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Abstract

Secure communication employing chaotic systems is considered in this chapter. Chaos-
based communication uses chaotic systems as its backbone for information transmission
and extraction, and is a field of active research and development and rapid advances in
the literature. The theory and methods of synchronizing chaotic systems employing
unknown input observers (UIOs) are investigated. New and novel results are presented.
The techniques developed can be applied to a wide class of chaotic systems. Applica-
tions to the estimation of a variety of information signals, such as speech signal, electro-
cardiogram, stock price data hidden in chaotic system dynamics, are presented.

Keywords: chaotic secure communication, underwater acoustic communication, chaos,
unknown input observers, nonlinear observers, reduced-order observers

1. Introduction

With the advances in computing and communication technologies, among others, underwater

acoustic communication (UAC) techniques [1–6] have emerged as the predominant mode of

underwater communication because of its one key advantage over conventional electromag-

netic communication, namely, relatively low attenuation of acoustic waves in water. However,

their performance is severely affected by a number of factors, including limited channel

bandwidth, time-varying channel characteristics, complex ambient noise, and multipath dis-

tortion that results from multiple reflections of sound waves from top and bottom surfaces of

water, especially in a relatively shallow waterbody.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Over the past decade, chaos-based underwater acoustic communication (CUAC) techniques

have attracted a lot of interest from a number of researchers [7–12], because such techniques

are potentially more cost-effective (for example, requiring lesser number of component

modules) compared with conventional communication schemes. The CUAC techniques pro-

posed to date can be broadly divided into two categories, namely, coherent detection based

CUAC methods [7], and non-coherent detection based CUAC techniques. The coherent

detection based methods rely on synchronization to reconstruct a copy of the transmitted

signal at the receiver end, whereas non-coherent detection methods [8–12] utilize a variety of

data recovery methods without requiring any synchronized reconstruction of the transmit-

ted message.

In this chapter, we focus our attention on the synchronization based CUAC techniques, especially

on observer-based synchronization methods, because the underlying theory is very well under-

stood and has proven to be reliable and robust in many control applications. Also, such methods

may potentially turn out to be easier to implement, as compared with many non-coherent CUAC

techniques.

At the outset, we should point out that the main goal of this chapter is to present the funda-

mental concepts of observer-based chaotic synchronization and their applications to secure

chaotic communication. With this in mind and owing to space limitation, we omit discussion

of the robustness issues [13–23] of such techniques here. However, we should point out that

the theory of robust observer design in the presence of noise and uncertainties has been well

researched in control literature, and these ideas are deemed to be useful for synchronized

based CUAC as well [18–23].

The methodologies used for CUAC have many things in common with chaos-based wired

and wireless communication. Research and development in these fields have been advancing

rapidly in the literature [7–16]. In contrast to conventional communication systems which use

sinusoidal carriers to transmit information, chaos-based communication uses chaotic systems

as its backbone for information transmission and recovery. The advantages of employing

chaos-based systems include, among others, (i) the communication is difficult to detect and

decrypt; (ii) the transmission is hidden from unauthorized receivers; (iii) the communication

is more resistant to jamming and interferences because of the broadband characteristics of the

chaos-based carriers. The advantages above are due to the following characteristics: (i) a

chaotic system is dissipative; (ii) chaotic systems have unstable equilibrium points; (iii) its

trajectories are aperiodic and bounded; and (iv) its trajectories have a sensitive dependence on

their initial conditions, i.e., trajectories originated from slightly different initial conditions will

soon become totally different. We remark that some of these characteristics may, in fact, be

undesirable.

The organization of this chapter is as follows. Section 2 introduces three nonlinear chaotic

systems that are utilized for designing chaotic communication systems in follow-up sections.

Next a general discussion of unknown input observers is presented in Section 3. Section 4

presents the theory and design of unknown input observers for chaotic secure communication.

