E-24

GO.0051252 Regulation of RNA metabolic 
process

72 3.30E-24

GO.0071824 Protein-DNA complex subunit 
organization

39 1.27E-22

GO.0043933 Macromolecular complex subunit 

organization

78 1.24E-21

GO.0090304 Nucleic acid metabolic process 95 1.53E-21

GO.0034728 Nucleosome organization 27 3.55E-21

GO.0006338 Chromatin remodeling 26 3.00E-20

GO.0006351 Transcription, DNA-templated 61 3.69E-19

GO.0006974 Cellular response to DNA damage 
stimulus

43 5.34E-19

GO.0006333 Chromatin assembly or disassembly 24 7.13E-19

GO.0006281 DNA repair 39 2.21E-18

GO.0016568 Chromatin modification 36 3.02E-18

GO.0006259 DNA metabolic process 47 1.11E-17

GO.0010467 Gene expression 82 1.39E-15

GO.0016070 RNA metabolic process 78 1.73E-15

GO.0006357 Regulation of transcription from 
RNA polymerase II promoter

45 8.94E-14

GO.0006323 DNA packaging 16 1.73E-11

GO.0006366 Transcription from RNA  
polymerase II promoter

29 1.99E-11

GO.0043044 ATP-dependent chromatin 
remodeling

14 5.72E-11

GO.0006950 Response to stress 54 6.10E-10

GO.0016458 Gene silencing 22 1.12E-09
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Pathway ID Biological function; pathway 

description

Observed gene 

count

False discovery rate

GO.0006354 DNA-templated transcription, 
elongation

16 1.21E-09

GO.0040029 Regulation of gene expression, 
epigenetic

23 1.75E-09

GO.0050896 Response to stimulus 67 3.76E-09

GO.0006342 Chromatin silencing 21 4.01E-09

GO.0071103 DNA conformation change 16 9.65E-08

GO.0016584 Nucleosome positioning 7 1.67E-07

GO.0007049 Cell cycle 49 2.67E-07

GO.0018193 Peptidyl-amino acid modification 18 5.44E-07

GO.0022607 Cellular component assembly 47 7.03E-07

GO.0065004 Protein-DNA complex assembly 17 9.19E-07

GO.1902589 Single-organism organelle 

organization

58 9.77E-07

GO.0042766 Nucleosome mobilization 7 9.81E-07

GO.0018205 Peptidyl-lysine modification 15 1.06E-06

GO.0022402 Cell cycle process 43 2.30E-06

GO.0006337 Nucleosome disassembly 8 2.35E-06

GO.0031498 Chromatin disassembly 8 2.35E-06

GO.0006368 Transcription elongation from  

RNA polymerase II promoter
12 2.40E-06

GO.0006302 Double-strand break repair 16 2.65E-06

GO.0098781 ncRNA transcription 12 4.52E-06

GO.0000122 Negative regulation of transcription 

from RNA polymerase II
19 7.75E-06

GO.0006383 Transcription from RNA  
polymerase III promoter

9 9.65E-06

GO.0000723 Telomere maintenance 12 4.18E-05

GO.0006360 Transcription from RNA  
polymerase I promoter

9 6.50E-05

GO.0009303 rRNA transcription 8 0.000151

GO.0016570 Histone modification 13 0.000222

Table 2. GOTerm enrichment in the interactome network depicted in Figure 2.
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Figure 3. Orchestrated action of S. cerevisiae HMGB proteins in cellular responses to stress.

3. HMGB proteins from other yeasts

Although the complete sequences of a huge number of genomes from yeast and fungi are 
available, functional studies of HMGB proteins are not very frequent and only a few HMGB 

homologs have been characterized so far.

In Yarrowia lipolytica, YlMhb1, the homologous of Abf2 from S. cerevisiae, compacts mito-

chondrial DNA in vitro. Phenotypic analysis of a mhb1∆ strain reveals a large decrease 

in the mitochondrial DNA copy number and also shows that the protein protects the 
mitochondrial genome against mutagenic events. Like Abf2, YlMhb1 has two HMG-box 
domains [42]. In Candida parapsilosis, the homologous of Abf2 has been named Gcf1 and 
diverse experimental data support its role in the maintenance of the C. parapsilosis mito-

chondrial genome; in contrast to Abf2 and YlMhb1, Gcf1contains a coiled-coil domain and 
a single high-mobility HMG-box domain [43]. A similar structure is observed in Candida 

albicans [44].

