
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322432138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 3

Heuristics Techniques for Scheduling Problems with
Reducing Waiting Time Variance

Satyasundara Mahapatra, Rati Ranjan Dash and
Sateesh K. Pradhan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69224

Abstract

In real computational world, scheduling is a decision making process. This is nothing
but a systematic schedule through which a large numbers of tasks are assigned to the
processors. Due to the resource limitation, creation of such schedule is a real challenge.
This creates the interest of developing a qualitative scheduler for the processors. These
processors are either single or parallel. One of the criteria for improving the efficiency of
scheduler is waiting time variance (WTV). Minimizing the WTV of a task is a NP-hard
problem. Achieving the quality of service (QoS) in a single or parallel processor by
minimizing the WTV is a problem of task scheduling. To enhance the performance of a
single or parallel processor, it is required to develop a stable and none overlap scheduler
by minimizing WTV. An automated scheduler's performance is always measured by the
attributes of QoS. One of the attributes of QoS is ‘Timeliness’. First, this chapter presents
the importance of heuristics with five heuristic-based solutions. Then applies these
heuristics on 1kWTV minimization problem and three heuristics with a unique task
distribution mechanism on Qm|prec|WTV minimization problem. The experimental
result shows the performance of heuristic in the form of graph for consonant problems.

Keywords: task scheduling, quality of services, waiting time variance, single processor,
uniform parallel processors

1. Introduction

In real world, scheduling is an approach through which a large number of tasks (jobs) are

assigned to the resources (processors) that complete the task execution process in time. Due to

the limitation of resources, a number of challenging issues are initiated on execution processes.

Hence, huge numbers of tasks are waiting in a queue for execution. An efficient and convenient

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

way of ordering between the tasks and resources is the only solution to resolve these issues.

Such ordering is otherwise spelled as scheduling through which the efficiency and accuracy of

the task execution process is enhanced. Designing and developing a stable and secured auto-

mated scheduler for real world problems is a real challenge for enhancing the quality of

services (QoS) of the scheduler. A qualitative automated scheduler's performance is always

measured by the attributes of QoS. One of the attributes of QoS is ‘Timeliness’, which mea-

sures the time taken to execute the task and produce an output.

Numerous criteria of timeliness provide good QoS to a task execution process. These criteria

are response time, waiting time, turn-around time, elapsed time etc. Delay indicates the extra

waiting time taken by the task due to the time consumed by the resources in an execution

process. To optimize the scheduling process, new methods with objectives are adapted and

integrated as per the requirements and constraints of the issues at hand. In case of discrete

alternatives, scheduling is the discipline of decision making. Available resources, imposed

constraints, and time required for executions are important factors to form a schedule. These

factors are concern for an individual or a group. In real computational world, a series of

activities to be outlined serially with the help of these factors is a challenge. This can be

described as multiobjective optimization deterministic scheduling problem. The main objec-

tives are to minimize the makespan and not to overlap two or more activities in the same time

span with same resources.

Scheduling problems typically involve for search groupings, orderings, or assignments of a

discrete set of activities, which satisfy the imposed conditions or constraints. These elements

are generally modeled by means of countable discrete structures known as combinatorial

structure. These structures are represented through a vector of decision variables which can

assume values within a finite or a countable infinite set. Within these settings, a solution for a

scheduling problem is a value assignment to the variables that meet specified criteria. Such

cases formulate the scheduling problem exploiting the concepts of constraint satisfaction

problems or optimization problems.

In Computer Science and Engineering, multiobjective optimization deterministic scheduling

problems are belonging to a broad class of combinatorial optimization problems. These com-

binatorial optimization problems area belongs to NP hard, moreover asymptotically getting an

optimal solution in linear time is impossible. In the field of Computer Science and Engineering,

mathematical optimizations determine an optimal solution which may be an extremely time

consuming procedure due to their computational complexity, whereas heuristic is a technique

for finding an approximate solution. In other words, a heuristic is a procedure which produces

a quick solution that is good enough for solving the problem at hand. This solution may not be

the best of all the actual solutions to this problem, or it may simply approximate the exact

solution. But it is still valuable because finding it does not require a prohibitively long time.

This is achieved by trading optimality, completeness, accuracy, and precision for speed.

The rest of the section is structured as follows. A brief review of related work of different

researchers in scheduling of tasks on single processor and parallel processor with motivation is

mentioned in Section 2. In Section 3, the general definition of scheduling problem is briefly

discussed. As scheduling is a NP-hard problem, different approaches for solving the scheduling

Heuristics and Hyper-Heuristics - Principles and Applications44

problem are discussed in Section 4. The classification of deterministic scheduling problem is

discussed briefly in Section 5. Different existing heuristic methods are discussed along with

pseudo code in Section 6. The single processor scheduling problem with problem formulation

and performance analysis of different heuristic methods is discussed in Section 7. In Section 8,

the parallel processor scheduling problem with problem formulation and performance analy-

sis of different heuristic methods is discussed. Section 9 contains a brief report on analysis of

work leading to conclusion, scope for utilization of this study in different similar areas and

suggestions for future research in this field.

2. Review of literature and motivation

In many manufacturing and services industries, scheduling is a decision making process that is

used in a day-to-day basis. It deals with the allocation of resources to tasks over a given time

period. In computational world, these resources are single processor, multi processors, parallel

processors, and dedicated processors. The goal is to optimize one or more objectives such as

makespan, mean flow time, mean weighted flow time, mean tardiness, mean earliness, etc.

Scheduling problem is a broader class of combinatorial problem, and the purpose is to search a

best way to organize task so that it is completed in the shortest possible time as depicted in

Refs. [1, 2]. Importance of different types of real world scheduling problems such as single

processor scheduling problem, two processor scheduling problems, parallel processor sched-

uling problems, job shop scheduling problems, flow shop scheduling problems, open shop

scheduling problems, etc. are classified and discussed in Ref. [3] and play a significant role in

research. The combinatorial problems are belonging to the real world problem. These prob-

lems are either problem of minimization or maximization. Such problems consist of a set of

instances, candidate solutions for each instance, and a function that assigns to each instance

and each candidate solution, a positive rational number called solution value is depicted in

Ref. [4]. These problems are distinguished into three subclasses and presented in Ref. [5]. They

are named as optimization problem, decision problem, and search problems. An optimization

problem is defined as the answer to its instance that specifies a solution for which a value of a

certain objective is at its optimum, whereas a decision problem takes only two values, either

‘yes’ or ‘no’, as an answer to the instance of the problem. Finally, the search problem simply

aims at finding a valid solution, regardless of any quality criterion.

