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Abstract

This chapter describes the development of an autonomous fluid sampling system for
outdoor facilities, and the localization solution to be used. The automated sampling
system will be based on collaborative robotics, with a team of a UAV and a UGV
platform travelling through a plant to collect water samples. The architecture of the
system is described, as well as the hardware present in the UAV and the different
software frameworks used. A visual simultaneous localization and mapping (SLAM)
technique is proposed to deal with the localization problem, based on authors’ previous
works, including several innovations: a new method to initialize the scale using
unreliable global positioning system (GPS) measurements, integration of attitude and
heading reference system (AHRS) measurements into the recursive state estimation, and
a new technique to track features during the delayed feature initialization process. These
procedures greatly enhance the robustness and usability of the SLAM technique as they
remove the requirement of assisted scale initialization, and they reduce the computa-
tional effort to initialize features. To conclude, results from experiments performed with
simulated data and real data captured with a prototype UAV are presented and
discussed.

Keywords: UAV, collaborative robotics, inertio-visual odometry, visual SLAM, GPS

1. Introduction

The development of aerial robots has become one of the most active fields of research in the last

decade. Innovations in multiple fields, like the lithium polymer batteries, microelectrome-

chanical sensors, more powerful propellers, and the availability of new materials and proto-

typing technologies, have opened the field to researchers and institutions, who used to be denied
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access given the costs, both economic and in specialized personnel. The new-found popularity of

this research field has led to the proliferation of advancements in several areas [1] which used to

ignore the possibilities of aerial robots given the limited capacities they presented.

One of the environments where aerial robots are putting a foothold for the first time is

industry. Given the level of accountability, certification, and responsibility required in industry,

the field had been always reluctant to the introduction of experimental state of the art technol-

ogies. But thanks to the wider experimentation in aerial robots, resilience and performance

robustness levels have been improving, making them an option when solving several industry

problems. Currently, these problem are focused in logistical aspects and related operations,

like distribution of good and placement of them in otherwise hard to access points. An

example of this kind of applications would be the surveying and monitoring of fluids in

installations with multiple basins and tanks, for example, a wastewater processing plant.

Basin sampling operations generally require multiple samples of fluids in several points with a

given periodicity. This makes the task cumbersome, repetitive, and depending on the features

of the environment and other factors, potentially dangerous. As such, automatization of the

task would provide great benefits, reducing the efforts and risks taken by human personnel,

and opening options in terms of surveying scheduling.

One of the challenges that any autonomous Unmanned Aerial Vehicle (UAV) has to face is that

of estimating its pose with respect to the relevant navigational frames with accuracy. The

estimation methodology here discussed was formulated for estimating the state of the aerial

vehicle. In this case, the state is composed of the variables defining the location and attitude as

well as their first derivatives. The visual features seen by the camera are also included into the

system state. On the other hand, the orientation estimation can be estimated in a robust

manner by most flight management units (FMUs), with the output of the attitude and heading

reference system (AHRS) frequently used as a feedback to the control system for stabilization.

In order to account for the uncertainties associated with the estimation provided by the

attitude and heading reference systems (AHRSs), the orientation is included into the state

vector and is explicitly fused into the system. Regarding the problem of position estimation, it

cannot be solved for applications that require performing precise maneuvers, even with global

positioning system (GPS) signal available. Therefore, some additional sensory information is

integrated into the system in order to improve its accuracy, namely monocular vision.

The use of a monocular camera as the unique sensory input of a simultaneous localization and

mapping (SLAM) system comes with a difficulty: the estimation of the robot trajectory, as well

as the features map, can be carried out without metric information. This problem was pointed

out since early approaches like [2]. If the metric scale wants to be recovered, it is necessary to

incorporate some source of metric information into the system. In this case, the GPS and the

monocular vision can operate in a complementary manner. In the proposed method, the noisy

GPS data are used to incorporate metric information into the system, in periods where it is

available. On the other side, the monocular vision is used for refining the estimations when the

GPS is available or for performing purely visual-based navigation in periods where the GPS is

unavailable.
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In this work, we present an automated system designed with the goal of automate sampling

tasks in an open air plant and propose a solution for the localization problem in industrial

environments when GPS data are unreliable. The final system should use two autonomous

vehicles: a robotic ground platform and a UAV, which would collaborate to collect batches of

samples in several tanks. The specifications and designs of the system are described, focusing

on the architecture and the UAV. The next section describes the vision-based solution proposed

to deal with the localization for navigation problem, commenting several contributions done

with respect to a classical visual SLAM approach. Results discussing the performance and

accuracy of said localization techniques are presented, both based on simulations and real data

captured with the UAV described in Section 2. Finally, the conclusions discuss the next step in

the testing and development of the system and the refining of the localization technique.