Old Yeasts - New Questions146



In C. albicans, proteins with DNA-binding activity and high similarity to Nhp6 promote 
changes in chromatin structure, which are involved in hypha-specific gene regulation [45].

Regarding the Rox1 homolog in Kluyveromyces lactis, its molecular function, synteny, and 

HMG-box structural features were shown to be different from that of S. cerevisiae [46, 47]. The 

KlROX1 gene from K. lactis does not regulate the hypoxic response in this yeast neither inter-

acts with the components of the general corepressor factor (Tup1-Ssn6) that mediates the tran-

scriptional repression exerted by Rox1 in S. cerevisiae. However, KlRox1 mediates the response 
to metals [47].

Although a low number of functional data is available, we may speculate that in yeasts the 
functions of “architectural” HMGB proteins are probably more conserved than those with 
functions as specific transcriptional factors. This is also predictable considering that transcrip-

tional factors are among the proteins more strongly diverged between yeasts [48].

4. HMGB proteins in multicellular organisms

In multicellular eukaryotes, a large number of proteins contain HMG boxes, most of which 
are transcription factors that contain a single HMG-box [49], although some may have up to 

6 HMG-box domains, like Ubf1 [50]. According to the classification from Bustin [7], “canoni-
cal” chromatin HMGB proteins represent a subgroup that invariably contains two in tan-

dem HMG boxes. A model for the phylogenesis of HMGB genes in metazoan suggests that 
these two HMG boxes have their origin in the duplication of an ancient single HMG-box; 

even those which are part of HMG-box transcription factors might evolve from this ancestral 

ProtoBox [51].

Transcription factors (including SOX factors) are the most divergent group of HMG-box 

proteins in humans, whereas in plants the chromosomal HMGB-type proteins are most 

variable [52]. In plants, HMG-box proteins classify into four groups: HMGB-type proteins, 
structure-specific recognition protein 1 (SSRP1), proteins containing 3 HMG-box domains 
(3xHMG-box), and proteins that contain both an AT-rich interaction domain (ARID) and 
an HMG-box domain (ARID/HMG). These latter two groups are apparently specific for 
plants [52]. Conversely, HMG-box containing transcription factors such as Sry, a sex-deter-

mining factor that is necessary for testes development [53], Lef-1, which regulates gene 
expression during cell differentiation [54], and the SOX family are presumably not present 

in plants [52].

Table 3 resumes the homologies found between S. cerevisiae and human HMGB groups using 

the YeastMine facility “Yeast gene-human homolog(s)-Disease” (http://yeastmine.yeastgen-

ome.org/yeastmine/begin.do accessed on date February 25, 2017) and completed with func-

tional data from SGD (http://www.yeastgenome.org/) and associated human diseases. Figure 4 

summarizes the structural and phylogenetic relationships between several HMGB proteins 

from S. cerevisiae and their human homologs.
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Yeast H. sapiens Associated human diseases

Rox1 Sox1

Sox10 Peripheral demyelinating neuropathy, central dysmyelination, 

Waardenburg syndrome, and Hirschsprung disease

Sox11 Mental retardation, autosomal dominant 27

Sox12

Sox13

Sox14

Sox15

Sox17 Vesicoureteral reflux

Sox18 Hypotrichosis-lymphedema-telangiectasia-renal defect syndrome

Sox2 Microphthalmia, syndromic 3

Sox21

Sox3 Mental retardation, X-linked

Sox30

Sox4

Sox5

Sox6

Sox7

Sox8

Sox9 Campomelic dysplasia

Sry 46,Xx sex reversal 1

Ixr1 Hmg20a

Hmg20b

Smarce1 Susceptibility to familial meningioma

Sp110 Susceptibility to Mycobacterium tuberculosis

Sp140

Tfam

Ubtf

Ubtfl1

Abf2 Tfam

Hmo1 Hmg20a

Hmg20b

Smarce1 Susceptibility to familial meningioma

Sp110 Susceptibility to Mycobacterium tuberculosis

Sp140

Tfam

Ubtf

Ubtfl1

Nhp6a/b Hmg20a

Hmg20b

Hmgb1

Hmgb3 Microphthalmia, syndromic 13

Smarce1 Susceptibility to familial meningioma

Sp110 Susceptibility to Mycobacterium tuberculosis

Sp140

Tfam

Ubtf

Ubtfl1

Table 3. Human homologs to HMGB yeast proteins and associated diseases.
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5. Mechanisms of transcriptional regulation mediated by HMGB proteins

