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Abstract

A memristor is the memory extension to the concept of resistor. With unique superior 
properties, memristors have prospective promising applications in non‐volatile memory 
(NVM). Resistive random access memory (RRAM) is a non‐volatile memory using a mate‐
rial whose resistance changes under electrical stimulus can be seen as the most promising 
candidate for next generation memory both as embedded memory and a stand‐alone 
memory due to its high speed, long retention time, low power consumption, scalability 
and simple structure. Among carbon‐based materials, graphene has emerged as wonder 
material with remarkable properties. In contrast to metallic nature of graphene, the gra‐
phene oxide (GO) is good insulating/semiconducting material and suitable for RRAM 
devices. The advantage of being atomically thin and the two‐dimensional of GO permits 
scaling beyond the current limits of semiconductor technology, which is a key aspect for 
high‐density fabrication. Graphene oxide‐based resistive memory devices have several 
advantages over other oxide materials, such as easy synthesis and cost‐effective device 
fabrication, scaling down to few nanometre and compatibility for flexible device appli‐
cations. In this chapter, we discuss the GO‐based RRAM devices, which have shown 
the properties of forming free, thermally stable, multi‐bit storage, flexible and high on/
off ratio at low voltage, which boost up the research and development to accelerate the 
GO‐based RRAM devices for future memory applications.

Keywords: memristor, graphene oxide, forming free, multi‐bit storage, flexible devices

1. Introduction

The memristor (contraction for memory resistor) acclaimed as the fourth fundamental cir‐

cuit element together with already known the capacitor, the inductor and the resistor was 

theoretically predicted by Chua in 1971 [1]. But it attracted much attention in 2008, when a 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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TiO2‐based crossbar memory array was developed by the HP Labs, and the cross‐point storage 

element was recognized as the memristor [2]. Recently, a rather deep analysis has been pro‐

vided concerning memristors [3], which shows conclusively that the memristor is not the long‐

sought fourth circuit element but the memory extension to the concept of resistor. With unique 

superior properties, memristors have promising applications in non‐volatile memory (NVM), 

artificial neural networks, programmable logic devices, signal processing and pattern recog‐

nition circuits. Random access memory (RAM) is an important form of computer data stor‐

age. However, due to the technological and physical limitations imposed by dynamic random 

access memory (DRAM), static random access memory (SRAM) and flash memory towards 
low power, small size, fast speed, high density and non‐volatility, there is an urgent need of 

upcoming NVM technologies with low power, high density, high read/write endurance and 

scalability. In a memristor, a new memory device to solve these problems, a resistive random 

access memory (RRAM) is a good direction for the development of future memory technology. 

RRAM is a memory using a material whose resistance changes under electrical stimulus and 

can be seen as the most promising candidate for next generation memory both as embedded 

memory and a stand‐alone memory due to its high speed, long retention time, low power con‐

sumption, scalability and simple structure [4]. Typically, RRAM is a two‐terminal device that 

the switching medium is sandwiched between top and bottom electrodes (Figure 1) and the 

resistance of the switching medium can be modulated by applying electrical signal (current or 

voltage) to the electrodes. Appropriate value of programming voltage pulse can set the device 

from high‐resistance state (HRS) to low‐resistance state (LRS) known as SET or writing pro‐

cess. Similarly, switching back of the device from LRS to HRS using a voltage pulse known as 

RESET or erase process. Based on the voltage polarity used, RRAM can be categorized into two 

types: unipolar and bipolar resistive switching [5]. The switching operation is called unipolar, 

if the SET and RESET processes occur at the same voltage polarity. In the SET process, the 

current is usually constrained by current compliance. Whereas, the switching is bipolar if the 

SET and RESET processes occur at reversed polarity of voltages. In both switching modes, two 

resistance states are distinguished from each other at a small read‐out voltage, therefore read 

operation has no influence on the resistance state. However, the attractive properties of RRAM 
are low fabrication costs, scalability into the nanometre regime, fast write and read access, low 

power consumption and low threshold voltages.

Figure 1. Schematic and electrical configuration of a two‐terminal RRAM cell.
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The resistive switching effect has been explored until now in several materials including tran‐

sition metal oxides, perovskite oxides, organic materials and carbon‐based materials. Carbon‐

based materials have been researched extensively as an important class of materials for many 

years to defeat the technological barriers of conventional semiconductor electronics [6–8]. 