2. System architecture

The architecture proposed to deal with the fluid sampling task aims to maximize the capability

to reach with accuracy the desired points of operation andmeasurement; andminimize the risks

associated with the process. The risks for human operators are removed or minimized, as they

can perform their tasks without exposing themselves to the outdoor industrial environment. To

achieve this, the system will present two different robotic platforms: a quadcopter UAV acts as

sample collector, picking fluid samples from the tanks; and a Unmanned Ground Vehicle (UGV)

platform acts as a collector carrier, transporting both the collector and the samples. As the risks

associated with the operation of the sample collector UAV are mainly related to the flight

operations, the UAV will travel generally safely landed on the collector carrier, where it could

be automatically serviced with replacement sample containers or battery charges.

2.1. Sampling system architecture and communications

The designed architecture of the system and its expected operation process can be observed in

Figure 1. The architecture has been divided into several blocks, so it can fit into a classical

deployment scheme in an industrial production environment. The analytics technicians at the

laboratory can use the scheduling and control module interface to order the collection of a

batch of samples. This is called collection order, detailing a number of samples, which basin

must they come from, and if there are any required sampling patterns or preferences. The

process can be set to start at a scheduled time, and stops may be enforced, i.e., samples on a

specific tank cannot be taken before a set hour.

The collection order is formed by a list of GPS coordinates (with optional parameters, like

times to perform operations), which is processed in the central server of the system. This

produces a mission path, which includes a route for the sample carrier, with one or more

stops. The mission path also includes the sampling flight that the sample collector UAV has to

perform with the sample carrier stop. The data of this flight, called collection mission, will be

transmitted by the sample carrier to the sample collector and will contain a simple trajectory

that the sample collector has to approximately follow, with height indications to avoid obsta-

cles, until the sampling point is reached.
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The different paths and trajectories are generated by the path planner module, which works on a

two-dimensional (2D) grid map model of the outdoors. When data are available, the grid is to be

textured with the map obtained from the visual SLAM technique proposed. The utilization of the

grid model allows introducing additional data, like occupancy, possible obstacles, or even sched-

uling the accessibility of an area, e.g., we can set a path normally used by workers during certain

hours to be avoided at those times. An energy minimization planning technique, essentially a

simplified approach to Ref. [3], is used to obtain the trajectories, considering a set of criteria.

1. All samples in the same basin/tank should be capture consecutively;

2. Minimizing the expected flight effort for the UAV (heuristically assuming that the trajec-

tory is a polyline of vertical and horizontal movements);

Figure 1. Proposed system distribution and communications diagram.
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3. Minimize penalties for restricted access areas;

4. Minimize the trajectory of the UGV.

The communications with the autonomous platforms of the system will be performed through

4G in order to allow video streaming during the prototyping and testing phases. The data

produced by the different elements of the system will be stored and logged to allow posterior

analysis. The rest of the communications can be performed through any usual channel in

industrial environments, be it a local network, Internet, VPN…, as the segmented architecture

allows discrete deployment. The communications between the sample carrier and the sample

collector will be performed through ZigBee, although they present Wi-Fi modules to ease

development and maintenance tasks.

A subset of the communication protocols is considered priority communications. This includes

the supervision and surveying messages in normal planned operation, and those signals and

procedures that can affect or override normal operation, e.g., emergency recall or landing. For

the UAV, the recall protocol uses a prioritized list of possible fallback points so that the UAV

tries to reach them. If the sample carrier is present, the UAV will try to land on it, searching for

its landing area through fiduciary markers. If it is not possible, the UAV will try another

fallback point in the list, until it lands or the battery is below a certain threshold: in that case,

it will just land in the first clear patch of ground available, though this will generally require

dropping the sampling device.

2.2. Sample collector aerial robot architecture

The UAV built as a sample collector, UAV is a 0.96 m diameter quadcopter deploying four 16”

propellers with T-MotorMN4014 actuators. The custom-built frame supports the propeller blocks

at 5� angle and is made of aluminum and carbon fiber. A PIXHAWK kit is used as a flight

management unit (FMU), with custom electronics to support 2 6 s 8000mAh batteries. AnOdroid

U4 single-board-computer is used to perform the high level task and deal with all noncritical

processes. Beyond the sensors present in the FMU (which includes AHRS and GPS), the UAV

presents a front facing camera USB (640�480@30fps) for monitoring purposes, an optical flow

with ultrasound sensor facing downward, and a set of four ultrasound sensors deployed in a

planar configuration to detect obstacles collision. The FX4 stack [4] is used to manage flying and

navigation, while a Robot Operating System (ROS) [5] distribution for ARM architectures is

run at the Odroid Single Board Computer (SBC), supporting MavLink for communications.

The communication modules and sensors are described at hardware level in Figure 2.

The hardware used weights approximately 4250 kg, while the propellers provide a theoretical

maximum lift of 13,900 g. The sample collection device, including the container, is being

designed with a weight below of 300 g, meaning that UAV, with the sample capture system

and up to 1000 ml of water-like fluid, would keep the weight/lift ratio around 0.4.

A simplified diagram of the operation process is shown in Figure 3. The communications are

divided into two blocks, those connecting the UAV with the main network for supervision and

emergency control, including video streaming with MavLink [6] over 4G, and those that will

connect it to the sample carrier during routine operation. This routine operation includes receiving
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the collection mission detailing the trajectory to the sampling point and the signal to start the

process. The action planner module in the UAV supervises the navigation tasks, making sure

that the trajectory waypoints are reached and the managing the water sample collector control

module.