5.1. Direct binding to target promoters

In S. cerevisiae, Rox1 is a DNA-binding protein with an HMG-box domain that binds to the 
consensus sequence YYYATTGTTCTC present in the promoter regions of genes related to 
hypoxia, causing a DNA bending of 90° in the double strand [55, 56]. Up to one-third of the 
S. cerevisiae hypoxic genes are transcriptionally repressed during aerobic growth by Rox1, 

Figure 4. Molecular phylogenetic analysis of HMG-box domains by maximum likelihood method. (a) Characteristic 

HMG-box conservation. The evolutionary history was inferred by using the maximum likelihood method based on the 

JTT matrix-based model [118]. (b) The tree with the highest log likelihood (−3421.5683) is shown. Initial tree(s) for the 
heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise 

distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The tree is 

drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 39 amino 

acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 63 positions in the 
final dataset. Evolutionary analyses were conducted in MEGA7 [119].
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through the recruitment of the general corepressor complex Ssn6/Tup1 [14, 57]. In several pro-

moters, this repression is synergic with the caused by regulator Mot3 [58]. ROX1 expression 

is dependent of oxygen and heme levels in the cell, since its transcription is under the control 

of Hap1 [59], and therefore, it is induced aerobically [60]. In addition to aerobic upregulation 
produced by Hap1, the ROX1 expression is counterbalanced by self-repression, to avoid cell 

toxic effects produced by an eventual overexpression. At low oxygen levels, the Rox1 protein 
levels rapidly decay by degradation, since it is labile in these conditions, and because the 

ROX1 gene is no longer transcribed. Under normoxic (aerobic) conditions, the heme-acti-
vated Hap1 complex increases ROX1 expression, allowing in turn Rox1 repression of hypoxic 
genes. In hypoxia, the situation is reversed, since the low levels of Rox1 allow derepression. 
The genes that are under the control of Rox1, either directly by the protein binding to their 
promoter regions, or indirectly through signal transduction pathways, are those related to 

efficient metabolism under low oxygen levels, ergosterol and heme synthesis, cell wall main-

tenance, or electron chain transport [61]. The genes repressed simultaneously by Mot3 and 

Rox1 preferentially encode proteins of the cell wall and plasma membrane; cell conjugation-
related genes are negatively regulated by both factors and by osmotic stress [62]. During 

anaerobiosis, the histone deacetylase and global repressor complex Rpd3 act at the promoter 
of the anaerobic gene DAN1 to antagonize the chromatin-mediated repression caused by 

Mot3 and Rox1 and chromatin remodeling by Swi/Snf is necessary for expression [63].

The first report about the participation of Ixr1 in the yeast hypoxic response was the aerobic 
repression of the COX5B gene, which encodes the hypoxic isoform of the subunit Vb of the 

mitochondrial complex cytochrome c oxidase [64]. Ixr1 also regulates other hypoxic genes 
like TIR1, a cell wall mannoprotein of the serine-alanine-rich protein family [65] and HEM13, 

which encodes the enzyme coproporphyrinogen III oxidase in the heme biosynthetic pathway 
[66]. The whole set of genes that are regulated by Ixr1 during the hypoxic response was deter-

mined in a genome-wide approach [67]. Hypoxic genes are also regulated by oxidative stress. 

Indeed, reactive oxygen species (ROS) induce expression of CYC7 and COX5B through an 

Ixr1-independent mechanism that diminishes the access of Rox1 to its promoter targets [68].

A cross-regulation between Rox1 and Ixr1 in the yeast hypoxic response has been reported 
[66]. In aerobiosis, low levels of IXR1 expression are maintained by Rox1 repression and dur-

ing hypoxia Ixr1 auto-enhances IXR1 expression [66]. Ixr1 is also required for hypoxic repres-

sion of ROX1. Binding to specific regions of the ROX1, IXR1, HEM13, and TIR1 promoters 

were probed in vitro and in vivo [66, 69]. Ixr1 is also known by binding to cisplatin-DNA 
adducts with high affinity [70]. We have recently evidenced that functional specialization of 

the 2 HMG boxes, which are present in Ixr1, may explain its dual function. Regulation of tran-

scription and DNA repair is achieved through differential recognition of specific regulatory 
sequences in the target promoters, or DNA disturbances caused by cisplatin treatment [15].