Previously, the efforts have been made to fabricate the field effect transistor (FET) devices [9, 

10] based on carbon materials. Therefore, it is highly demandable to fabricate carbon‐based 

memory devices to integrate logic and memory devices based on same material. This chapter 

introduces RRAM properties of the carbon compound known as graphene oxide (GO). It is 

basically a wrinkled two‐dimensional carbon sheet with various oxygenated functional groups 

attached to its basal plane and peripheries, with the thickness of around 1 nm and lateral 
dimensions varying between a few nanometres and several microns. Graphene oxide has been 

synthesized by various chemical methods, such as Hummers’ method and its modification, 
Brodie method and Staudenmaier method. In contrast to the metallic nature of  graphene, the 

graphene oxide is good insulating/semiconducting material, which can be  readily obtained by 

oxidizing graphite with strong oxidants.GO sheets are heavily oxygenated, bearing hydroxyl 

and epoxide functional groups on their basal planes, in addition to carbonyl and carboxyl 

groups located at the sheet edges. Furthermore, the ability of these sheets to form covalent as 

well as non‐covalent (based on interactions) bonds encourages the fabrication of a wide vari‐

ety of hybrid structures such as transistors, sensors, optoelectronic and memory devices etc. 

[11, 12]. The two dimensionality of GO permits scaling beyond the current limits of semicon‐

ductor technology, which is a key aspect for high‐density fabrication. Out of tremendous appli‐

cations of graphene oxide, this chapter focuses on the memory device application. Graphene 

oxide (GO) with an ultrathin thickness is attractive due to its unique physical‐chemical prop‐

erties. GO can be readily obtained through oxidizing graphite in mixtures of strong oxidants, 

followed by an exfoliation process. The presence of these functional groups makes GO sheets 

electrically insulating, with characteristics comparable to other thin‐layered oxide materials, 

with the advantage of being atomically thin, which makes GO the perfect candidate for the 

fabrication of memristive devices [13, 14]. As GO is water soluble which makes it facile to 

transfer onto any substrate in thin film form by simple methods of spin coating, drop‐casting, 
Langmuir‐Blodgett (LB) and vacuum filtration. The as‐deposited GO thin films can be further 
processed into functional devices using standard lithography processes without degrading 

the film properties [15, 16]. Furthermore, the band structure and electronic properties of GO 

can be modulated by changing the quantity of chemical functionalities attached to the surface. 
Therefore, GO is potentially useful for microelectronics production.

2. Status of graphene oxide‐based RRAM devices

Graphene oxide‐based resistive memory devices have several advantages, such as easy syn‐

thesis and cost‐effective device fabrication, scaling down to few nanometres and compatibility 
for flexible device applications. Reliable and reproducible resistive switching behaviour was 
first reported in graphene oxide thin films prepared by the vacuum filtration method by He et 
al. in 2009 [17]. They observed very low switching voltages and low on/off ratio of about 20 in 
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Cu/GO/Pt structure. Soon after that there were many reports published showing high on/off 
ratios in GO‐based RRAM devices [18, 19]. Mechanism for the resistive switching characteris‐

tics in GO‐based RRAM was found to be due to the oxygen migration, oxygen vacancies and 

the electrode diffusion [20, 21]. Furthermore, Jeong et al. presented a GO‐based memory that 

can be easily fabricated using a room temperature spin‐casting method on flexible substrates 
and has reliable memory performance in terms of retention and endurance [22]. Resistive 

switching effect was shown in Ni‐doped graphene oxide by Pinto et al. [23]. Transparent non‐

volatile memory device based on SiOx and graphene was also reported which features high 

transparency, long retention time and low programming currents [24]. Zhuge et al. reported 

the forming voltage dependence on GO film thickness and on different top electrodes [20]. 

Forming process is the application of initial high voltages to the devices to initiate the switch‐

ing process, which is detrimental to the device structure and operation. Forming‐free GO 

RRAM devices having high on/off ratio with good retention and endurance properties are 
potential candidates for non‐volatile RRAM. Therefore, in this chapter, we will be discussing 

RRAM properties of the GO‐based devices, which are forming free, thermally stable, multi‐bit 

storage, flexible, having high on/off ratio at low operating voltages that boost up the research 
and development to accelerate the GO‐based RRAM devices for future memory applications.