The localization and positioning of the UAV are solved through a combination of GPS and

visual odometry estimation (see Section 4). To approach the water surface, the downward

looking ultrasonic height sensor will be used, as vision-based approaches are unreliable on

reflective surfaces. To ease the landing problem, the sample carrier will present fiduciary

markers to estimate the pose of the drone. This allows landing operations while inserting

the sample container into a socket, similarly to an assisted peg-in-the-hole operation. After

the UAV is landed, the sample collector control module releases the sample container, and the

sample carrier will replace the container with a clean one. After the container is replaced,

the carrier will send a signal to the UAV so that the new container is properly locked, while

the filled one will be stored.

As the autonomous navigation depends mainly on the localization and positioning, it is

largely based in GPS and visual odometry. This combination allows, combined with the

ultrasound to find height and avoid possible obstacle, to navigate the environment event if

the GPS signal is unreliable. Though there are more accurate alternatives to solve the SLAM

problem in terms of sensors, namely using RGB-D cameras or Lighting Detection and Ranging

(LiDAR)-based approaches, they present several limitations that make them unsuitable for

outdoor industrial environments. These limitations are in addition to the penalty imposed by

their economical cost, especially for models industry levels of performance and reliability.

Figure 2. Sample collector aerial robot hardware and communications diagram.
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In the case of RGB-D, most of the sensors found in the market are unreliable in outdoors as

they use IR or similar lightning frequencies. The subset of time-of-flight RGB-D sensors pre-

sents the same limitation as the LiDAR sensors: they are prone to spurious measurements in

environments where the air is not clear (presence of dusty, pollen and particles, vapors from

tanks), they present large latencies, making them unfit for real-time operation of UAVs, and

they are generally considered not robust enough for industrial operation. In the case of LiDAR,

and RGB-D if the SLAM/localization technique used focuses on depth measurements, there is

an additional issue present: these approaches normally rely in computationally demanding

optimization techniques to achieve accurate results, and the computer power available in an

UAV is limited.

Figure 3. Sample collector UAV robot block diagram.
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3. UAV localization and visual odometry estimation

The drone platform is considered to freely move in any direction in R3 � SO(3)R3 � SO(3), as

shown in Figure 4.

As the proposed system is mainly intended for local autonomous vehicle navigation, i.e.,

localize the sample collector during the different collection missions, the local tangent frame is

used as the navigation reference frame. The initial position of the sample collector landed over

the sample carrier is used to define the origin of the navigation coordinates frame, and the axes

are oriented following the navigation convention NED (North, East, Down). The magnitudes

expressed in the navigation, sample collector drone (robot), and camera frame are denoted,

respectively, by the superscripts NN, RR, and CC. All the coordinate systems are right-handed

defined. The proposed method will be taken mainly into account the AHRS and the downward

monocular camera, though it also uses data from the GPS during an initialization step.

The monocular camera is assumed to follow the central-projection camera model, with the

image plane in front of the origin, thus forming a noninverted image. The camera frame C is

considered right handed with the z-axis pointing toward the field of view. It is considered that

Figure 4. Coordinate systems: the local tangent frame is used as the navigation reference frame NN. AHRS: attitude and

heading reference system.
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the pixel coordinates are denoted with the [u, v] pair convention and follow the classical direct

and inverse observation models [7].

The attitude and heading reference system (AHRS) is a device used for estimating the vehicle

orientation,while it ismaneuvering. Themost common sensors integratedwithAHRSdevices are

gyroscopes, accelerometers, and magnetometers. The advances in micro-electro-mechanical sys-

tems (MEMS) and microcontrollers have contributed to the development of inexpensive and

robust AHRS devices (e.g., [8–10]).

In the case of the deployed FMU, the accuracy and reliability provided by its AHRS are

enough to directly fuse its data into the estimation system. Thus, AHRS measurements are

assumed to be available at high rates (50–200 Hz) and modeled according to

yNa ¼ aN þ υa (1)

where aN¼ [ϕυ, θυ, ψυ]
T, being ϕv, θv, and ψv Euler angles denoting, respectively, the roll, pitch,

and yaw of the vehicle; with va being Gaussian white noise.

The global positioning system (GPS) is a satellite-based navigation system that provides 3D

position information for objects on or near the Earth’s surface, studied in several works [11, 12].

The user-equivalent range error (UERE) is a measurement of the cumulative error in GPS

position measurements caused by multiple sources of error. These error sources can be modeled

as a combination of random noise and slowly varying biases [11]. According to a study [13], the

UERE is around 4.0 m (σ); in this case, 0.4 m (σ) corresponds to random noise.

In this work, it is assumed that position measurements yr can be obtained from the GPS unit, at

least at the beginning of the trajectory, and they are modeled by

yr ¼ rN þ υr (2)

where vr is Gaussian white noise and rN is the position of the vehicle. As GPS measurements

are usually in geodetic coordinates, Eq. (2) assumes that they have been converted to the

corresponding local tangent frame for navigation, accounting for the transformation between

the robot collector frame and the antenna.