Rox1 from S. cerevisiae is homologous to the SOX family of transcriptional factors from human 

(Table 2) and other metazoan, from which SRY was the founding member. In vertebrates, 
there are more than 20 SOX genes characterized, which originate through a process of dupli-
cation and divergence [71], and they play important roles in tissue homeostasis, organogene-

sis, and cell fate decision during developmental processes (thoroughly reviewed by Ref. [72]). 
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For most mammals, SRY is the only member of the SOXA group [73]. SOXB1 group (SOX1, 

SOX2, and SOX3) participates in neural, lens, and ear development; SOXB2 group (SOX14 

and SOX21) in neuronal differentiation SOXC group (SOX4, SOX11, and SOX12) in nervous 
system development and retinal differentiation; and SOXD group (SOX5, SOX6, and SOX13) 
in chondrocyte differentiation, cartilage formation, and neural development. SOXE group 
(SOX8, SOX9, and SOX10) is involved in primary sex determination and neural development, 
and SOXF group (SOX7, SOX17, and SOX18) in cardiac, vascular, and lymphatic development 
[72]. The SOXG group has only one member in mammals, and SOX15 involved in skeletal 

muscle regeneration [72, 74]. Besides, SOX4 and SOX11 are involved in tumorigenesis, and 

SOX7, SOX17, and SOX18 in endoderm development [72]. Figure 5 summarizes the functions 

of these human SOX factors.

Figure 5. Functional groups of human SOX factors.
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SOX proteins are highly dynamic regulators of cell functions due to their nucleocytoplas-

mic shuttling properties [75]. However, because of their low affinity for DNA binding, and 
despite SOX proteins usually have their own C-terminal activation/repression domain, 
they are committed to recruit partner proteins to fulfill their transcriptional regulatory 
task [76]. Homo- and heterodimerization of SOX proteins is also a mechanism used for the 

formation of these regulatory complexes [77]. SOX proteins also interact with signaling 

effectors, Wnt/β-catenin being one of the most studied signaling pathways [78]. Different 
molecular complexes of SOX factors and their partner proteins are formed along develop-

mental processes. Besides, these specific interactions are usually dependent on posttrans-

lational modifications of SOX proteins like phosphorylation, acetylation, SUMOylation, 
and ubiquitination [72].

5.2. Other mechanisms for transcriptional regulation

The HMGB proteins that are not classified as transcriptional factors also influence transcrip-

tion by different mechanisms, which affect chromatin. Since these HMGB proteins are very 
dynamic in their interactions and have no DNA sequence specificity, they usually help tran-

scription factors or cofactors to bind to their cognate sites by bending the DNA molecule, but 
are rarely retained within the formed complexes [79].

In plants, HMGB proteins contribute to transcriptional regulation by functional interaction 
with certain transcription factors like Dof2 [80]. In mammals, Hmgb1 alters the structure and 
stability of the canonical nucleosome in a nonenzymatic, ATP-independent way to facilitate 
strong binding of estrogen receptor to their regulatory elements [81].

HMGB proteins also interact with nucleosomes to promote their sliding or other chromatin 

remodeling processes [79]. Yeast Nhp6a, Nhp6b, and Hmo1 proteins stimulate the sliding 

activity of the yeast remodeler complex SWI/SNF, while octamer transfer and transient expo-

sure of nucleosomal DNA catalyzed by this complex are only stimulated by Hmo1. Hmo1 
also favors the sliding activity of the ISW1a complex [82].

Hmo1 in yeasts and the upstream binding factor (Ubf) in mammals function as cofactors in 
RNA polymerase I transcription and therefore are essential for transcription of the rRNA 
genes in vivo, but also have more generalized roles in chromatin structure. Binding of Ubf 
to human rRNA genes is accompanied by a reduction in core histone binding at the same 
sequences [83, 84], and a similar mechanism has been described for its ortholog Hmo1 in 

yeast [25]. Similarly, mammalian cells lacking Hmgb1 and yeast nhp6 mutants contain a 

reduced amount of core, linker, and variant histones [85]. Consequently, the reduced number 

of nucleosomes produces a global increment of transcription and affects the relative expres-

sion of about 10% of genes [85].