2.1. Graphene oxide‐based RRAM devices

Synthesis of graphene oxide presented in this chapter has been carried out by modified 
Hummers method [25, 26]. In brief, highly oriented pyrolytic graphite (HOPG, 2 g) was oxi‐
dized using potassium permanganate (KMnO

4
, 7 g) in the presence of concentrated H2SO

4
 

(50 ml) in ice bath. After the reaction, excess distilled water was added to the solution. With 
continuous stirring a 30 wt.% of hydrogen peroxide (H2O2) was added slowly until the gas 

evolution had stopped. Further 15 more‐minute stirring was done to the resultant mixture, 

and then it was filtered through nylon membrane. Repeated washing was done by distilled 
water and 5% HCl solution until the filtrate was neutral. Finally, the obtained dark brown 
slurry was dried for 24 hour in a vacuum oven at 60°C. A colloidal suspension of GO was 
prepared in distilled water by sonicating graphite oxide in water for 2 hour. Such a solution 
of GO was used to fabricate the thin films by spin coating process on ITO/Glass substrate. To 
construct metal‐insulator‐metal (MIM) devices, platinum top electrodes with an area of 40 × 
40 μm2 were deposited by DC sputtering utilizing a shadow mask. The schematic representa‐

tion of fabricated Pt/graphene oxide/imdium‐tin oxide (GO/ITO) is shown in Figure 2.

Figure 2. Schematic representation of GO‐based MIM devices [26].
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To observe the switching characteristics of the device, I‐V measurements for the Pt/GO/ITO 

device at 300 and 500 K were performed as shown in Figure 3a and b). The Pt/GO/ITO device 

was found initially in low‐resistance state having resistance value of ∼40 ohm. Figure 3 shows 

that as the positive voltage was increased, a sudden fall in current was observed at a voltage 

of ∼3.2 V indicating abrupt increase in the resistance of the device. This is known as RESET 
process and device transformed from its initial low‐resistance state (LRS) to high‐resistance 

state (HRS) also known as OFF state.

The low‐resistance state of GO‐based MIM devices once obtained persisted even when the 

applied voltage was reduced to zero indicating non‐volatility. In high‐resistance state, when 

the voltage was swept a sudden increase in current was observed at a voltage of approxi‐

mately −1.2 V indicating abrupt decrease in the resistance of device and switching from high‐
resistance state to low‐resistance state as shown in Figure 3a. This is known as the SET process 

which switched the MIM device in LRS or ON state. The LRS of device remained preserved 

even when the applied bias voltage was removed. During this set process, current compliance 

was kept fixed at 100 mA to avoid the breakdown of GO film due to high current flow in low‐
resistance state. By repeating the set and reset processes over 100 cycles, it was observed that 
the reset voltage was larger than the set voltage and spread over a small window of voltage 

between ∼3 and 3.4 V, whereas the set voltage had a spread between approximately −1.2 and 
−1.8 V. Thus, the device showed a typical bipolar resistive switching (BRS) behaviour with an 
on/off current ratio of 104 over 100 test cycles. Switching characteristics of the device were also 
studied at elevated temperature of 500 K (as shown in Figure 3b). Reduction in the value of 

reset voltage at 500 K was observed which could be attributed to enhanced diffusivity of oxy‐

gen ions at elevated temperature compared to that of room temperature. However, contrary 

to that we found increment in the set voltage at elevated temperature. Further at high tem‐

perature of 500 K, the on/off ratio of the device was found to decrease up to ∼102 compared 

to its value at 300 K which was ∼104; however, this ratio of high‐ and low‐resistance states is 

sufficient for operation of memory devices. Low‐ and high‐resistance states were stable up to 
104 seconds and up to 100 cycles indicating good retention and endurance characteristics of 
the device at elevated temperature of 500 K.

Figure 3. Current‐voltage characteristics of the Pt/GO/ITO device at (a) 300 K and (b) 500 K [26].
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Based on the conduction mechanism, it was observed that GO device contains conducting 

paths between top and bottom electrode perhaps due to the presence of oxygen vacancies and 
electron traps in graphene oxide layer forming electron hopping path [27]. Presence of oxygen 

vacancies in graphene oxide indicates partial reduction of GO and dominance of sp2 character 

over sp3 character providing high conducting channel in GO film and initial low‐resistance 
state without any forming process. In Pt/GO/ITO devices, the bottom electrode ITO acts as 
a source/reservoir of oxygen ions [28]. To ascertain the presence of sp2 and sp3 characters 

of carbon, Raman spectroscopy measurements were carried out on the Pt/GO/ITO devices 

both in LRS and HRS and are shown in Figure 4. As can be seen in Figure 4 that in case of 

as‐grown device and the device in LRS, the presence of G peak signifying the sp2 character 

is larger in intensity compared to the same peak when the device was switched into HRS by 

the application of suitable bias voltage. This indicates that the sp2 character dominates in LRS. 