As scheduling is a decision making problem, effective algorithms are developed and designed

by the researchers to solve it in due course of time. Such algorithms consist of two parts named

as ‘head’ and ‘method’. The head starts with the keyword ‘algorithm’ followed by a name (i.e.,

description for the purpose of algorithm), whereas method is used to describe the idea or logic

used in the algorithm. The semantic representations are reflected with the help of layout of

output, procedure or function name, variable, etc. These algorithms consist of a block of

instructions used in a sequential order. Changing the instruction in algorithm changes the

behavior of the algorithm is explained in Ref. [2].

Scheduling of task is an integral part of single and parallel computing. Extensive research has

been conducted in this area leading to significant theoretical and practical results. New

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

45

scheduling algorithms are in demand for addressing concerns originating from the single and

parallel processors. How heuristic methodology encourages the researcher to explore and

pursue the creative journey through internal discovery in the field of research is presented in

Ref. [6].Two heuristic task scheduling methods for single processor, called balanced spiral (BS)

and verified spiral (VS), which incorporate certain proven properties of optimal task sequences

for minimizing the waiting time variance is proposed in Ref. [7]. The success of stochastic

algorithms is often due to their ability to effectively amplify the performance of search heuris-

tics that is focused and discussed in Ref. [8]. A heuristic procedure to minimize the weighted

completion time variance in single processor is presented in Ref. [9]. Two heuristic methods

named as EC1 an EC2 are developed and proposed in Ref. [10] for solving the problem for a set

of large tasks by minimizing waiting time variance in the single machine problem. A novel

heuristic method named as RSS is developed and proposed in Ref. [11] for solving the problem

for large set of tasks by minimizing waiting time variance in the single machine problem.

Several meta-heuristics have been inspired by nature in due course of time. Two well-known

robust metaheuristic methods, including genetic algorithm (GA), simulated annealing (SA),

were improved and presented in Ref. [12] to tackle large-scale problems. A MAX-MIN Ant

System, which makes use of a separate local search routine, is proposed in Ref. [13] for tackling

a typical university course timetabling problem. An ant algorithm based on a multiagent

system inspired by the observation of some real ant colony behavior exploiting the stigmergic

communication paradigm is discussed in Ref. [14]. An agent-based parallel genetic algorithm

for job shop scheduling problem is proposed in Ref. [15]. A genetic algorithm (GA) has been

developed in Ref. [16] for minimizing the average residence time to produce a set of batches in

function of batch order in a multipurpose-multiproduct batch plant. Multi objective genetic

algorithm to find a balance point in respect of a solution of the Pareto front is presented in Ref.

[17]. A decomposition heuristics algorithm based on multibottleneck processors for large-scale

job shop scheduling problems is proposed in Ref. [18]. A new heuristic based on adaptive

memory programming and a simulated annealing algorithm is presented in Ref. [19].

To enhance the property of different heuristic methods for parallel processing in uniform

processors, a unique task allocation scheme named as PUM is developed and presented in

Ref. [20]. One exact algorithm and one approximation algorithm are proposed in Ref. [21] to

minimize the completion time variance. A heuristic algorithm to solve preemptive scheduling

problem of dependent tasks on parallel identical processors is proposed in Ref. [22]. A new

heuristic algorithm for scheduling metatasks in heterogeneous computing system is presented

in Ref. [23]. Heuristic algorithms are proposed to solve a number of independent tasks on

multiple number of identical parallel processors problem so as to minimize the waiting time

variance [24].

In computing systems, while working with large data files on a Web server, often the response

time to a user's request is strongly dependent on the time required to access or retrieve the data

files referenced by the user. Especially in online systems, it is often desirable to provide

uniform response to user's requests, i.e., minimize the variance of response time by minimizing

the variance of access time. The variance of completion time and variance of waiting time

performance measures are analyzed [25] for the single processor sequencing problem. These

Heuristics and Hyper-Heuristics - Principles and Applications46

measures are compared and contrasted to the performance measures of mean completion time

and mean waiting time. It was shown that the sequence that minimizes the variance of waiting

times is antithetical to the sequence that minimizes the variance of flow times, which motivate

to take waiting time variance as the performance parameter.

Another motivation is to find out the effectiveness of the methods used for calculation of WTV

in parallel processor by efficient task allocation scheme, which will be able to generate a

schedule with less time as far as possible.

3. Scheduling problems

The deterministic scheduling problems are part of a much broader class of combinatorial

optimization problems. To analyze these problems, the peculiarities of the problem must be

studied. The time required for solving those scheduling problems is seriously limited, so that

only low-order polynomial time algorithms may be used. Thus, the examination of the com-

plexity of these problems should be the basis for analysis of scheduling problems and algo-

rithms, which is shown in Figure 1 as a problem solving cycle for deterministic scheduling

problem.

The deterministic scheduling problems can be defined as a combination of a set of tasks ‘T ’, a

set of processors ‘P’, and a set of additional resources ‘R’. Scheduling means to assign pro-

cessors from P and possibly, resources from R to tasks from T in order to complete all tasks

under the imposed constraints. There are two general constraints arise in classical scheduling

theory. They are, each task is to be processed by at most one processor at a time, and each

processor is capable of processing at most one task at a time. The processors may be either

parallel (i.e., performing the same functions) or dedicated (i.e., specialized for the execution of

certain tasks). The parallel processors are distinguished as identical, uniform, and unrelated

Figure 1. Problem solving cycle for deterministic scheduling problem.

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

47

depending on their speeds. In identical, all processors have equal task processing speeds.

Similarly, the uniform processors have different speed and unrelated processors depend on

the particular task.

