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Abstract

Recently, a great concern has risen about the increasing prevalence of autism as a neuro-
developmental disorder. Environmental factors as significant contributors to children’s 
health through a wide range of routes are linked to remarkable increases in this disor-
der. It is well known and accepted that young children are more vulnerable to environ-
mental toxins, compared to adults. Modern day lifestyles with more mercury and lead 
exposures, fast food, cell phones, and microwaves place children at higher risk of neu-
rotoxicity. Moreover, a huge number of synthetic chemicals termed as high-production-
volume (HPV) chemicals are found in many products such as medications, cosmetics, 
building materials, plastic, and car fuels. These HPVs highly contribute to brain damage 
in developing infants. Other environmental toxins include thalidomide, valproic acid, 
misoprostol, and many infectious agents among which are pathogenic bacteria or their 
metabolites are found to be neurotoxic and/or linked to incidences of autism. This chap-
ter summarizes the most important routes of exposure to environmental neurotoxins and 
explains how these toxins are related to the remarkable increase in the prevalence of 
autism through different etiological mechanisms such as oxidative stress, neuroinflam-
mation, impaired neurochemistry and glutamate excitotoxicity.

Keywords: neurotoxins, heavy metals, mercury, Clostridium difficile aesthetic drugs, valproic 
acid, insecticides, herbicides, cell phones

1. Introduction

Recently, a great concern has risen about the increasing prevalence of “autism as a neuro-

developmental disorder” characterized by impaired social interaction, communication, and 
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repetitive behavior. Environmental factors as significant contributors to children’s health 
through a wide range of routes are greatly involved in the remarkable increase of autism 

spectrum disorder (ASD). It is well known and accepted that young children are more vulner-

able to environmental toxins compared to adults because they breathe more air and consume 

more food relative to their body size in order to meet requirements of growth and develop-

ment. Common hand-to-mouth behavior among infants and even young children of course 

increases their risk of exposures to environmental toxins.

In relation to the modern lifestyles—cell phones, microwaves, mercury and lead exposures, 

plastic, fast food—place children at higher risk of neurotoxicity that might lead to brain dam-

age during early development. Moreover, environmental toxins such as misoprostol, val-

proic acid (VPA), and thalidomide have been reported as neurotoxins and linked to ASD. 

Pathogenic bacteria or their metabolites, cytomegalovirus, rubella, toxoplasmosis, and herpes 

simplex have also been characterized as neurotoxins which greatly contribute to autism.

This chapter summarizes the most important routes of exposure to environmental neurotox-

ins and explains how these toxins are related to the remarkable increase in the prevalence of 

autism. Moreover, the role of the stages of development and timing of exposures (prenatal, 

perinatal, and postnatal) will be discussed.

Based on the recorded biomarkers of autism, the role of selected environmental toxins in the 

induction of oxidative stress, neuroinflammation, impaired neurochemistry, and glutamate 
excitotoxicity as etiological mechanisms related to autism will be highlighted and illustrated.

1.1. Heavy metals as neurotoxins

A relationship between rises in environmental levels of Hg and the increase in both rates 

of autism and special education students has been reported [1]. In an attempt to find the 
relationship between elevated mercury levels and oxidative stress as etiological mechanisms 

in autistic individuals, Sajdel-Sulkowska et al. [2] found that mercury concentrations in the 

cerebellar areas of the brain were positively correlated with neurotrophin-3 (NT-3), as an 

oxidative stress marker. Khan et al. reported on NT-3 associated with much higher levels 

in autistic patients but without an association with Hg levels in blood, which was nonsig-

nificantly different between autistic and control subjects [3]. This suggests that the same con-

centration of Hg may promote oxidative stress only in autistic patients but not in control 

subjects. In relation to Hg levels in hair as an indicator of neurotoxicity in autistic patients, the 

“poor excretor theory” asserts that autistic children are more prone to accumulate Hg because 

they are unable to readily excrete it when compared to age- and gender-matched controls [4]. 

However, other studies recorded that the higher the Hg levels in hair, the worse the autism 

symptoms [5]. A direct relationship between elevated blood levels of Hg and the degree of 

autism severity according to scales childhood autism rating scales (CARS), social responsive-

ness scales (SRS), and short sensory profile (SSP) was ascertained [6, 7].