3.1. Problem formulation

The objective of the estimation method is to compute the system state x

x ¼ xυ ,y
N
1 ,yN2 …,yNn

� �T
(3)

where the system state x can be divided into two parts: one defined by xv and corresponding to

the sample collector UAV state, and the other one corresponding the map features. In this case,

yNi defines the position of the ith feature map. The UAV state xv is composed, at the same time, of

xυ ¼ qNR
,ωR

, rN ,υN
� �T

(4)

where qNR represents the orientation of the vehicle with respect to the local world (navigation)

frame by a unit quaternion, and ωR
¼ [ωx, ωy, ωz] represents the angular velocity of the UAV
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expressed in the same frame of reference. rN ¼ [px, py, pz] represents the position of the UAV

expressed in the same navigation frame, with vN ¼ [vx, vy, vz] denoting the linear velocities. The

location of a feature yi
N (noted as yi for simplicity) is parameterized in its Euclidean form:

yNi ¼ pxi ,pyi
,pzi

h iT
(5)

The proposed system follows the classical loop of prediction-update steps in the extended

Kalman filter (EKF) in its direct configuration; working at the frequency of the AHRS. Thus,

both the vehicle state and the feature estimations are propagated by the filter, see Figure 5.

At the start of a prediction-update loop, the collector UAV state estimation xv takes a step

forward through the following unconstrained constant-acceleration (discrete) model:

qNC
kþ1 ¼ cos kWkI4�4 þ

sin kWk

kWk
W

� �

qNC
k

ω
C
kþ1 ¼ ω

C
k þΩ

C

rNkþ1 ¼ rNk þ υ
N
k Δt

υ
N
kþ1 ¼ υ

N
k þ VN

(6)

In the model represented by Eq. (6), a closed form solution of _q ¼ 1/2(W)q is used to integrate

the current velocity rotation ω
C over the quaternion qNC.

Figure 5. Block diagram showing the architecture of the system. EKF-SLAM: extended Kalman filter simultaneous

localization and mapping.
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At every step, it is assumed that there is an unknown linear and angular velocity with accelera-

tion zero-mean and known-covariance Gaussian processes σv and σω, producing an impulse

of linear and angular velocity: VN
¼ σv

2
Δt and Ω

C
¼ σω

2
Δt. It is assumed that the map features

yi remain static (rigid scene assumption). Then, the state covariancematrixP takes a step forward by

Pkþ1 ¼ ∇FxPk∇F
T
x þ ∇FuQ∇FTu (7)

where Q is the noise covariance matrix of the process (a diagonal matrix with the position and

orientation uncertainties); ∇Fx is the Jacobian of the nonlinear prediction model (Eq. (7)); and

∇Fu is the Jacobian of the concerning the derivatives of the input process represented by the

unknown linear and angular velocity impulses assumed.

3.2. Visual features: detection, tracking, and initialization

In order to retrieve the depth of a visual feature, the monocular camera, equipped in the UAV,

must observe it at least two times while moves along the flight trajectory. The parallax angle is

defined by the two projections of those measurements. The convergence of the depth of the

features depends on the evolution of the parallax angle. In this work, a method that is based on

a stochastic technique of triangulation is used for computing an initial hypothesis of depth for

each new feature prior to its initialization into the map. The initialization method is based on

previous author’s work [7].

3.2.1. Detection stage

The visual-based navigation method requires a minimum number of visual features yi observed

at each frame. If this number of visual features is lower than a threshold, then new visual features

are initialized into the stochastic map. The Shi-Tomasi corner detector [14] is used for detecting

new visual points in the image that will be taken as candidates to be initialized into the map as

new features.

When a feature is detected for the first time at k frame, a candidate feature cl is stored:

c1 ¼ tNc0

� �T
,θ0,φ0, Pyci

, zuv

� 	

(8)

where zuv ¼ [u, v] is the locationof the visual feature in pixel coordinates in image frame

k; yci¼ [tNc0, θ0, φ0]
T, complying the inverse observation model yci ¼ h(x̂,zuυ). Thus, yci models a

3D ray originating in the optical center of the camera when the feature is first observed, and

pointing to the infinite, with azimuth and elevation θ0 andφ0, respectively, according to previous

work [7]. At the same time, Pyci stores, as a 5 � 5 covariance matrix, the uncertainties of yci. Pyci

are computed as Pyci ¼ ∇Yci P∇Yci
T, where P is the system covariance and is the Jacobian of the

observation model h(x̂,zuυ) with respect to the state and coordinates u,v. A square patch around

[u, v], generally with 11 pixels sides, is also stored, to keep the appearance of the landmark.

3.2.2. Tracking of candidate features

The active search visual technique [15] can be used for tracking visual features that form part

of the system state. In this case, the information included in the system state and the system
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covariance matrix is used for defining images regions where the visual feature is searched. On

the other hand, in the case of the candidate features, there is no enough information for

applying the active search visual technique. A possibility for tracking the candidate features

is to use of general-purpose visual tracking approach [14]. This kind of methods uses only the

visual input and do not need information about the system dynamics; however, their compu-

tational cost is commonly high. In order to improve the computational performance, a differ-

ent technique is proposed. The idea is to define very thin elliptical regions of search in the

image that are computed based on the epipolar constraints.