The dedicated processors are distinguished as task shop, flow shop, and open shop. In task

shop, each task has its own predetermined route to follow with a set of processors. But a

distinction is made between task shops in which each task visits each processor at most once

and task shops in which a task may visit each processor more than once. On the contrary in

flow shop, a set of processor are placed in series. Each task has to be processed on every

processor exactly once. All tasks have to follow the same route, i.e., they have to be processed

first on processor 1, then on processor 2, and so on. In case of open shop, a set of tasks must be

processed for given amounts of time at each of a given set of processors, in an arbitrary order.

The idea is to determine the time at which each task is to be processed at each processor. In

such systems, it is assumed that the buffers between processors have unlimited capacity and a

task after completion on one processor may wait before its processing starts on the next one.

However, buffers of zero capacity tasks cannot wait between two consecutive processors are

termed as no-wait property.

The classical deterministic scheduling problem can be stated as follows. There are a set of n

tasks simultaneously available for being processed on a set of m processors. Let all tasks

available for processing at time zero. Each task j, j∈ T ¼ {1, 2,…, n}, passes through the pro-

cessors 1, 2,…, m in that order and requires an uninterrupted processing time ptij on processor

i, i∈P ¼ {1, 2,…, m}. The scheduling objective is to minimize makespan. Makespan or maxi-

mum completion time is the time interval between starting the first task on a processor and the

completion of the last processor and denoted by Cmax. Let T j be the set of subtasks scheduled

on processor i. Then, the completion time on processor i can be computed as Ci ¼ Σj∈P i
ptij.

Hence, maximum completion time, i.e., makespan can be calculated as Cmax ¼ maxi∈PCi. To

minimize the makespan of a deterministic scheduling problem, apriori knowledge on different

procedure of scheduling schemes is required and discussed in the next section.

4. Approaches to scheduling problems

From the literature review, it was observed that there exists a large class of combinatorial

optimization problems for which most probably no polynomial optimization algorithms are

available. These are the problems whose decision counterparts are NP complete. Hence, in

such cases, the optimization problems are NP hard. A comprehensive study on NP complete-

ness, NP hardness, polynomial time transformation, etc. helps the researchers in analyzing the

multiobjective scheduling problem. It also helps the researchers to solve those problems by

using polynomial time algorithm. The usefulness of the algorithm depends on the order of its

worst-case complexity function and on the particular application. It was found that sometimes,

the worst-case complexity function is not low enough, although still polynomial, a mean

complexity function of the algorithm may be sufficient. On the other hand, if the decision

Heuristics and Hyper-Heuristics - Principles and Applications48

version of the analyzed problem is NP complete, then there are several approaches taken into

consideration to make the problem NP hard. These approaches are discussed below.

First, constraints like allowing preemptions, assuming unit-length tasks, and assuming certain

types of precedence graphs are relaxed by imposing on the original problem and then solving

the relaxed problem. The solution of the latter may be a good approximation to the solution of

the original problem. In case of computer application, the relaxation method is justified when

parallel processors share a common primary memory. Moreover, such a relaxation is also

advantageous from the viewpoint of certain optimality criteria.

Second, in the process of solving NP hard scheduling problems, the use of approximation

algorithms tends to find an optimal schedule but does not always succeed. It is a useful

heuristic for finding near optimal solutions, when the optimal solution is not required [5]. The

necessary condition for these algorithms to be applicable in practice is that their worst-case

complexity function is bounded from above by a low-order polynomial in the input length. So

that approximation algorithm often give raise to heuristic that return solution much closer to

optimal than indicated by their performance guarantee and bring the researchers to study of

heuristics and allowed to prove how well the heuristic performs on all instances [5]. Their

sufficiency follows from an evaluation of the difference between the value of a solution they

produce and the value of an optimal solution. This evaluation may concern the worst case or a

mean behavior. However, for some combinatorial problems, it can be proved that there is no

hope of finding an approximation algorithm of certain accuracy.

Analysis of the worst-case behavior of an approximation algorithm may be complimented by

an analysis of its mean behavior. This can be done in two ways. The first consists in assuming

that the parameters of instances of the considered problem are drawn from a certain distribu-

tion, and then the mean performance of algorithm is analyzed. Distinguish between the

absolute error and the relative error asymptotic optimality results in the stronger (absolute)

sense are quite rare. On the other hand, asymptotic optimality in the relative sense is often

easier to establish. It is rather obvious that the mean performance can be much better than the

worst-case behavior, thus justifying the use of a given approximation algorithm. A main

obstacle is the difficulty of proofs of the mean performance for realistic distribution functions.

Thus, the second way of evaluating the mean behavior of approximation algorithms,

consisting of experimental studies, is still used very often in real world problems.

The third and the last way of dealing with hard scheduling problems is to use exact enumer-

ative algorithms whose worst-case complexity function is exponential in the input length. Such

problems are not NP hard in strong sense. These problems are possible to solve by pseudo-

polynomial optimization algorithm whose worst-case complexity function is bounded from

above by a polynomial in the input length and in the maximum number appearing in the

instance of the problem. For reasonably small numbers, such an algorithm may behave quite

well in practice, and it can be used even in computer applications.

The above discussion is summarized in a schematic way in Figure 2. It is observed that finding

an exact algorithm for a large-scale task scheduling problem is not easy. Hence, local optimum

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

49

algorithm as heuristic is always better to develop and to be used. Knowledge of classification

for these scheduling problems serves as a basis for developing heuristic algorithms, which is

discussed in next session.

5. Classification of deterministic scheduling problems

A scheduling problem is described by a triplet (α|β|γ) and shows the possible classification

under the each parameter of the triplet [26]. A detailed nature of triplet is explained in

appendix A. The symbol α is represented for processor environment and contains only one

entry that is classified into two types, named as single processor and multiple processors.

Single processor again is classified into three categories. They are named as single processor,

parallel processor, and dedicated processor.

Parallel processors are classified as per their behavior of the parallelisms into three types. They

are named as identical parallel processors, uniform parallel processors, and unrelated parallel

processors denoted by the symbol P, Q, and R, respectively. Similarly dedicated processors are

classified into three categories named as flow shop processors, task shop processors, and open

shop processors denoted by the symbol F, J, and O, respectively.