In an attempt to better understand the role of heavy metal neurotoxicity, investigations of air 
pollution, Hg, lead (Pb), and arsenic (As) have been shown to stimulate oxidative stress and 
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inflammation in humans, which may contribute to the pathogenesis of autism [8, 9]. Based 

on multiple studies, Pb, Hg, and As were recorded as neurotoxins related to autism [10–12]. 

Associations between autism prevalence and proximity to industrial facilities were ascer-

tained by Dickerson et al. [13]. Most recently, a disruption of complex neuro-immune signal-

ing as a mechanism necessary for neuronal migration and brain growth was accepted to be a 

possible mechanism to cause Hg-induced brain damage [14].

Gut microbiota, which is known to be remarkably modulated in autistic patients, can be easily 

related to the elevated level of Hg. Gut microbes can modulate Hg via either methylation of 

less toxic inorganic Hg, Hg+2, or demethylation (i.e., detoxification) of methylmercury (MeHg) 
[15–18]. In studying bacterial diversity in relation to the MeHg level, Rothenberg et al. found 

that, among the studied bacterial species Clostridiales, Subdoligranulum, and Akkermansia spp., 

positive correlations for stool MeHg, hair total mercury (THg), and stool inorganic Hg were 

evident, while negative correlations for Streptococcus were determined using Spearman’s 
and/or Pearson’s [19]. These relative effects were related to approximately tenfold higher 
Clostridium difficile levels in the stool from autistic subjects, which may help to support the use 

of probiotics to ameliorate MeHg elevations which may lead to the development of autistic 

features [20]. This is summarized in Figure 1.

In relation to the antioxidant and protective effect of selenium (Se), a recent review was writ-
ten by Bjorklund and Causey on the molecular interactions between Hg and Se which result in 

neurotoxicity. Selected studies revealed associations between autism and Hg and Se concen-

tration changes in hair and/or nails of autistic patients [21]. These studies reported significant 
increases in the levels of Hg and concurrent decreases in the levels of Se in hair and nails and 

Figure 1. Role of fish in the bioaccumulation of mercury (Hg) and role of methylating and demethylating bacteria in the 
control of methyl mercury (MeHg) concentration as environmental neurotoxin related to autism.
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the association of these changes with the severity of an autistic phenotype [5, 22]. Other studies 

showed significant elevations in Hg in hair [23] and urine [22] of autistic patients without sig-

nificant decrease of Se concentration or Se/Hg ratio. Moreover, some studies reported a lower 
Zn/Cu ratio in blood from autistic subjects as compared to healthy control subjects [24, 25] yet 

strong causal relationships for Hg neurotoxicity.

1.2. Anesthetic drugs as neurotoxins in autism

An early study of the role of anesthesia in relation to neurotoxicity was described by Ikonomidou 

et al. [26]. They observed the effects of N-methyl-D-aspartate (NMDA) antagonist injections in 
rat pups, which led to acute postnatal neuronal apoptosis [26]. Also, they hypothesized that 

anesthetics such as ketamine blocked endogenous glutamate stimulation via NMDA recep-

tors, leading to neuronal apoptosis. Apoptosis of neurons as an invasive marker of neurotox-

icity was repeatedly demonstrated especially in animals that received multiple, high doses 

of ketamine during periods of developmental vulnerability [27, 28]. Upregulation of NMDA 

receptor expression levels in response to ketamine administration may modulate intracel-

lular calcium homeostasis, possibly leading to apoptosis [29, 30]. Additionally, activation of 

gamma-aminobutyric acid (GABA) receptors through the inhalation of isoflurane-induced 
neurotoxicity in hippocampal culture cells was also associated with excessive neuronal influx 
of calcium [31]. Based on observation, it was suggested that anesthesia-induced neuronal tox-

icity may appear secondary to loss of calcium homeostasis within mitochondria as evident 

by mitochondrial dysfunction, accumulation of reactive oxygen species (ROS), and overex-

pression of caspases as pro-apoptotic markers (Figure 2) [32–34]. Although the actual mecha-

nism for ROS accumulation was not identified, administration(s) of either an antioxidant or a 

Figure 2. Neurotoxic effect of ketamine through loss of calcium homeostasis leading to neuronal death.
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mitochondrial protectant prevented anesthesia-induced neuronal apoptosis and downstream 

cognitive impairment in developing rat brains [33, 35].