While in case of HRS, the sp2 character is suppressed. These RRAM devices based on GO layer 

fabricated by a simple process of spin coating show a forming free bipolar resistive switch‐

ing (BRS) in Pt/GO/ITO structure with high on/off ratio of 104 exhibiting good retention and 

endurance properties at room and elevated temperatures.

2.2. Graphene oxide‐based multi‐layer structures for high‐density data storage

Organic memory devices have gained much attention as future information and storage compo‐

nents owing to their low weight, flexibility, inexpensive and facile fabrication methods [29, 30]. 

Recent reports have shown that organic memory devices have been developed through layer 

stacking [31] and using advanced memory architectures [32–35]. However, the most organic 

memory devices are suffering with slow switching [36] and low storage capacity [37, 38]. RRAM 

Figure 4. Raman spectra for Pt/GO/ITO device in LRS (upper curve) and HRS (lower curve) [26].
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performance of the organic memories can be greatly enhanced by forming hybrid organic struc‐

tures [39], organic/inorganic composites [40] or by dispersing nanomaterials [41, 42]. Among 

all other organic polymers, polyvinylidene fluoride (PVDF) was used due to its non‐reactive 
nature, better heat resistance, flexibility and low weight. As mentioned above, hybrid struc‐

tures of organic memory devices provide enhanced memory characteristics; therefore, hetero‐

structure of PVDF was fabricated using a charge trapping element in it. In this study, reduced 

graphene oxide nanoflakes (GR) were used as a charge trapping layer owing to their unique 
chemical structure and exceptional properties [6, 43–47] that make it ideal for charge trapping 

[48] and storage [49] for memory applications. Also, the defects (vacancy, interstitial sites, etc.) 

present in GR also work as the charge trapping nodes [50]. Tri‐layer structure was fabricated by 

assembling graphene nanoflakes (GR) between PVDF polymer layers [51] through spin coating 

process on ITO/glass substrate as shown in Figure 5. DC sputtering was used to deposit plati‐
num top electrode having area (100 μm × 100 μm) through shadow mask to obtain devices from 
the stacked structure.

As the voltage was increased, multi‐stage SET and RESET were observed in positive and nega‐

tive polarities, respectively, as shown in Figure 6a. This process was repeatable for a number 

of cycles, which established the device as a non‐volatile memory with multilevel conductance 

states. The multilevel SET process occurring in the device can be due to multi‐channels forma‐

tion as trapping sites in graphene bear different threshold potentials. Electrons occupied these 
trapping sites even if the applied voltage is removed, thus preserving the non‐volatile nature of 

the device in ON state. When negative voltage is applied to the device, current firstly increases 
with voltage due to the presence of trapped charges in the nodes. At a particular negative bias, 

current jumps to low value due to the de‐trapping of electrons from the trapping nodes which 

initiates the breaking of conducting channels. Further at a particular negative bias, when most 

of the electrons de‐trapped and ejected back to ITO, the conducting path completely disrupts 

and the device transits to OFF state bearing high resistance. The multi‐channel RESET process 

occurring in the device is also due to the same mechanism as discussed in the SET process. 

In brief, it may be due to the breaking of multi‐channels at different potentials. Reports have 
shown that the intermediate stage present in the device revealing multi‐level switching is due 

to the formation of multi‐filaments [52] having different threshold potentials [53]. The device 

Figure 5. Schematic diagram of the layer‐by‐layer fabricated Pt/PVDF/rGO/PVDF/ITO memory devices. Top electrode 

of platinum (Pt) having area 100 × 100 μm2 was deposited using DC sputtering [51].
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was further subjected to different compliance currents of 1, 10 and 100 μA during the SET 
process and correspondingly obtained different low‐resistance states as shown in Figure 6b.