The symbol β is represented for different types of tasks and resource constraints. It may

contain no entry at all, a single entry, or multiple entries. The possible entries in the β field are

preemption (pmtn) used for the interruption of task and re-start in latter, resource (res) used for

identification of particular type of resource, precedence (prec) required for the completion of

one or more tasks before another task is allowed to start its processing, ready time (rj) repre-

sents the task j starting time for processing, delivery time (qj) represents the time spent for

delivery the task j after its processing, processing time (ptj) represents the processing time of

task j on a processor, deadline ð~dÞ are imposed on the performance of a task set, maximal

number of tasks (nj ≤ k) describes the maximal number of sub-tasks (nj) constituting a task (k) in

Figure 2. Approaches to scheduling problem.

Heuristics and Hyper-Heuristics - Principles and Applications50

case of task shop systems, and no-wait (no – wait) describes a no-wait property in the case of

scheduling on dedicated processors.

The symbol γ is represented as objective function for minimizing the different performance

measure (i.e., optimality criteria) of scheduling and contains single entry only. These measures

are depicted in Ref. [26], and the parameter required for computing these objective function of

a task j is calculated and given in Table 1.

As it has been observed from different research articles that a good number of objectives are

available for minimizing the different performance measure of scheduling, the ultimate objec-

tive is minimizing the makespan. To fulfill the aforementioned objective under different con-

straints, several methods have been developed which therefore gives raise to various classes of

schedules.

6. Heuristic methods for scheduling problems

From the literatures, it is observed that a number of task ordering methods are developed and

improved in due course of time. These methods either belong to exact or heuristic or meta-

heuristic methods. In the process of searching a best or improved method with desired objec-

tive, all possible solutions are tested one by one. This process is viable only for small size of

problems but very challenging, complicated, and time consuming as the size of problem

increases. Therefore, to reorder the tasks of large problems, heuristic methods are developed

for obtaining optimum solution. The solutions obtained by the heuristic methods are optimum

or near optimum in nature by using less number of computer resources and computational

time. Calculation of CTV and WTV are the two objectives for these types of heuristics. For

minimizing the WTV, Elion & Chowdhary, verified spiral (VS), balanced spiral (BS), and Rati-

Satya-Sateesh (RSS) heuristic methods are discussed below.

6.1. Eilon and Chowdhary (EC1 & EC2)

EC1 and EC2 are two types of heuristics, designed and presented in Ref. [10] for an n-task

WTV problem. Here, ‘n’ numbers of tasks are scheduled on the basis of V shape property of

optimal sequence. In case of EC1, the largest processing time task is removed from the job

queue and placed at last position of the schedule. The second largest processing time task is

Completion time Cj

Flow time Fj = Cj � rj

Lateness Lj = Cj � dj

Tardiness Dj = max{Cj � dj, 0}

Earliness Ej = max{dj � Cj, 0}

Tardy task unit
Uj ¼

1 if Cj > dj
0 Othewise

�

Table 1. Objective functions.

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

51

removed from the job queue and placed at the first position of the schedule. Similarly, the third

largest processing time task is removed from the job queue and placed at the last but one

position of the schedule. The fourth largest processing time task is removed from the job queue

and placed in second position of the schedule. This process continues until the job queue is

empty. This method places the jobs in a spiral front and rear manner. EC2 heuristic, the

modified version of EC1, produces the task schedule by incorporating the Schrage's conjecture

with EC1. The Schrage's conjecture states that there exists an optimal sequence in which the

largest job is scheduled at last position, the second longest is at first position, the third and

fourth longest are last-but-one position and last-but-two position, respectively, in the

sequence [27].

6.2. Verified spiral (VS)

Verified spiral (VS) presented in Ref. [7] is an improved version of EC1. This method incorpo-

rates Schrage's conjecture and Hall & Kubiak's proof [28] about the placement of first three

largest processing time tasks. For the remaining task on the task queue, a modified spiral

placement method is implemented. This method removes the next task from the task queue

and place either after the front task or before the rear task of the sequence on the basis of which

position produces a small WTV with the existing tasks.

6.3. Balanced spiral (BS)

The balanced spiral (BS) method discussed in Ref. [7] is developed to reduce the computational

cost of VS method. This method is otherwise known as observation method, as it balance the

left (L) and right (R) optimal sequence to get optimum or near optimum sequence after placing

the processing time of each tasks in sequence one by one until the task queue is empty.

6.4. Rati-Satya-Sateesh (RSS)

In our locality, the fishmongers are those who sell a whole unit of fish. Sometimes a large fish

has to be distributed equally to two or more customers. These fishmongers are so skilled that

they can equally distribute the cut pieces of the same fish among the customers during the time

of cutting. It reduces the post measurement for equality, which generally found almost equal.

This distribution mechanism to serve the customers used in this method is named as RSS,

presented in Ref. [20]. This method allocates the tasks in the sequence with minimum compu-

tational cost and time.

The effectiveness of the above discussed methods is presented in the next two sections by

using single processor and parallel processors with an objective WTV.

7. Single processor scheduling

In the task scheduling problem, ‘n’ number of tasks has to be processed by a single processor

with some processing objectives, order, and constraints. Discovering an optimized schedule,

which minimizes the WTVof the tasks, is the aspiration of the problem. Due to nonavailability

Heuristics and Hyper-Heuristics - Principles and Applications52

of the processor in real time, a task has to wait for processing, as the processor is processing

another task and may also due to the precedence process constraint.

In the process of searching, an effective and optimized sequence of tasks, it needs to calculate

all possible combination of tasks (factorial n). It consumes much time and resources to give an

optimum sequence. Different heuristics and meta-heuristics methods are required to develop

by reducing the number of calculations for handling many concurrent tasks in computer and

in network systems. To achieve this service stability on an individual recourse, it is required to

minimize the WTV, which is the objective of the task scheduling problem on single processor.

7.1. Problem formulation

The above mentioned problem can typically describe as an allocation of tasks to a processor by

considering the concept that once a task get into the processor for processing, it did not leave

from the processor until the processing time of that task was over. The decision whether the

task “j” (i.e., the task number) is scheduled to the processor successfully, then “k” the allocation

variable is 1 (one) or 0 (zero) otherwise, which can be represented by an integer. These decision

variable depends upon the position of task in the task sequence, which is represented by skj for

k ∈ L = {1, 2, …, n} and j∈ T ¼ {1, 2,…, n}. The task to be scheduled first is placed at first

position, thus processed first; the task to be scheduled second is placed at second position, thus

processed second, and so on. Then, the waiting time for task j at position k is represented as

wtkj and the processing time of task j is represented by ptj. The WTV of tasks in a complete

sequence is obtained as follows in Eq. (S.1).