1.3. Antiepileptic drugs (AEDs) as neurotoxins in autism

The use of antiepileptic drugs (AEDs) by pregnant mothers was found to be involved in major 

congenital abnormalities seen in neurodevelopmental disorders among which is autism [36]. 

Animal studies demonstrated that exposure to AEDs may result in neurotoxicity; for example, 

VPA, phenytoin, and phenobarbital, cause impaired neurodevelopment after prenatal expo-

sure [37]. Despite the therapeutic effects of VPA, it is also associated with neurotoxicity [38] 

as evidenced in in vitro models. VPA neurotoxicity is usually related to the increased of ROS 

production, as a critical contributor to brain damage and dysfunction [38–40]. Mitochondrial 

dysfunction has been proposed as one of the most common deleterious effects of VPA neu-

rotoxicity [41]. In relation to autism, VPA is most commonly related to the etiopathology 

and development of most of phenotypic features of autism. Many cases, population database 

studies, prospective studies, and retrospective studies, ascertained increased incidences of 

ASD and cognitive deficits in VPA-exposed children with a reported risk of 6–8% [42–45].

Chaudhary and Parvez observed a significant decrease in acetylcholinesterase (AChE) activ-

ity [46]. The inhibition of AChE activity by VPA in the cerebellum and cerebral cortex results 

in the accumulation of ACh at cholinergic synapses, leading to ACh receptor stimulation, 

decreased cellular metabolism, induction of cell membrane alterations, and disturbances in 

neuronal activities [47]. VPA-inhibited Na+/K+-ATPase is an enzyme controlling the active 

transport of CNS sodium and potassium ions in a dose-dependent manner [48]. The marked 

inhibition of Na+/K+-ATPase activity may compromise neurotransmission, leading to partial 

membrane depolarization and excessive Ca2+ entry inside neurons which may in turn induce 

glutamate excitotoxicity. This can be ascertained through the recent work of Kim et al. in 

which agmatine was used to treat VPA-induced animal models of neurotoxicity, whereto, 

the amelioration of glutamate excitability improves sociability and decreases the repetitive 

behavior appeared as two important autistic features [49]. In a recent study by Videman et al., 

carbamazepine, oxcarbazepine, and VPA were associated with impaired early language abili-

ties at the age of 7 months. In contrast, face perception or social attention may be less affected 
by the neurotoxic effects of the studied AEDs [50]. Previously, the association between prena-

tal exposure to AEDs and the increased risk of cognitive impairment and ASD was detected 

at ages of 2 to 6 years.

1.4. Clostridium neurotoxins and autism

It is well accepted that healthy gut microbiota provides an effective barrier against coloniza-

tion by opportunistic bacteria [51, 52]. This protective microbiota is severely disrupted with 

abuse of broad-spectrum antibiotics frequently administered during early childhood [53]. C. 

difficile produces two exotoxins: toxin A and toxin B. Acting together, these toxins damage 

intestinal mucosa and cells and result in watery diarrhea, which is the primary clinical symp-

tom of C. difficile infection [54]. In addition to C. difficile, Clostridium tetani is another oppor-

tunistic pathogen that can lay dormant in spore form for long periods of time. Both species 
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produce cytotoxins known to cause cellular damage. Additionally, both C. tetani and C. difficile 

produce phenolic metabolites [55]. Some toxigenic strains of C. tetani produce an extremely 

potent neurotoxin. Clostridia toxins can enter the circulation and accumulate at nerve ter-

minals through binding to host-independent receptors [56, 57]. Following endocytosis of the 

neurotoxin-receptor complex, acidification of the presynaptic vesicle triggers a conformational 
change in the N-terminal translocation domain. Acidification is mediated by the vesicular 
ATPase proton pump, whose function is to ensure the reuptake of neurotransmitters into the 
synaptic vesicle. This might provide a plausible mechanism for the abnormal reuptake of glu-

tamate in autistic patients. Several studies have assessed the fecal flora of autistic and control 
individuals, reporting an overgrowth of pathogenic bacterial species in autistic patients when 

compared to controls. Among these species is Clostridium species, including C. difficile [58–60]. 