After the k frame when the candidate feature was first detected, this one is tracked at subse-

quent frames k þ 1, k þ 2… k þ n. In this case, the candidate feature is predicted to lie inside

the elliptical region Sc (see Figure 6). The elliptical region Sc is centered in the point [u, v], and it

is aligned (the major axis) with the epipolar line defined by image points e1 and e2.

The epipole is computed by projecting the line tNc0 stored in cl to the current image plane using

the camera projective model. As there is not any available depth information, the semiline

stored in cl is considered to have origin tNc0, and a length d ¼ 1, producing point e1 and e2.

The orientation of the ellipse Sc is determined by αc ¼ atan2(ey,ex), where ey and ex represent the

y and x coordinates, respectively, of the epipole e, and e ¼ e2 � e1. The size of the ellipse Sc is

determined by its major and minor axis, respectively, a and b. This ellipse Sc represents a

probability region where the candidate point must lie in the current frame. The proposed

tracking method is intended to be used during an initial short period of time, applying cross-

correlation operators. During this period, some information will be gathered in order to

compute a depth hypothesis for each candidate point, prior to its initialization as a new map

feature.

On the other hand, during this stage, the available information of depth about the candidate

features is not well-conditioned. For this reason, it is not easy to determine an adaptive and

optimal size of the search image region. Therefore, according to the kind of application, the

Figure 6. The established search region to match candidate points is constrained to ellipses aligned with the epipolar line.
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parameter a is chosen empirically. In the experiments presented in this work, good results were

obtained choosing a ¼ 20 pixels.

3.2.3. Depth estimation

Each time a new image location zuv¼ [u, v] is obtained for a given candidate cl, a depth

hypothesis is computed, through stochastic triangulation, as described in previous work [16].

In previous authors’ work [17], it was found that the estimates of the feature depth can be

improved by passing the hypotheses of depth by a low-pass filter. Thus, only when parallax

αi is greater than a specific threshold (αi > αmin), a new feature ynew¼ [pxi, pyi, pzi]
T¼ h(cl, d) is

added to the system state vector x, as Eq. (3).

In order to correctly operate the proposed method, a minimum number of map features must

be maintained inside the camera field of view. For example in Ref. [21], it is stated that a

minimum number of three features are required for the operation of monocular SLAM. In

practice, of course, it is better to operate with a higher minimum number of features. The

above requires to initialize continuously new features into the map.

The initialization time period that takes a candidate point to become a map feature depends

directly on the evolution of the parallax angle. At the same time, the evolution of the parallax

depends on the depth of the feature and the movement of the camera. For example, the

parallax for a near point can increase very quickly due to a small movement of the camera. In

practice, it is assumed that the dynamics of the aerial vehicle allows tracking a sufficient

number of visual features for initialization and measurement purposes. Experimentally, at

least for nonaggressive typical flight maneuvers, we have not found yet major problems in

order to accomplish the above requirement.

3.3. Prediction-update loop and map management

Once initialized, the visual features yi are tracked by means of an active search technique,

using zero-mean normalized cross-correlation to match a given feature, and the patch that

notes its appearance to a given pixel to be found in a search area. This search area is defined

using the innovation covariance. The general methodology for the visual update step can be

found in previous works [7, 16, 18], where the details in terms of mathematical representation

and implementation are discussed. In this work, the loop closing problem and the application

of SLAM to large-scale environments are not addressed. Although it is important to note that

SLAM methods that perform well locally can be extended to large-scale problems using

different approaches, such as global mapping [19] or global optimization [20].

On the other side, when an attitude measurement yNa is available, the system state is updated.

Since most low-cost AHRS devices provide their output in Euler angles format, the following

measurement prediction model ha ¼ h(x̂v) is used:

θυ

φυ

ψυ

2

4

3

5 ¼

a tan 2ð2ðq3q4 � q1q2Þ, 1� 2ðq22 � q23ÞÞ

a sin ð�2ðq1q3 � q2q4ÞÞ

a tan 2ð2ðq3q4 � q1q4Þ, 1� 2ðq23 � q24Þ

2

6

4

3

7

5
(9)
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During the initialization period, position measurements yr are incorporated into the system

using the simple measurement model hr ¼ h(x̂v):

hr ¼ px,py ,pz

h iT

(10)

The regular Kalman update equations [7, 16, 18] are used to update attitude and position

whenever is required, but using the corresponding Jacobian ∇H and measurement noise

covariance matrix R related to the AHRS observation model.

In this work, the GPS signal is used for incorporating metric information into the system in

order to retrieve the metric scale of the estimates. For this reason, it is assumed that the GPS

signal is available at least during some period at the beginning of the operation of the system.