WTV ¼
1

n� 1

X

j∈Lk
wtkj �

1

n

X

j∈Lk
wtkj

� �2

(S.1)

The objective is to minimize the variance of waiting time of n number of tasks can be found by

Eq. (S.2).

Minimize 1jjWTV (S.2)

subject to:

X

k∈ T j
skj ¼ 1 (S.3)

X

j∈Lk
skj ¼ 1 (S.4)

skj ¼ 0 or 1 ∀k∈L, j∈ T (S.5)

wtkj ¼ 0 ∀k ¼ 1 , j∈ T (S.6)

wtkj ≥wtk�1 j þ
X

j∈Lk
sk�1 j � ptj ∀k∈L , j∈ T (S.7)

The constraint that each position of the sequence is used exactly once by a task is described in

Eq. (S.3). Each task is assigned to a position in the sequence is exactly described once in

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

53

Eq. (S.4). The integer constraint for decision variable is described in Eq. (S.5). The waiting time

for the first task is described in Eq. (S.6), and the waiting time wtkj of the task at position k (k >= 2)

is described in recursive Eq. (S.7).

7.2. Problems for testing and performance analysis

This section presents the effectiveness of five heuristic algorithms discussed in section 6 by

generating the test cases with the help of three probability distributions namely normal distri-

bution, Poisson distribution, and exponential distribution. At first, a small set of test cases have

been selected which are same as used in Refs. [7, 10] to find the effectiveness of the algorithms.

To increase the number of testing cases, another three large sets of data are also generated

randomly of 5 through 500 numbers of tasks. These large data sets are generated with the help

of normal, Poisson, and exponential distribution, respectively.

To measure the performance of the heuristics presented in Section 6, at first for optimality, all

possible sequences are generated by placing the tasks randomly for each problem of small data

set. Each generated possible sequence is considered as one sub example of all possible optimal

sequences. For example, there are 120 numbers of task sequences (e.g., 5!) are generated for 5

numbers of tasks. Similarly, there are 720 numbers of task sequences (e.g., 6!) are generated as

there are six tasks so on. But the above discussed five heuristic methods generate only one task

sequence for each test case of small data set. The basic aim is to calculate WTV for the test

cases, which satisfy the V-shaped optimal property.

Figure 3 shows the WTV performance of five heuristic methods is as good as the performance

of optimal methods for small size test cases. It was also observed that the RSS method gives

optimum or near optimum WTV results as compared with optimum generated WTV value.

Figure 3. WTV performance of between heuristics vs optimal for small set of jobs.

Heuristics and Hyper-Heuristics - Principles and Applications54

The WTV performance of EC1, EC2, VS, BS, and RSS heuristic methods for all the test cases of

large data set is shown in Figure 4. The computational result depicted that the WTV obtained

by RSS method seems to be near optimum in comparison with other four methods for different

numbers of tasks generated by three distribution methods discussed above.

For single processor scheduling problem, the computational cost is treated as computational

average time. It is observed that all heuristic methods used sorting mechanism before the

generation of tasks sequence except optimal method. Quick sort is an efficient sorting mecha-

nism that takes O (n log n) computational cost. It is also observed that the sequence generated

by VSmethod takes much larger computational cost than BS and RSSmethod as the calculation

of WTV is made multiple times. The sequence generated by BS method also takes larger

computational cost than RSS method as the calculation of total processing time is made multi-

ple times. Hence, by applying the concept of cutting a large fish into small pieces and distrib-

uted among the customers uniformly by a fishmonger generate an optimum or near optimum

sequence by minimizing WTV in very less computational cost is a major achievement.

Figure 4. Performance of WTV with respect to heuristics methods for large set of data (i.e., processing time) generated by

normal, Poisson, and exponential distribution.

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

55

8. Parallel processor scheduling

Parallel processing is one of the arising concepts that used to schedule a batch of ‘n’ numbers of

tasks to be processed by ‘m’ numbers of parallel processors [24]. This section presents a parallel

scheduling algorithm as a solution to the problem Qm|prec|WTV with an effect of minimiza-

tion of mean WVT. This approach is a heuristic based and the tasks are allocated dynamically

in the task sequence by keeping variance as a controlling parameter. The tasks are placed in the

individual sequence with the help of heuristic algorithms, so that the dynamic heuristic

methods take extremely less computational cost. These algorithms are tested on randomly

generated problems of varying numbers of tasks and processors as parameters. The effective-

ness with respect to mean WTV is done by comparing the result among the discussed heuristic

methods. The findings are shown in graphic form for corresponding problems.

8.1. Problem formulation for task scheduling problem

The uniform parallel processors i∈P ¼ {1, 2,…, m} are having different speeds s∈S ¼ {1, 2,…, m}

with the relation s1 < s2 < s3 <… < sm. This means that the first processor is the slowest

processor with low processing cost and the last processor is the fastest processor with high

processing cost. For a given task, the processing times on the uniform parallel processor is in

the ratios listed as 1=s1 : 1=s2 : 1=s3 :… : 1=sm. The processors are continuously available, and

they are never kept idle while work is waiting. The processors are assigned by the maximum

processing time capacity of a task, so that allotments of tasks are assigned on the basis of the

processing time. Thus, low processing time tasks are assigned to slowest processors and

highest processing time tasks are assigned to fastest processors. The designed uniform sched-

uling problem is based on the allocation of n, numbers of independent tasks

j∈ T ¼ f1, 2,…, ng as per the processing time at location k∈L ¼ {1, 2,…, n} on a set of m

numbers of uniform parallel processors i∈P ¼ {1, 2,…, m}.

The problem is formulated under five numbers of assumptions. At first, the starting time of

individual processors are assumed to initialize at time 0 (zero). In other words, all the tasks for

each processor are ready to begin for processing at the same time, i.e., 0 (zero). Second, each

processor is available deliberately prior to a condition that once the processor given a task to

process, it cannot be preempted until the task's processing time is completed on that processor.