In addition, Parracho et al. found a higher incidence of the Clostridium histolyticum group in the 

fecal flora of 58 ASD children compared to 10 healthy children [61].

Clayton hypothesized that impaired gut microbiota can be linked to autism through the 

abnormal gut bacterial metabolism of phenylalanine and tyrosine resulting in the pro-

duction of P-cresol, with C. difficile as one of the most notable p-cresol producers [62]. 

Overgrowth of C. difficile can be linked to the etiology of autism through the inhibitory 

effect of p-cresol on dopamine β-hydroxylase as a rate-limiting enzyme of dopamine 
metabolism [63]. Moreover, C. difficile-induced production of p-cresol can inhibit sulfonation as 
a detoxification mechanism of special importance when considering neonatal inactive glucuronida-

tion as an alternative detoxification reaction for xenobiotic excretion [64, 65]. Based on this 

information, p-cresol may be linked to autism through impaired gut microbiota and the 

overgrowth of C. difficile [66]. Figure 3 summarizes the role of C. difficile overgrowth in the 

etiology of autism. Hsiao et al. reported that bacterial toxin-induced metabolic changes 

can trigger autistic behavior. Maternal immune-activated (MIA) females produce offspring 

Figure 3. Role of C.difficile overgrowth in the etiology of autism through the inhibition of dopamine-beta hydroxylase by 

p-cresol as bacterial metabolite of tyrosine and phenylalanine.
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with impaired communicative and social behavior representative as autistic features [67]. 

Moreover, MIA offspring displayed altered gut microbiota and leaky gut. Treatment of 
mice with Bacteroides fragilis was effective in restoring normal gut permeability and reduces 
anxiety-like behavioral deficits in this autism model [67]. Most recently, Yang and Chiu 

reported that through the soluble NSF attachment protein receptor (SNARE) complex, clos-

tridial neurotoxins block neurotransmission to or from neurons. In addition, the gut micro-

biota produces molecules that act on enteric neurons to reduce gastrointestinal motility and 

metabolites that stimulate the “gut-brain axis” to alter neural circuits and brain function 

and behavior [68]. Aljarallah reported that water extract of myrrh plant demonstrates high 

antimicrobial effect against C. difficile strains, which could support its use as a natural prod-

uct for the amelioration of C. difficile in autistic patients [69].

1.5. Pesticides as neurotoxins in autism

By using retrospective epidemiological studies, environmental factors such as pesticides have 

been linked to autism. Experimental research in mouse cortical neuron-enriched cultures 

exposed to hundreds of chemicals commonly found in the environment and on food showed 

how such chemicals greatly affect brain development. Pearson et al. have been found that 
rotenone, a pesticide associated with Parkinson’s disease risk, and certain fungicides, includ-

ing pyraclostrobin, trifloxystrobin, famoxadone, and fenamidone, produce transcriptional 
changes in vitro that are similar to those seen in brain samples from humans with autism 

[70]. These chemicals stimulate ROS production and disrupt microtubules in neurons, effects 
that can be reduced by pretreating with a microtubule stabilizer and an antioxidant such as 

sulforaphane. In this study, 283 autistic children showed neuronal tube defects with poten-

tial relationships between maternal residential proximity and agricultural use of neurotoxic 

pesticides [71].