When the highest value of ICC was imposed, the device was observed in lowest resistance 

state. However, the HRS value for different ICC was almost the same. All four different states 
including one HRS and three LRS were observed in the device. It was proposed that with 

the highest compliance current applied during SET process, maximum number of trapping 

nodes are filled and hence maximum number of conductive channels are formed resulting in 
the lowest resistance state, while with the application of the lowest compliance current, small 

number of trapping nodes are filled having less number of conducting channels, leading to 
higher resistance state. To observe the performance and stability of the memory device, its 

endurance and retention properties were studied. Figure 7a represents the endurance char‐

acteristics of the device for all the four resistance states tested against number of cycles. As 

can be seen from Figure 7a, the four different states including one HRS and three LRS (LRS1, 
LRS2 and LRS3) were stable with no overlapping of resistances tested over the 150 number of 
cycles. Figure 7b shows the retention properties observed in the device where the resistance 

of all four states were measured using a read voltage of 0.1 V over a period of 104 seconds. The 

graph shows well‐differentiated resistance states of HRS and three LRS with no degradation 
in resistance values over the long time. These measurements for retention and endurance for 

the device showed that it has well performance and good stability. This tri‐layer structure fab‐

ricated by simple spin coating method can be seen as a potential candidate for future memory 

devices qualifying the need for high‐density storage media.

2.3. Graphene oxide composite with ZnO nanorods for flexible memory devices

Flexible RRAM devices have shown good potential for bendable memory systems [54–58].

These memories are in much demand due to the qualities of inexpensive, low weight,  portability 

and user‐friendly interfaces over conventional rigid silicon technology [59]. The substrates for 

flexible memories could not bear high temperatures used in growth techniques, this limitation 

Figure 6. Typical I‐V characteristic curves plotted in semi‐logarithmic scale of Pt/PVDF/rGO/PVDF/ITO device (a) 
showing the presence of intermediate state. (b) Under different compliance currents of 1, 10 and 100 μA showing 
different low‐resistance states corresponding to the compliance current applied [51].
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demands for the need for materials which can be grown on these substrates at room tempera‐

ture. Obeying this condition, GO is readily oxidizable and water soluble, which qualifies to be 
fabricated in thin films on flexible substrates at room/moderate temperatures. There are reports 
which have shown that integration of nanomaterials into oxides is helpful in enhancing the 

resistive switching properties of the devices [60–62]. In this work [63], ZnO nanorods (ZNs) 

were grown in horizontal direction on GO sheets to maximize the contact area between the 

nanorods and GO sheets [64, 65]. The consequence of this was observed in significant reduc‐

tion in switching voltages in comparison to GO alone. The solution of GOZNs was spin coated 

to ITO‐coated polyethylene terephthalate (indium‐tin oxide on polyester film (ITOPET)) sub‐

strates to fabricate the films. Initially, the Al/GOZNs/ITOPET devices were in high‐resistance 
state (HRS). In the very first cycle, a forming voltage around 5 V with current compliance of 2 
mA was applied to activate these devices. Device showed SET and RESET processes on posi‐

tive and negative voltages having non‐volatile nature. To investigate the effect of ZNs addition 
into the GO matrix, another device Al/GO/ITOPET was fabricated following the same process 

except the incorporation of ZNs in it, and this device showed comparatively higher values of 

SET and RESET voltages.

I‐V measurements performed on both devices, shown in Figure 8, have clearly shown that SET 

and RESET voltages in the device containing ZNs were severely reduced to approximately half 

in comparison to the device containing no ZNs. To further understand the effect of changing 
ZNs ratio in GO matrix on resistive switching, the I‐V characteristics of different compositions 
(10:1, 5:1, 3:1 and 2:1) were studied and found that 3:1 was the best among all. In Al/GOZNs/
ITOPET devices, we propose that the conducting filament formation during the SET process is 
due to the oxygen vacancies. Oxygen concentration gradient exists at the interface of GO, and 

Al has high oxidation tendency. Therefore, oxygen ions from GO move towards and react with 

Al forming a new interfacial Al oxide layer [66]; also this process induces the oxygen vacancies 

into the GO region. With the positive bias is applied to the top electrode, these induced oxygen 

vacancies are deeply inserted into the GO matrix and providing the conductive paths during 

the SET process. With the negative polarity these oxygen vacancies are pushed back resulting 

Figure 7. Resistances of the device in all LRS and HRS under different compliance currents of 1, 10 and 100 μA with 
read voltage of 0.1 V. (a) Endurance properties over 150 cycles with enough margin between the states. (b) Retention 
characteristics over 104 seconds for all four states [51].