Third, once a task is allocated to any one processor, it cannot be laid away to other processor

under any circumstance. Fourth, the number of tasks must be greater than the number of

processors, i.e., n > m, as the problem with n ≤m is irrelevant. Fifth, all the allocated processors

will be waiting according to the order of allocation, i.e., after the previously allocated task has

been finished the present task can be started.

From the literature, it was observed that number dominant properties on WTV problem has

been discovered and depicted by the researchers. To start, first for any scheduling sequence R,

CTV of R is equal to WTV of R0, where R0 is the antithetical schedule of R [25]. Second, the

scheduling sequence that minimizes WTV is antithetical to the scheduling sequence that min-

imizes CTV [25]. Third, CTV remains unchanged when reversing the order of the last n1

tasks [25]. Fourth, for CTV minimization problems, an optimal scheduling sequence is of the

Heuristics and Hyper-Heuristics - Principles and Applications56

form of (n, n�2, …, n�1), i.e., the largest task is arranged at the first position, the second

longest task is arranged at the last position, and the third longest task is arranged at the second

position [28]. Fifth, the optimal sequence for a WTV minimization problem is V shaped [10].

Sixth, Pm k CTV problem is NP complete in the strong sense when ‘m’ is arbitrary [24]. Seventh,

Pm k CTV Problem is NP complete in the ordinary sense when ‘m’ is fixed [24].

Minimization of WTV as a performance measure for task scheduling problem has been

discussed in Section 7 for achieving the service stability between the tasks in single processor.

The parallel processor is nothing but multiple numbers of single processors with same speed

or multiple numbers of single processors with different speed are working simultaneously for

achieving the concurrency. Hence, to come up with an optimized schedule, which minimize

the WTV is the aspiration of the task scheduling problem in parallel environment. The WTV

developed (S.1) in Section 7 will be utilized for the development of the WTV on parallel

processors. The WTV of tasks in a complete sequence for the parallel processor is obtained as

follows in Eq. (P.1).

WTV ¼
1

m

X

i∈P

1

ni � 1

X

j∈Lki
wtkij �

1

ni

X

j∈Lk
wtkij

� �2
 !

(P.1)

The objective is to find an optimum or near optimum schedule with pseudo-polynomial time

of Qm|prec|WTV problem by minimizing the variance of waiting time for n number of tasks on

m number of uniform parallel processors by Eq. (P.2).

Minimize ðQmjprecjWTVÞ (P.2)

subject to:

Σj∈Pi skij ¼ 1 ∀ k∈L (P.3)

Σi∈ T j
skij ¼ 1 ∀ k∈L (P.4)

Σj∈Pi
wtkij ¼ 0 ∀ k ¼ 1 (P.5)

wtkij ¼ wtk�1ij þ Σj∈P i
skij � ptj ∀ k∈L, j∈ T , i∈P (P.6)

Σj∈P i
qkij ¼ 1 ∀ k∈L (P.7)

qkij �N þ wtkþ1ij ≥ wtkij þ Σj∈P i
skij � ptj ∀ k∈L, j∈ T , i∈P (P.8)

skij ∈ f0, 1g ∀ k∈L, j∈ T , i∈P (P.9)

qkij ∈ f0, 1g ∀ k∈L, j∈ T , i∈P (P.10)

Ckij ≥ 0 ∀ k∈L, j∈ T , i∈P (P.11)

wtkij ≥ 0 ∀ k∈L, j∈ T , i∈P (P.12)

where N is large number.

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

57

Each task is assigned to a position is exactly once in any one of the processor sequence is

described in Eq. (P.3). Each position of any one process or sequence is used exactly once by a

task is described in Eq. (P.4). The waiting time for first task of the individual processor

sequence is described in Eq. (P.5). The waiting time of all other allotted tasks for the individual

processor except first one is described in Eq. (P.6). Eqs. (P.7) and (P.8) state that if two tasks are

on the same processor, then one must be scheduled after the other; otherwise, the values of

wtkij and wtk+1ij will not be related. Eqs. (P.9) and (P.10) indicate that the introduced decision

variables are binary in nature. Eqs. (P.11) and (P.12) represent that the value of completion time

and waiting time must be greater than zero.

8.2. Task allocation methods for uniform parallel processors

The uniform parallel processors are identified by their different speeds. The processors are

arranged in chronological order, such that the first processor is the slowest processor with low

processing cost and the last processor is the fastest processor with high processing cost. The

scheduling problem (Qm|prec|WTV) discussed above is a combinatorial problem. Therefore,

usage of a heuristic is inevitable to obtain solution in polynomial time. The challenge is to

distribute the tasks in an efficient manner among the processors. A unique task allocation

method named as PUM is presented in Ref. [20] for the allocation of tasks among the processors.

Uniform parallel processors consist of a bank of single processors with different speed, and the

computational cost is depending on the speed of the processors. It is most important to allocate

the task in such a way that the computational cost must be maintained. Hence, the unique task

allocation scheme named as PUM is combined with the heuristic methods namely VS, BS, and

RSS is also discussed in Ref. [20]. The efficiency of the three heuristic methods with the unique

task allocation scheme for uniform parallel processors is tested with a large number of test

cases discussed in the next section.

8.3. Problems for testing and performance analysis

To find the effectiveness of these heuristic methods, test cases are randomly generated with the

help of four probability distributions. At first with the help of normal distribution, 901 num-

bers of test cases are generated randomly in combination of 5 and 6 numbers of uniform

parallel processors for each case of 100 through 1000 numbers of tasks. The test cases are

followed by the same number of tasks and processors with the help of Poisson distribution,

exponential distribution, and uniform distribution. The performance analysis of the heuristic

methods with unique task allocation scheme is discussed below.