Organophosphates (OPs) are the most generally utilized pesticides in agriculture, as well 

as bug sprays in residential, commercial, and industrial settings. Fetus may be exposed to 
OPs via the placenta or infants through breast milk, food, and inhalation. These small chil-

dren appear particularly vulnerable to OPs and oxidative stress compared to adults, because 

of their lower activity levels of the enzyme paraoxonase, involved in OP inactivation and 

lipid peroxide degradation [72]. This enzyme was found to be significantly lower in autistic 
patients compared to healthy controls [73]. Prenatal exposure to OPs has been connected to 

neurodevelopmental disorder, which appears to be maintained during childhood, including 

deficits in cognitive abilities, working memory, and perceptual reasoning [74–76]. Attention 
deficits, receptive language, social cognition problems, reward, and behavioral dysfunc-

tion have been correlated with lower intelligence quotient (IQ) scores in humans prenatally 

exposed to chlorpyrifos [76]. Prenatal OP exposure has also been linked to increase autism 

risk [77]. Acetylcholinesterase (AChE) has been shown to be inhibited with OPs, determin-

ing excessive cholinergic transmission; however, OP’s main neurotoxic actions are seemingly 
exerted by their axon metabolites [78].

There is a growing body of evidence that links the exposure to organochlorines (OCs) and 

autism. Despite their neurotoxic liabilities, OCs are frequently used in agriculture. The 
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 association between autism and pesticide exposure during the third trimester has been 

observed from mothers living near agricultural areas where pesticides were used [79]. Shelton 

et al. found that increased exposure to insect repellent can lead to autism [80]. Eskenazi et al. 

and Rauh et al. reported that autistic children had higher OP metabolites during early to mid-

pregnancy [77, 81]. Case-control studies reported that exposure to imidacloprid, insecticide, 

through the consistent use of flea/tick pet treatment throughout pregnancy period was associ-
ated with ASD [79, 82]. Rauh et al. reported that children exposed to OP insecticides showed 

psychomotor and mental development delays, attention, hyperactivity disorders, and perva-

sive developmental issues by 3 years of age [81].

Robert and English (2012) described ASD and applications of OCs in proximity to maternal 

residence before, during, and after pregnancy. Bayesian model as a flexible step function was 
formulated to measure the time that is needed by pesticide to affect fetus or children for 
mother who lived near agricultural area [83]. The association between autism and OCs was 

high, and the time of this association was extending from approximately 4 months prior to 

fertilization to 8 months into pregnancy. Roberts et al. have suggested that the risk of ASD is 

increased by 6.1-fold in children with maternal exposure to OCPs during the first trimester 
of pregnancy, a key period of gestation and neurodevelopmental processes in neonates [84]. 

Here, 465 children were enrolled in retrospective study to assess pesticide type, exposure 

time, and residential distance from pesticide application. This study reported an association 

between prenatal exposure to dicofol and endosulfan pesticide during the 8 weeks imme-

diately following the time of cranial neural tube, and increased risk of autism in children of 

mothers who lived within fields that had the highest quartile of estimated pesticide exposure 
compared with children whose mothers lived more than far from exposure, and therefore had 

the lowest exposure levels [84].

Chlorinated biphenyl (CB) is used as dispersant in pesticide [85]. Because is a CB are pollutant 

with potentially persistent immunological and neurological effects [86, 87]. It has also been 

reported that CB can increase the production of ROS and cytotoxicity [88]. The neurological 

and immunological abnormalities as well as oxidative stress due to CB exposure have also 

been observed in autistic children [89–91]. Figure 4 presents structures for selected insecti-

cides linked to neurotoxicity and autism.

1.6. Endocrine-disrupting chemicals

Endocrine-disrupting chemicals (EDCs) such as polychlorinated biphenyl (PCB), polybromi-

nated diphenyl ethers, bisphenol A (BPA), dioxins, and phthalate have strong associations 

with neurological disorders [92]. These EDCs are able to interfere with hormone functions 

because they may alter hormone-dependent processes and/or disrupt endocrine gland func-

tion. Certain EDCs are able to alter synaptic function and neural networks [93]. The EDCs are 

also termed neural-disrupting chemicals since they may increase the prevalence of neurode-

velopmental disorders including autism. Prospective epidemiological studies are warranted 

to better understand EDC-related effects in humans [94]. Braun et al. found that midpreg-

nancy BPA concentrations were associated with an increase in impaired neurodevelopment 

in early childhood [95]. In a study with 137 children, mothers with high phthalate metabo-

lites in urine during the third trimester gave birth to infants that were more susceptible to 
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Figure 4. Structures of selected insecticides recorded as neurotoxin related to autism.
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autism [96]. Larsson et al. have found a correlation between EDC and autism [97]. High serum 

phthalate concentrations have been recorded in autistic children [98]. Experimental animals 

show changes in development, synaptic organization, neurotransmitter synthesis and release, 
and brain structural organization due to exposure to EDC [99]. Cock et al. described links 

between brominated flame retardants, perfluorinated compounds, and ASD, yet additional 
weights of evidence are needed [100].