Graphene Oxide-Based Memristor
http://dx.doi.org/10.5772/intechopen.69752

27



in rupture of the conducting channel during the RESET process. But with the incorporation 

of ZNs into the GO matrix, significant reduction in the switching voltages was observed and 
this is due to the desorption/adsorption of oxygen at the interface of GO and ZNs, which 

stimulates the formation/rupture of conducting paths on the application of suitable polarity 

voltages. This mechanism based on oxygen vacancies is well supported by the X‐ray photo‐

emission spectroscopy (XPS) measurements of these samples shown in Figure 9.

Figure 9a is the XPS graph for C1s peak in GO and GOZNs samples. The C1s graph of GO 

contains sp2 and C─O─C peaks, whereas for the GOZNs sample, the C─O─C peak has disap‐

peared having only sp2 peak in the spectra. The XPS study showed the reduction in oxygen 

content with the disappeared C─O─C peak for the GO matrix having ZNs, which dem‐

onstrates that GO has become comparatively less resistive having sp2 character dominant. 

However, ZNs are well known for chemisorption of oxygen at its periphery and it can be evi‐

denced by the fitted O2 peak for O1s spectra in Figure 9b. Also, the peak positions for these O1 

and O2 in GOZNs sample were found to be little shifted towards lower energy. Furthermore, 
a noticeable increment in the intensity of O2 peak was also observed in GOZNs in comparison 
to ZNs. The O1s peak was also found to be shifted to lower binding energy due to the addi‐

tional oxygen absorbed by ZNs as shown in Figure 9b [67]. Further, the presence of excess 

oxygen can also be clearly observed in Figure 9c which shows the shift in the Zn 2p peak 
towards lower energy in GOZNs sample in comparison to ZNs sample [67]. The performance 

of flexible electronic devices can be tested through flexibility and mechanical endurance mea‐

surements. The flexibility measurements were done on the Al/GOZNs/ITOPET devices and 
the value of resistance was plotted as a function of bending radii as shown in Figure 10a. The 

resistance was measured up to the maximum bending radius of 4 mm and amazingly found 

that the LRS and HRS were widely separated and can be well distinguished. The mechanical 

Figure 8. Typical I‐V switching characteristics in Al/GOZNs/ITOPET devices. Inset shows the I‐V characteristics for Al/

GO/ITOPET device [63].
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reliability test was also performed by constantly flexing the device many times to the bending 
radius of 6 mm and the resistance was plotted against number of bending cycles as shown in 
Figure 10b. The HRS and LRS resistances show no noticeable degradation even up to 1000 
times of repeated bending. The measurements performed on the Al/GOZNs/ITOPET device 

show excellent flexibility and mechanical endurance results and provide the data which 
show that the devices are capable for flexible memory applications. This study shows that the 
devices based on ZNs embedded in GO are potential candidate for future flexible non‐volatile 
memory applications.

Figure 9. (a) Comparative XPS spectra of GO and GOZNs for C1S peak. (b) XPS spectra of ZNs and GOZns showing O1S 

peak resolved into two components O1 and O2. (c) Zn2p spectra of ZNs and GOZNs samples [63].

Figure 10. (a) Flexibility test for various bending radius on Al/GOZNs/ITOPET RRAM device. (b) Mechanical bending 

endurance of device at bending radius of 6 mm on Al/GOZNs/ITOPET RRAM device [63].
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2.4. Nanoparticles embedded graphene oxide RRAM devices for low operating voltages 

and high on/off ratio

RRAM devices based on oxide have good switching characteristics, but still there are two major 

downsides with these memories: first one is the need of an initial forming voltage [68–70] to ini‐

tiate the switching mechanism, which is detrimental to device performance, however, this issue 

can be resolved by manipulating the deposition and growth process and the other problem is 

the uncontrolled position of conductive channels formation during repetitive applied bias. To 

address the problem of initial forming in graphene oxide (GO)‐based devices, we adopted the 

method of electrophoresis to deposit the device structure [71]. Reports have shown that the 

graphene oxide films grown by electrophoresis are conducted or reduced in nature [72, 73].As 