For analysis, mean WTV is taken as the measure of performance. Performance of measure of

three heuristic methods named as VS, BS, and RSS is analyzed by using a unique task alloca-

tion scheme named as PUM. This enhances the performance of heuristic methods for parallel

processing in uniform processors. The allocation scheme in combination with heuristic algo-

rithms is tested with a large number of test cases starting from 100 to 1000 tasks separately. The

results analysis for normal distribution on uniform parallel processor is presented in Figure 5,

Heuristics and Hyper-Heuristics - Principles and Applications58

which consists of two subfigures (a) and (b). The mean WTV obtained by the three heuristic

algorithms with the help of unique task allocation scheme is shown in each subfigure. The task

allocation schemes are implemented on each test case generated by normal distributions. The

subfigures (a) and (b) represent mean WTV performance for 5 and 6 numbers of uniform

parallel processors, respectively. The three heuristic methods are represented in each subfigure

(a) and (b) by three distinct colors. Green color represents VS method, black color represents BS

method, and red color represents RSS method. An enlarged view of mean WTV performance

of heuristic methods from total task numbers 221 to 226 is presented in each subfigure. The

computational result shows that the mean WTV obtained by RSS methods in combination of

PUM is apparently same in comparison with other two heuristic methods.

Similarly, the processing time for all the test cases is generated with the help of Poisson,

exponential, and uniform distribution, respectively. It is also observed that mean WTV

obtained by RSS methods in combination of PUM are apparently same in comparison with

other two heuristic methods as presented in Ref. [20].

Developing an efficient task allocation scheme and execute it with the heuristic methods for

uniform parallel processors is NP hard. To overcome it in uniform parallel processor, an

efficient task allocation scheme is required along with the heuristic methods. The average time

required for finding sequence by computing the heuristics in uniform parallel processor is

represented as computational cost. From the above discussed heuristic methods with PUM

allocation scheme, it is found that the VS method requires at least four tasks to commence,

and all the heuristic methods discussed in Section 6 need a sorting procedure after the PUM

allocation process is over and before the starting of heuristic process. Quick sort is an efficient

sorting mechanism that takes O (n log n) computational cost. Hence, it is used to sort the tasks

before implementation of heuristics. From the performance analysis, it is observed that the

computational cost of VS method is much larger then BS and RSS method, as the calculation of

WTV is made multiple times, and the computational cost of BS method is also larger than the

Figure 5. Comparison of mean WTV with respect to heuristics methods by using PUM allocation scheme for the

processing time generated by normal distribution.

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

59

RSS method, as the calculation of total processing time is made multiple times. It is therefore

revealed that the computational cost of RSS method is the least.

9. Conclusion and future scope

This work is motivated from the various criteria of timeliness that provide services to the users

of computer and network systems including response time, waiting time, turn-around time,

elapsed time etc. To provide uniform response to the users, i.e., to minimize the variance of

response time by minimizing the variance of access time is the problem of task scheduling by

minimizing WTV as a measure in single processor and extend to parallel processors. In other

words, a step has been taken for developing a scheduling procedure that minimizes the WTV

of the individual task.

In task scheduling problems, a lot of works are done on the area of completion time rather than

waiting time. Variance as a parameter is introduced by the researcher to minimize the CTV by

distributing the task processing time in such a way that the uniformity among the task is

obtained (i.e., QoS). For obtaining the uniformity in the scheduling problems, variance of

completion time is more effective rather than the completion time. It was also found that the

sequence that minimizes the variance of completion time is antithetical to the sequence that

minimizes the variance of waiting time. But it was found from the literature that a large

number of works are done on CTV, and in case of WTV, it is few.

The aim of this work is to analyze, study the peculiarity behavior, and develop efficient

heuristic methods for solving different classes of scheduling problems. As the addressed

problems are NP hard, the alternative of using heuristic methods has been proven to be good

one, whereas the exact solution always gives optimum solution by taking maximum time for

both single processor as well as parallel processors for a large set of tasks.

In these respects at first, basic elements of classical deterministic scheduling problem, different

aspects related to scheduling problem and algorithms, and classification of scheduling prob-

lems are presented. Second, different methods for solving scheduling problems, complexity of

scheduling problem, and basic knowledge on different schedule class are discussed. At last, an

overview on different objective classification criteria for both single processor and parallel

processors was presented.

Using the aforementioned background, a mixed integer programming model with two sched-

uling problems was addressed:

• A single processor scheduling problem Minimize (1kWTV) for minimizing WTV was

stated and solved in section 7 by using five heuristic methods namely as EC1, EC2, VS,

BS, and RSS.

• The processing time of tasks are generated randomly by three probability distributions

namely normal distribution, Poisson distribution, and exponential distribution.

• Performances of five heuristic methods are analyzed. It was observed that RSS method

gives optimum or near optimum results than other heuristic methods

Heuristics and Hyper-Heuristics - Principles and Applications60

• From the comparative result, it was also observed that the obtained WTV of the sequence

generated with the help of heuristic methods are always satisfying the V-shaped optimal-

ity property.

• It was also observed that RSS method gives results with minimum computational cost

than other heuristic methods.

• A uniform parallel processor scheduling problem Minimize (Qm|prec|WTV) for minimiz-

ing WTV was proposed and solved in Section 8 by using a RSS method in combination

with a unique proposed task allocation scheme named as PUM.

• A unique task allocation scheme was developed for allocating the task to individual

processor.

• The processing time of tasks are generated randomly by four probability distributions

namely normal distribution, Poisson distribution, exponential distribution, and uniform

distribution.

• Performance of measure of three heuristic methods namely as VS, BS, and RSS are ana-

lyzed by using a unique task allocation scheme named as PUM.

• The experimental results are compared and observed that RSS method with PUM alloca-

tion scheme reveals the best solution with minimal computational cost.

Therefore, it is concluded that in case of single processor, the computational cost of RSS

heuristic method is less than the other four heuristic methods. In case of uniform parallel

processor, the RSS method with PUM allocation scheme reveals the optimum or near optimum

solution with minimal computational cost.

Often new computer systems and new performance measures used to evaluate a system lead

to new directions in scheduling. The environment of scheduling is changing time to time

depending on resource availability, interruptions, and nature of changed demand. New sched-

uling is to be prepared in between an old unprocessed schedule. This give rise to change in

constraints and resources. This has to be rescheduled with changed objectives.

In future, keeping WTVas the measure of performance the following works will be carried out

for finding the suitability and effectiveness of the heuristic methods and task allocation

schemes proposed in this work.

• To apply the proposed work for available multiobjective scheduling problems.

• To apply the proposed work in order to investigate the field of tasks and resources

allocation in project like project management scheduling, broadcast scheduling, etc.

• To find out the effect of these proposed work in dynamic scheduling.

• Exploration of more efficient scheduler with better effective scheduling methods.