Several EDCs are known to disturb sex steroid and affect thyroid hormone (TH) levels 
which in turn are known to affect synaptogenesis, neuronal differentiation, migration, and 
myelination [101]. They play critical roles in brain development and potentially also for 

development of the connectome. TH receptor mutation in mice showed reduced density of 

GABAergic in the hippocampus, which was accompanied by more depressive and anxious 

behavior [102]. It is demonstrated that BPA inhibits the GABAAR-mediated response and 

that BPA affects development of GABAergic and dopaminergic systems [103]. Some stud-

ies indicate EDCs as a cause for neurodevelopmental disorders through GABAergic system 

changes [104, 105].

1.7. Radio frequency energy (RFE) of cell phone as neurotoxin in autism

During pregnancy, the possibility of fetal damage is increased as mothers are exposed to RFE 

[106]. Notably, the fetus may not be fully protected by amniotic fluid. It is well known that 
the pelvic structure permits deep penetration of the RFE to be absorbed within the developing 

fetus. Based on this, many investigations proposed that the dramatic increase in the incidence 

of autism since 1980 can be related to the neurotoxicity of cell phone radiation [107–109].

Based on our understanding on the etiological mechanisms in autism, such as oxidative stress, 

neuroinflammation, and glutamate excitotoxicity, the remarkable increase in the prevalence 
of autism about tenfolds since 1980 can be related to this dramatic increase which reach 

1:45 on 2015 [110]. It is well documented that exposure to radio frequency radiation (RFR) 

can be accompanied by oxidative stress in human and animal models of autism [111, 112]. 

Unfortunately, these effects of cellular phone use can occur even at low and legal intensity 
which are now common environmental risk factors for infants, young children, adults, preg-

nant women, and fetuses. Cell phone radiations enhance free radical formation through the 

Fenton reaction as catalytic process through which iron converts hydrogen peroxides, a prod-

uct of oxidative respiration in the mitochondria, into hydroxyl free radical, which is very 

potent and can induce damage of macromolecules, such as membrane phospholipids, DNA, 

and protein. Radio frequency radiation at very low intensities can also impair mitochondrial 

metabolism and modulate glutathione, glutamate, and GABA, which are substances related 

to the pathophysiology of autism [90, 113–116].

Fragopoulou et al. reported that through proteomic analysis of brain regulatory proteins from 

mice following prolonged exposure to electromotive force (EMF) led to either downregula-

tion or overexpression of 143 proteins [117]. These altered proteins include neural function-

related proteins, alpha-synuclein, glia maturation factor beta, cytoskeletal proteins, heat 

shock proteins, apolipoprotein E, as well as proteins of brain metabolism such as aspartate 
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aminotransferase and glutamate dehydrogenase. These authors pointed out that oxidative 

stress was consistent with some changes in proteomic markers. Alteration in blood and brain 

glutathione status and deficiencies of reduced glutathione are increasingly associated with 
autism. Fortunately, certain studies demonstrating that supplementation with antioxidants 

such as vitamins C and E reduced oxidative impacts on rat endometrium from due to vita-

mins E and C reduced adverse impacts on rat endometrium due to exposure to 900 MHz 

EMR [118]. Ilhan et al. proved that Ginkgo biloba has also prevented mobile phone-induced 

increases in lipid peroxides and nitric oxide levels in brain tissue as well as decreases in brain 

superoxide dismutase and glutathione peroxidase activities and increases in brain xanthine 

oxidase and adenosine deaminase activities, together with the relief of the histopathologi-

cal cell injury [119]. Figure 5 demonstrates the role of cell phone radiation in the etiology of 

autism through oxidative stress as a major etiological mechanism.

Figure 5. Role of cell phone radiation in the etiology of autism through oxidative stress as a major etiological mechanism.
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