the oxygen functional groups attached to its basal plane get removed, the graphene oxide films 
become semiconducting having localized π‐π electrons network. These functional groups can 
be eliminated by passing the current during electrophoresis deposition process, resulting GO to 

be reduced or semiconducting in nature. In this study, the films were deposited by electropho‐

resis and as deposited films were found to be in low‐resistance state; therefore, no high forming 
voltages were required to initiate the switching process. To resolve the problem of confined 
conducting channels, we have to understand that there is random formation of conductive fila‐

ments at nanoscale with applied bias in un‐doped films, and it is hard to confine their position 
precisely. The reports for RRAM devices based on transition metal oxides infused with metal‐

lic nanoparticles have shown enhancement in switching properties with the addition of metal 

nanoparticles [61, 74]. The present study is focused on improved switching characteristics of 

graphene oxide films embedded with gold nanoparticles (Au Nps), which helps to confine the 
conducting filaments during numerous sweep cycles. A colloidal suspension of GO with Au 
Nps was obtained by sonication. The films were deposited by electrophoresis process using the 
sonicated GO with Au Nps (GOAu) solution [71]. Electrophoresis was performed using a home‐

built assembly with a pair of ITO/glass as electrodes and a Keithley current source. GOAu films 
were deposited at room temperature by varying the current value ranging from 0.1 to 1.0 mA 
for 1–10 minutes having 1.5 cm distance between the electrodes as shown in Figure 11.

The thickness of deposited GOAu film was measured to be ∼85 nm. The GO layers were 
in the size range of 3–5 μm and Au Nps were found in the range of 10–15 nm. The switch‐

ing matrix constitutes the stack of GO layers with Au Nps. Aluminium (Al) top electrodes 

Figure 11. GO films grown by electrophoresis process.
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were deposited by thermal evaporation method through a shadow mask having diameter 

of 200 μm. Thus, the device structure formed was Al/GOAu/ITO/glass. Another sample was 
also fabricated using GOAu solution by spin coating on ITO/glass substrate for XPS study. 

To know the chemical composition of as‐grown GOAu films by electrophoresis, XPS study 
was performed as shown in Figure 12. These XPS measurements were done to illustrate the 

amount of oxygen functional groups present in electrodeposited GOAu films (Figure 12a) and 

spin coated GOAu films (Figure 12b) (XPS for spin coating films was performed to compare 
the amount of oxy groups). The peaks corresponding to C1s spectra as depicted in Figure 12 

are C─C, C─O and C═O which are at respective binding energies of 284.6, 286.5 and 288.4 
eV. In electrodeposited film, the C─O peak has low intensity in comparison to the C─C peak 

which shows that the oxygen content is less in the film. The lower oxygen content or presence 
of oxygen vacancies is favourable for as‐deposited films to be in low‐resistance and hence 
eliminating the need of forming voltages. Inset of Figure 12a shows the presence of Au 4f7/2and 

Au 4f5/2 peaks at their respective binding energies of 84 and 87.5 eV.

To demonstrate the effect of Au Nps in GO devices, another film of GO having no Au Nps on 
ITO/glass by electrophoresis keeping same deposition parameters having Al top electrodes 

(Al/GO/ITO) was fabricated and measured its switching characteristics. Figure 13a shows 

typical I‐V switching characteristics of Al/GO/ITO (inset) and Al/GOAu/ITO devices, respec‐

tively. The initial resistance of the devices was found 3.5 × 104 Ω with Au Nps and 1.3 × 106 

Ω without Au Nps. Therefore, the initial resistance of the device incorporated with Au Nps 
was found to be 100 times lower than that of the pristine GO device. The on/off ratio between 
LRS and HRS in pristine GO devices is very low and that too at high voltages. GOAu devices 

have enhanced on/off ratio at very low switching voltages as compared to pristine GO devices 
which is due to the presence of Au Nps, which are working as charge trapping centres.