• Use of stochastic scheduling problems in real life environment.

• Suitability of techniques with cloud computing which is a kind of grid with virtual

services and service oriented architecture (SOA).

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

61

Author details

Satyasundara Mahapatra1*, Rati Ranjan Dash2 and Sateesh K. Pradhan3

*Address all correspondence to: satyasundara123@gmail.com

1 Indian Institute of Science and Information Technology, Bhubaneswar, India

2 College of Engineering and Technology, Bhubaneswar, India

3 Utkal University, Bhubaneswar, India

References

[1] Graham RL. Combinatorial scheduling theory. In: Steen LA, editors. Mathematics Today.

Vol. 3. Berlin: Springer; 1978. pp. 183–211.

[2] Graham RL. The combinatorial mathematics of scheduling. Scientific American. 1978;238:

124–132.

[3] Katona GOH. Combinatorial search problems. In: Srivastava JN, editors. A Survey of

Combinatorial Theory. Vol. 28. Amsterdam: North-Holland Publ. Co; 1973.

[4] Garey MR, Johnson DS. Computers and Intractability, A Guide to the Theory of NP-

Completeness. New York, USA: W.H. Freeman and Company; 2000.

[5] Williamson DP, Shmoys DB. The Design of Approximation Algorithm. Vol. 3. Cambridge,

UK: Cambridge University Press; 2010.

[6] Djuraskovic I, Arthur N. Heuristic inquiry: A personal journey of acculturation and

identity reconstruction. The Qualitative Report. 2010;1(6): 1569–1593.

[7] Nong Ye, Li X, Farley T, Xu X. Job scheduling methods for reducing waiting time vari-

ance. Computer & Operations Research (Elsevier). 2007;18:3069–3083.

[8] Vincent AC, Stephen F Smith. Heuristic Selection for Stochastic Search Optimization:

Modeling Solution Quality by Extreme Value Theory. 10th International Conference, CP,

Toronto, Canada, Proceedings, Vol. 3. 2004. pp. 197–211.

[9] Nessah R, Chu C. A lower bound for weighted completion time variance. European

Journal of Operational Research. 2010;10(3):1221–1226.

[10] Eilon S, Chowdhury IG. Minimizing waiting time variance in the single machine prob-

lem. Management Science. 1977;34(6):567–575.

[11] Mahapatra S, Dash RR, Pradhan SK. An approach to solve single machine job scheduling

problem using heuristic algorithm. International Journal of Emerging Technologies in Com-

putational and Applied Sciences (IJETCAS), ISSN (Online): 2279-0055. 2015;11(2):157–163.

Heuristics and Hyper-Heuristics - Principles and Applications62

[12] Poursalik K, Miri-Nargesi S. Meta-heuristic approaches for a new modeling of single

machine scheduling problem. Scientific Khyber. 2013;55(2):107–117.

[13] Socha K, Knowles J, Sampels M. A MAX-MIN ant system for the university timetabling

problem. In: Dorigo M, Di Caro G, Sampels M (editors). Ant Algorithms: Third Interna-

tional Workshop, ANTS 2002. Lecture Notes in Computer Science. Vol. 16; 2002. pp.1–13.

[14] Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy. Future Generation

Computer. 2000;16(8):851–871.

[15] Asadzadeh L, Zamanifar K. An agent-based parallel approach for the job shop schedul-

ing problem with genetic algorithms. Mathematical and Computer Modelling. 2010;52

(11–12): 1957–1965.

[16] Baudet P,Azzaro C, Pibouleau L, Domenech S. A genetic algorithm for batch chemical

plant scheduling. Proc. Int. Congress of Chemical and Process Engineering. 1996:pp. 25–30.

[17] Cardon A, Galinho T, Vacher JP. A multi-objective genetic algorithm in job shop schedul-

ing problem to refine an agents architecture. In Proceedings of EUROGEN'99. Jyvaskyla,

Finland. University of Jyvsaskyla; 1999.

[18] Zhai Y, Liu C, Chu W, Guo R, Liu C. A decomposition heuristics based on multi-

bottleneck machines for large-scale job shop scheduling problems. Journal of Industrial

Engineering and Management (JIEM). 2014;177(5):1397–1414.

[19] El-Bouri A, Azizi A, Zolfaghari S. A comparative study of a new heuristic based on

adaptive memory programming and simulated annealing: The case of job shop schedul-

ing. European Journal of Operational Research. 2007;155:1894–1910.

[20] Mahapatra S, Dash RR, Pradhan SK. A heuristic for scheduling of uniform parallel pro-

cessors. 2nd International Conference on Computational Intelligence and Networks

(CINE), KIIT University, Bhubaneswar, Odisha. IEEE Xplore Digital Library. 11 Jan

2016:78–83.

[21] Cai X, Cheng TCE. Multi-machine scheduling with variance minimization. Discrete

Applied Mathematics. 1998;128(1–3):55–70.

[22] Jozefowska J, Mika M, Rozycki R, Waligora G, Weglarz J. An almost optimal heuristic for

preemptive Cmax scheduling of dependent tasks on identical parallel processors. Annals

of Operation Research. 2004;129(129):205–216.

[23] Rafsanjani MK, Bardsiri AK. A new heuristic approach for scheduling independent tasks

on heterogeneous computing systems. International Journal of Machine Learning and

Computing. 2011;2(4):371–376.

[24] Xu X, Ye N. Minimization of job waiting time variance on identical parallel machines.

IEEE transactions on Systems, Man, and Cybernetics–Part C: Applications and Reviews.

2007;37(5):917–927.

[25] Merten AG, Muller ME. Variance minimization in single machine sequencing problems.

Management Science. 1972;38(9):518–528.

Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance
http://dx.doi.org/10.5772/intechopen.69224

63

[26] Pinedo M. Scheduling theory, algorithms and systems. Englewood Cliffs, NJ: Prentice-

Hall; 1995.

[27] Schrage L. Minimizing the time-in-system variance for a finite jobset. Management Sci-

ence. 1975;207(5):540–543.

[28] Hall NG, Kubiak W. Proof of a conjecture of Schrage about the completion time variance

problem. Operations Research Letters. 1991;27:467–472.

Heuristics and Hyper-Heuristics - Principles and Applications64