In order to obtain a proper operation of the system, this period of GPS availability should be

enough for allowing the convergence of the depth for some initial features. After this initiali-

zation period, the system is capable of operating using only visual information.

In Ref. [21], it is shown that only three landmarks are required for setting the metric scale in

estimates. Nevertheless, in practice, there is often a chance that a visual feature is lost during

the tracking process. In this case, it is convenient to choose a threshold n ≥ 3 of features that

present convergence in order to end the initialization process. In this work, good experimental

results were obtained with n ¼ 5.

An approach for testing features convergence is the Kullback distance [22]. Nevertheless, the

computational cost of this test is quite high. For this reason, the following criterion is proposed

for this purpose:

maxðeigðPyi
ÞÞ <

kyi � rNk

100
(11)

where Pyi is the covariance matrix of the yi feature, and it is extracted from the system

covariance matrix P. If the larger eigenvalue of Pyi is smaller than a centime of the distance

between the feature and the camera, then it is assumed that the uncertainty of the visual

features is small enough to consider it as an initial landmark.

4. Results

In this section, the results related to the proposed visual odometry approach for UAV localiza-

tion in industrial environments are discussed. The results obtained using synthetic data from

simulations as well as that obtained from experiments with real data are presented. The

experiments were performed in order to validate the performance, accuracy, and viability of

the proposed localization method, considering a real outdoor scenario. Previous works by the

authors [7, 18] and other researchers [2] have proven that similar solutions can reach real-time

performance, being of more interest development of robust solutions that can be optimized

further down the line. The proposed method was implemented in MATLAB©.

Aerial Robots - Aerodynamics, Control and Applications136



4.1. Experiments with simulations

The values of the parameters used to simulating the proposed method were taken from the

following sources: (i) the parameters of the AHRS were taken from Ref. [8], (ii) the model used

for emulating the GPS error behavior was taken from Ref. [23], and (iii) the parameters of the

monocular camera are the same for real camera used in real-data experimentation.

In order to validate the performance of the proposal, two different scenarios were simulated

(see Figure 7) as follows:

1. The environment of the aerial robot is composed of landmarks uniformly distributed over

the ground. The quadrotor performs a circular flight trajectory, at a constant altitude, after

the taking off.

2. The environment of the aerial robot is composed of landmarks randomly distributed over

the ground. The quadrotor performs and eight-like flight trajectory, at a constant altitude,

after the taking off.

In simulations, the data association problem is not considered, that is, it is assumed that visual

features can be detected and tracked without errors. Also, it is assumed that the aerial robot

can be controlled perfectly.

Figure 7. Estimation of two flight trajectories obtained with the filtered GPS data (left plots), and with the scheme

proposed of visual-based navigation (right plots).
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In order to obtain a statistical interpretation of the simulations results, the MAE (mean abso-

lute error) was computed for 20 Monte Carlo runs. The MAE was calculated for the following

cases:

1. Trajectory estimated using only filtered data from the GPS.

2. Trajectory estimated using visual information in combination with GPS data, during all

the simulation.

3. Trajectory estimated using visual information and GPS data, but only during the initiali-

zation period.

In the results presented in Figure 8, it can be appreciated the typical SLAM behavior, every

time when the aerial robot flight near to its initial position, when the visual-based scheme is

used. In this case, note that when the initial visual features are recognized again, the error is

minimized. On the other hand, in the case where GPS data is fused into the system during the

whole trajectory, it can be appreciated an influence of the GPS error when the aerial robot flight

near to its initial position. In this latter case, the error is less minimized. The above results can

suggest that for some scenarios, it is better to navigate relying only on visual information.

Also, it is important to note that for trajectories where the aerial robot moves far away from the

initial position, the use of GPS data can be very useful because an upper bound is imposed to

the error drift which is inherent to the navigation scheme based only on vision.

Figure 8. Mean absolute error (MAE) in position computed from two simulations (a and b) out of 20 Monte Carlo runs:

(upper plot) simulation (a) results; (lower plot) simulation (b) results.
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It is important to note that errors related to the slow-time varying bias of the GPS can be

modeled in Eq. (2) by considering a bigger measurement noise covariance matrix. However, in

experiments, it was found that if this matrix is increased too much then the convergence of

initial visual features can be affected. Future work could include an adaptive approach for

fusing GPS data, or for instance, to include the bias of the GPS into the system state in order to

be estimated.

4.2. Experiments with real data

The custom build sample collector UAV was used to perform experiments with real data. In

experiments, the quadrotor has been manually radio-controlled to capture data. The data

captured from the GPS, AHRS, and frames from the camera were synchronized and stored in

an ROS data set. The frames with a resolution of 320 � 240 pixels, in gray scale, were captured

at 26 fps. The flights of the quadrotor were conducted in industry-like facilities.

The surface of the field is mainly flat and composed of asphalt, grass, and dirt, but the

experimental environment also included some small structures and other manmade elements.

In average eight to nine GPS, satellites were visible at the same time.

In order to evaluate the estimates obtained with the proposed method, the flight trajectory of

the quadrotor was determined using an independent approach. In this case, the position of the

camera was computed, at each frame, with respect to a known reference composed of four

marks placed on the floor forming a square of known dimensions. The perspective on four-

point (P4P) technique described in [24] was used for this purpose.