Finally, HMGB proteins have been involved in the selection of modified histone variants. 
Studies carried out in mouse showed that conditional inactivation of Ubf is also accompa-

nied by recruitment of H3K9me3, which reveals its function in the epigenetic control of gene 

expression [86].
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6. Mechanisms of DNA repair mediated by HMGB proteins

The three HMG families (A, B, N) are involved in the four major DNA repair pathways. HMGB 
proteins contribute to nucleotide excision repair (NER), base excision repair (BER), double-
strand break repair (DSBR), and mismatch repair (MMR), but with specific particularities 
(reviewed in Ref. [87]). The first report about participation of HMGB proteins in DNA repair 
was the identification of Hmgb1 binding to the major DNA lesions formed in cells treated 
with cisplatin, which are repaired by the NER pathway [88]. In general, the effects of HMGB 
proteins on DNA repair are achieved by different mechanisms. First, they contribute to mod-

ulate chromatin compaction and nucleosome occupancy; through interactions with chroma-

tin-modifying enzymes and energy-dependent remodeling complexes, HMGB proteins favor 

or avoid the access of the repair machinery to altered DNA. Second, HMGB proteins can 
also regulate repair by direct modulation of the enzymatic activities and/or mechanistic steps 
implied in the diverse repair pathways. Third, acting as transcriptional regulators, HMGB 

proteins may change the expression levels of genes involved in DNA repair processes.

Hmgb1 and many other HMGB proteins (e.g., Ubf, Lef-1, Sry, and human mtTFA) inhibit 
NER [87]. If Hmgb1 binds first to a cisplatin adduct, the replication protein A (hRPA), neces-

sary for NER repair, cannot displace it, thus potentially inhibiting repair [89]. On the contrary, 

Hmgb1 stimulates in vitro NER of triplex DNA interstrand crosslinks, caused by psoralen, by 
facilitating the interaction with components of this pathway [83, 90].

Hmgb1 coimmunoprecipitates with proteins from the BER pathway, including Ape1, Fen-1, 
and Pol-beta, and in vitro, modulates the deoxyribose phosphate lyase activity of Pol-beta [91].

Also in vitro, purified Hmgb1 binds to the ends of the double-strand breaks, similarly to the Ku 
proteins, and stimulates kinase and ligase activities required for DBSR of these lesions [92, 93].  

Oppositely, in yeast, the HMGB protein Hmo1 must be evicted, along with core histones, for 

efficient DSBR [94].

Hmgb1 and Hmgb2 form part of a pentameric “damage-sensing” complex (also including 
heat shock protein 70, protein disulfide-isomerase Erp60, and glyceraldehyde3-phosphate 
dehydrogenase) specifically recruited to nonnatural nucleosides in vivo as part of the MMR 
pathway [95]. In vitro, Hmgb1 also interacts with the MMR proteins Msh2 and Mlh1 and 
cooperates with the replication protein A to mediate the exonuclease I activity that creates 
a gap, which is filled in by DNA polymerase, and finally, the broken strands are sealed by 
DNA ligase [96]. In yeast, following Nhp6a interaction to DNA, the mismatch repair com-

plex Msh2-Msh6 is excluded from binding, unless a mismatch is present. In vitro the complex 

Msh2-Msh6-Nhp6a is stable and responsive to ATP on mismatched substrates [97].

Other important connection between Hmgb1 and DNA repair comes from the observation 
that this protein interacts with p53 in vitro and in vivo, stimulating p53 binding to sequence-

specific recognition sites as well as to cisplatin-modified DNA [98, 99]. p53 directly impacts 

the activity of various DNA-repair systems, and besides, it halts cell cycle, thus allowing the 
repair machineries to restore genome stability [100].
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7. HMGB proteins at the forefront of cutting-edge research

Recent publications on HMGB proteins reveal that these proteins are becoming a focus of 
interest due to their participation in cellular processes of great importance for humankind 

like epigenetic control of gene expression, aging, disease, or regenerative cellular therapies.