Figure 12. (a) XPS spectra for C1s peak of GOAu film grown by electrophoresis. Inset shows Au peaks for the GOAu film. 
(b) C1s peak of spin‐coated GOAu film [71].
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The slope of the I‐V curve in LRS was found to be ∼1 as shown in Figure 13b; however, this 

linear current‐voltage relationship need not be ohmic: It can be Schottky‐limited conduction 
in the Simmons’ limit of short electron mean free paths [75],while in the high voltage regime 

of HRS, the slope was found to be ∼4.4, which reveals that a strong space charge limited cur‐

rent (SCLC) mechanism also known as trapped charge limited current (TCLC) mechanism is 

prevailing in the device [76]. The TCLC behaviour of the films is in agreement with the pres‐

ence of Au Nps in the films, which are working as charge trapping centres. Hence the charges 
get trapped in one voltage polarity transiting the device to HRS and detrapped in the opposite 

polarity rendering back the device to LRS again. Therefore, the device shows bipolar switch‐

ing behaviour exhibiting trapping/detrapping mechanism. GO sheets have different types of 
defects, such as oxygen vacancies, dislocations etc. [77, 78]. The defects and trapping nodes 

present in GO sheets play a significant role in switching behaviour. Initially, the device was 
in LRS due to the presence of large number of oxygen vacancies and the Au Nps. The device 

performed well in both states showing retention, endurance and statistical distribution over 

different cells as shown in Figure 14a–c.

As discussed above, Au Nps dispersed in GO layers trap the charge, resulting in capacitive 

behaviour of the devices. In order to test this scenario, capacitance‐voltage (C‐V) measure‐

ments were carried out. Figure 15a and b shows the C‐V curves of the Al/GO/ITO and Al/

GOAu/ITO devices. The measured capacitance was found to be ∼3.4 pF in LRS and ∼11.2 pF 
in HRS in GO device, whereas it was ∼9 pF in LRS and ∼350 pF in HRS in the GOAu device. It 
was observed that in both the resistance states, capacitance values were increased by a factor 

of ∼10 in HRS/LRS in GOAu devices in comparison to GO devices, which is mainly due to the 
charge trapping process by Au Nps. In GO matrix having Au Nps, this can be explained as 

follows: the array of Au Nps induces the coupling capacitance and the trapping energy levels 

are set by the work function of Au Nps.

Figure 13. (a) Typical I‐V characteristics of the Al/GOAu/ITO device in semi‐log scale; inset shows I‐V characteristics for 

the Al/GO/ITO device. (b) log‐log I‐V plot for the GOAu device [71].
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Followed by an initial random charging, the charge carriers around a single Au Np may 

increase due to trapping process, which results in increasing the capacitive coupling and 

finally increases the coulomb repulsion. Au Nps embedded in GO matrix act as small capaci‐
tors having large capacitance due to their big surface/volume area and the associated interfa‐

cial polarization. An additional barrier will be created by these metal‐island capacitors which 

prevent the movement of electrons in the matrix and the charge transfer through these small 

metal‐islands, below a particular threshold voltage gets blocked (charges get trapped) leading 

to an increase in resistance as well. Therefore, in GOAu devices, achieving such a huge resis‐

tance in HRS can be attributed to the coulomb blockade effect imparted by the Au Nps which 
is associated to the quantum effect of metal nanoparticles [79, 80].

Figure 14. (a) Retention, (b) endurance properties and (c) statistical distribution over different cells of GOAu device in 
LRS and HRS [71].

Figure 15. C‐V curves of (a) GO and (b) GOAu devices in LRS and HRS [71].
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3. Conclusions

In summary, graphene oxide is a promising material for RRAM devices due to its high scalability 

and unique physical‐chemical properties. Fabrication of GO and its films, composites and het‐
erostructures are very cost effective and opens up the direction for commercialization. Showing 
forming‐free behaviour is an excellent property of GO devices over other oxide‐based devices 

that require initial high voltages to start the switching process. Multi‐level switching in GO‐

based heterostructures has the potential of high‐density data storage, which is the need of future 

non‐volatile memories. Flexibility and mechanical endurance observed in GO‐based composite 

RRAM devices have prospects in portable and flexible devices which is advantageous over the 
rigid silicon technology. Gold nanoparticles embedded in GO have shown enhanced switching 

properties with very high on/off resistance ratio and very low switching voltages, which are suit‐
able for low power resistive memory devices. The mechanism underlying the graphene oxide‐

based memories is the formation of conductive filaments due to the roles played by oxygen ions 
and vacancies. Therefore, GO‐based RRAM devices have enough potential to become one of the 

important non‐volatile memories due to their encouraging properties of forming free, multi‐bit 

data storage and low power flexible devices. However, further research is still needed towards 
scaling of these devices below 10 nm node and that too having fast switching speeds to establish 
graphene oxide‐based non‐volatile resistive devices achieve a niche in memory industry.
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