As it was explained earlier, an initialization period was used for incorporating GPS readings in

order to set the metric scale of the estimates. After the initialization period, the estimation of

the trajectory of the aerial robot was carried out using only visual information.

The same methodology used with simulated data was employed with real data. Therefore, the

same experimental variants were tested: (i) GPS, (ii) GPS þ camera, (iii) camera (GPS only

during the initialization period). All the results were obtained averaging 10 experimental out-

comes. Figure 9 shows the evolution of the estimated flight trajectory along the time, which

was obtained with each experimental variant. Table 1 shows a summary of the above experi-

mental results. In this case, in order to compute the error in position, the trajectory computed

with the P4P technique was used as ground truth.

It worthwhile to note that analyzing the above results, it can be verified similar conclusions

that they were obtained with simulations: The use of GPS exclusively can be unreliable for

determining the vehicle position in the case of fine maneuvers. In flight trajectories near to the

initial reference, the error can be slightly low relying only on visual information.

Regarding the application of the proposed method in a real-time context, the number of

features that are maintained in the system state is considerably below an upper bound that

should allow a real-time performance, for instance by implementing the algorithm in C or

Cþþ languages. In particular, since early works in monocular SLAM as Davison [25], it was
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Figure 9. Flight trajectory estimated with: (i) P4P visual reference, (ii) camera, (iii) camera þ GPS, and (iv) GPS. The

position is expressed in north coordinates (upper plot), east coordinates (middle plot), and altitude coordinates (lower

plot). In every case, an initialization period of 5 s was considered with GPS availability.

Method NOF aMAE

GPS – 1.70 � 0.77σ

Camera þ GPS 56.4 � 10.2σ 0.21 � 0.11σ

Camera 57.9 � 9.3σ 0.20 � 0.09σ

NOF stands for the average number of visual features contained within the stochastic map. The aMAE is the average

mean absolute error in position (in meters).

Table 1. Summary of results with real data.
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shown the feasibility of real-time operation for EKF-based methods for maps composed of up

to 100 features.

5. Conclusions

An industrial system to automatize the water sampling processes on outdoor basins in a

wastewater treatment plant has been proposed, with novel research to solve the localization

for navigation problem under unreliable GPS. The architecture of the whole system has been

described, while specifications at the hardware level have been presented for those elements

designed completely, including the sample collector UAV, and the proposed localization tech-

nique has been described and validate with experiments performed over simulated and real

data. The localization technique presented can be described as a vision-based navigation and

mapping system applied to UAV.

The proposed estimation scheme is similar to a pure monocular SLAM system, where a single

camera is used for estimating concurrently both the position of the camera and a map of visual

features. In this case, a monocular camera equipped in the aerial robot, which is pointing to the

ground, is used as the main sensory source. On the other hand, in the proposed scheme

additional sensors, which are commonly available in this kind of robotic platforms, are used

for solving the typical technical difficulties which are related to purely monocular systems.

One of the most important challenges, regarding the use of monocular vision in SLAM, is the

difficulty in estimating the depth information of visual features. In this case, a method based

on a stochastic technique of triangulation is proposed for this purpose.

Perhaps the other most relevant challenge, regarding the use of monocular vision, has to do

with the difficulty of retrieving the metric scale of estimates. In this work, it is assumed that the

GPS signal is available during an initial period of time which is used for set the metric scale of

the estimates. After the initialization period, the proposed system is able to estimate the

position of the flying vehicle using only visual information.

For some scenarios, it was seen that the exclusive used of filtered GPS data can be unreliable

for performing fine maneuvers. This is due to the noise implicit in GPS measurements. In this

context, the following conclusions were found based on the experiments with real data as well

as with simulations:

1. Even the use of very noisy GPS data, during an initial short period of time, can be enough

for set the metric scale of the estimates obtained by a monocular SLAM system.

2. The integration of GPS measurements can be avoided for flight trajectories near to the

origin of the navigation frame.

Acknowledgements

This research has been funded by EU Project AEROARMS project reference H2020-ICT-2014-1-

644271, http://www.aeroarms-project.eu/.

Design and Development of Aerial Robotic Systems for Sampling Operations in Industrial Environment
http://dx.doi.org/10.5772/intechopen.70005

141



Author details

Rodrigo Munguia1, Edmundo Guerra2, Sarquis Urzua1, Yolanda Bolea2 and Antoni Grau2*

*Address all correspondence to: antoni.grau@upc.edu

1 Department of Computer Science, CUCEI, University of Guadalajara, Guadalajara, Mexico

2 Automatic Control Department, Technical University of Catalonia, Barcelona, Spain

References

[1] Ping JTK, Ling AE, Quan TJ, Dat CY. Generic unmanned aerial vehicle (UAV) for civilian

application—A feasibility assessment and market survey on civilian application for aerial

imaging. In: 2012 IEEE Conference on Sustainable Utilization and Development in Engi-

neering and Technology (STUDENT). 2012. pp. 289-294

[2] Davison AJ, Reid ID, Molton ND, Stasse O. MonoSLAM: Real-time single camera SLAM.

IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007 Jun;29(6):1052-1067

[3] Ganganath N, Cheng CT, Tse CK. A constraint-aware heuristic path planner for finding

energy-efficient paths on uneven terrains. IEEE Transactions on Industrial Informatics.

2015 Jun;11(3):601-611

[4] Meier L, Honegger D, Pollefeys M. PX4: A node-based multithreaded open source robot-

ics framework for deeply embedded platforms. In: 2015 IEEE International Conference on

Robotics and Automation (ICRA). 2015. pp. 6235-6240

[5] Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, et al. ROS: An open-source robot

operating system. In: ICRAWorkshop on Open Source Software. 2009. p. 5

[6] MAVLink Micro Air Vehicle Communication Protocol—QGroundControl GCS [Internet].

Available from: http://qgroundcontrol.org/mavlink/start [Accessed: January 26, 2017]

[7] Munguía R, Grau A. Monocular SLAM for visual odometry: A full approach to the

delayed inverse-depth feature initialization method. Mathematical Problems in Engineer-

ing. pp. 1-26; 2012

[8] Munguía R, Grau A. A practical method for implementing an attitude and heading refer-

ence system. International Journal of Advanced Robotics Systems. 2014 Apr 29;11(4):62

[9] Wang M, Yang Y, Hatch RR, Zhang Y. Adaptive filter for a miniature MEMS based

attitude and heading reference system. In: PLANS 2004 Position Location and Navigation

Symposium (IEEE Cat No04CH37556). 2004. pp. 193-200

[10] Jurman D, Jankovec M, Kamnik R, Topič M. Calibration and data fusion solution for the

miniature attitude and heading reference system. Sensors and Actuators A: Physical.

2007 Aug 26;138(2):411-420

Aerial Robots - Aerodynamics, Control and Applications142



[11] Spilker Jr. JJ, Axelrad P, Parkinson BW, Enge P. Global Positioning System: Theory and

Applications, Volume I [Internet]. American Institute of Aeronautics and Astronautics;

1996. 1. (Progress in Astronautics and Aeronautics). Available from: http://arc-test.aiaa.

org/doi/book/10.2514/4.866388 [Accessed: January 27, 2017]

[12] Grewal MS, Weill LR, Andrews AP. Global positioning systems, inertial navigation, and

integration. New York: John Wiley; 2001. p. 392

[13] GPS: Essentials of Satellite Navigation: Compendium : Theories and Principles of Satellite

Navigation, Overview of GPS/GNSS Systems and Applications. U-Blox; 2009. p. 176

[14] Shi J, Tomasi C. Good Features to Track. 1994. pp. 593-600

[15] Davison AJ, Murray DW. Mobile robot localisation using active vision [Internet].

Springer; 1998. Available from: http://link.springer.com/chapter/10.1007/BFb0054781

[Accessed: September 30, 2015]

[16] Munguia R, Grau A. Monocular SLAM for visual odometry. In: IEEE International Sym-

posium on Intelligent Signal Processing, 2007 WISP 2007. 2007. pp. 1-6

[17] Munguía R, Grau A. Concurrent Initialization for bearing-only SLAM. Sensors. 2010 Mar

1;10(3):1511-1534

[18] Guerra E, Munguia R, Bolea Y, Grau A. New validation algorithm for data association in

SLAM. ISA Transactions. 2013 May 20;52:662-671

[19] Munguia R, Grau A. Closing loops with a virtual sensor based on monocular SLAM.

IEEE Transactions on Instrumentation and Measurement. 2009;58(8):2377-2384

[20] Strasdat H, Montiel JMM, Davison AJ. Real-time monocular SLAM: Why filter? In: 2010

IEEE International Conference on Robotics and Automation (ICRA). 2010. pp. 2657-2664

[21] Belo FAW, Salaris P, Fontanelli D, Bicchi A. A complete observability analysis of the

planar bearing localization and mapping for visual servoing with known camera veloci-

ties. International Journal of Advanced Robotic Systems. 2013 Apr 17;10(4):197

[22] Bailey T. Constrained initialisation for bearing-only SLAM. In: 2003 Proceedings ICRA'03

IEEE International Conference on Robotics and Automation [Internet]. 2003. pp. 1966-1971.

Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber¼1241882 [Accessed:

June 4, 2013]

[23] Rankin J. An error model for sensor simulation GPS and differential GPS. In: IEEE

Position Location and Navigation Symposium, 1994. 1994. pp. 260-266

[24] Chatterjee C, Roychowdhury VP. Algorithms for coplanar camera calibration. Machine

Vision and Applications. 2000;12(2):84-97

[25] Davison AJ. Real-time simultaneous localisation and mapping with a single camera. In:

IEEE International Conference on Computer Vision. 2003. pp. 1403-1410

Design and Development of Aerial Robotic Systems for Sampling Operations in Industrial Environment
http://dx.doi.org/10.5772/intechopen.70005

143