An interesting research field concerning HMGB proteins is their function replacing histones 
under specific conditions. In eukaryotic chromatin, histone H1 associates with the linker 
DNA in the nucleosome core particle to stabilize the higher-order chromatin structure and 
to modulate the ability of specific regulatory factors to access their final targets. It has been 
demonstrated that in S. cerevisiae Hmo1 might replace histone H1 and protect linker DNA 
from nuclease digestion, creating a less dynamic chromatin environment that depends on its 

lysine-rich domain. This lysine-rich extension is unusual in other HMGB proteins, which have 

an acidic domain instead [101, 102].

Environmental changes, sensed through signaling cascades, regulate chromatin organization, 

thus contributing to gene expression and, ultimately, cell adaptation to external stimulus. 

These responses are related to cell fate and aging. In yeast, the nutrient-dependent target-of-
rapamycin complex 1 (TORC1) pathway and histone H3 collaborate to retain HMGB proteins 
within the nucleus, and in this way, they increase longevity [103].

The role of HMGB proteins remodeling chromatin on a genome-wide scale relates to the onset 

of several human diseases. Two chromatin structural proteins, CCCTC-binding factor (Ctcf) 

and high mobility group protein B2 (Hmgb2), regulate pathologic transcription in myocytes 

during heart disease [104]. The response of macrophages to inflammation starts by nucleo-

some loss and cell lacking Hmgb1 contains 20% less nucleosomes and has a specific transcrip-

tion pattern. In a mouse model, unstimulated Hmgb1-/- macrophages activate transcriptional 
pathways associated with cell migration and chemotaxis. Wild-type macrophages, under 

lipopolysaccharide (LPS)/interferon (IFN)-γ exposure, rapidly secrete Hmgb1 and reduce 
their histone content [105].

Hmgb1 is overexpressed in many types of cancer, including those of etiology based on oxida-

tive damage [8], and frequently, Hmgb1 expression increases with tumor stage and metas-

tasis. In the pediatric acute lymphoblastic leukemia, autophagy is regarded as a mechanism 
that underlies chemoresistance. Since autophagy depends on the Hmgb1 translocation from 

nucleus to cytoplasm, this protein is a good target of study in order to overcome the problem 

[106]. It has been found that Hmgb1 expression is inversely correlated with semaphorin 3A 
expression, a suppressor of angiogenesis and cell migration. The epigenetic mechanism caus-

ing semaphorin 3A repression by Hmgb1 implies that it promotes heterochromatin formation 
and decreased occupancy of acetylated histones at the semaphorin 3A locus [107].

Other remarkable function of HMGB proteins, yet not fully understood, is their participation 

in telomere maintenance, studied in yeast [108] plants [109] and notoriously in animals [110], 

because of their implications in cancer development. The telomerase that conserves telomere 

structures is formed by a catalytic protein subunit (telomerase reverse transcriptase (TERT)) 
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and an RNA subunit (telomerase RNA, TR), and both physically interact with Hmgb1 in vitro. 
Knockout of the HMGB1 gene in mouse embryonic fibroblasts (MEFs) causes chromosomal 
abnormalities, enhanced localization of γ-H2AX at telomeres, moderate shortening of telo-
mere lengths, and lower telomerase activity compared to the wild-type cells. Oppositely, 
knockout of the HMGB2 gene elevates telomerase activity, which reveals the intricate inter-
play of these proteins in chromosome stability and cancer [110].

Evidences linking HMGB proteins with stem cell biology and cellular reprograming are 
also found. Sox factors participate in embryonic pluripotent cell differentiation; Oct4 inter-
acts with Sox2 to maintain pluripotency or with Sox17 to promote endoderm commitment 
[111]. Expression of Hmgb2 changes notably at different time points during embryogenesis 
[112] and controls the differentiation of neural stem cells into neurons, astrocytes, and oli-
godendrocytes. Besides, several Sox factors [113, 114] and also chromatin HMGB proteins 
[115] are involved in back-reprograming differentiated cells into stem cells. Hmgb1 was 
also proposed as an efficient stem cell recruiter with tissue-regenerating roles; it was able 
to induce stem cell transmigration through an endothelial barrier or to capture in muscle 
the stem cells injected into the general circulation [116]. In murine and human mammary 
cancer stem cells, Hmgb1 promotes self-renewal of these cells [117], which are responsible 
for tumor progression, metastases, resistance to therapy, and tumor recurrence. Therefore, 
HMGB proteins are clues in the search of more effective cancer therapies and cellular 
regenerative treatments.
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