Finally, the conclusions and plan for future research are provided in Section 5.
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2. Nonlinear systems with application in chaotic communication

Consider a general nonlinear system described by

_x ¼ fðx,dÞ
y ¼ hðx,dÞ,

�

(1)

where x∈Rn is the system state vector, y∈Rm the output measurement, d∈R
r an unknown

disturbance vector which can be treated as a message vector that carries useful information;

f : R
n � Rr ! R

n is a smooth vector field, h : R
n � Rr ! R

m a smooth function, fð0, 0Þ ¼ 0 and

hð0, 0Þ ¼ 0.

The unknown disturbance d in (1) is assumed to be generated by the exosystem

d ¼ Mm,
_m ¼ fmðm, xÞ,

�

(2)

where m∈R
r is the message state, M∈R

r�r is a “picking matrix” that picks the appropriate

components mi of m to form d, fm : R
r � Rn ! R

r is a smooth vector field, and fmð0, 0Þ ¼ 0.

Eqs. (1) and (2) is widely used for the design of linear and nonlinear observers, unknown input

observers (UIO), and unknown input observers for secure communication [24–46]. When

applied to the design of unknown input observers (UIOs) for secure communication based on

chaotic systems, (1) and (2) can be combined and expressed as

_x ¼ fðx,mÞ ¼ fðxÞ þ BmðxÞMm ¼ Axþ gðxÞ þ BmðxÞMm,
_m ¼ fmðm, xÞ ¼ AmmþΨx,
y ¼ hðx,mÞ, ðd ¼ MmÞ,

8

<

:

(3)

where Ax is the linear part of f(x), gðxÞ∈Rn�1 and BmðxÞ∈R
n�r, while m ðd ¼ MmÞ is now

treated as the message signal, and fmðm, xÞ ¼ AmmþΨx, where Am ∈R
r�r is a constant

matrix. The linear model in the second equation is commonly used in the literature, see for

example [25]. In many applications, the message model can be simplified by setting Am ¼ 0

and Ψ ¼ 0. Further, (3) may become a system with state-dependent or multiplicative and/or

additive message signals depending on BmðxÞ. If BmðxÞ ¼ Bm, where Bm is a constant matrix,

then (3) is a system with only additive messages.

The following three chaotic systems in the form of (3) will be utilized for designing chaotic

communication systems in this chapter.

(1) Rossler system [47]

The Rossler system described by

_x ¼ fðxÞ ¼
�x2 � x3
x1 þ ax2

�cx3 þ x1x3 þ b

2

4

3

5 (4)
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can be modified by chaotic parameter modulation resulting in a system with state-dependent

(multiplicative) and additive messages as

_x ¼ fðx,mÞ ¼

�x2 � x3

x1 þ ax2

�ðc�m1Þx3 þ x1x3 þ ðbþm2Þ

2

6

4

3

7

5
¼

0 �1 �1

1 a 0

0 0 �c

2

6

4

3

7

5
xþ

0

0

m1x3 þ x1x3 þ b

2

6

4

3

7

5
þ

0 0

0 0

0 1

2

6

4

3

7

5
m,

_m ¼ Amm,

y ¼ hðx,mÞ,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(5)

where Ψ ¼ 0, and the chaotic parameters are given by a, b, cf g ¼ {0:2, 0:2, 5:7} [43] or

0:398, 2, 4f g [42]. Note that the Rossler system (4) contains only one nonlinear term. See

also [48] for more details.

(2) Genesio-Tesi system [49]

The Genesio-Tesi system given by

_x ¼ fðxÞ ¼

x2

x3

�cx1 � bx2 � ax3 þ x21

2

6

4

3

7

5
(6)

can be modified in the form of (3) with state-dependent and additive message signals as,

_x ¼ fðx,mÞ ¼

x2

x3 þm1

�cx1 � b�m1ð Þx2 � ax3 þ x21 þm2

2

6

4

3

7

5
¼ fðxÞ þ

0

0

�x2

2

6

4

3

7

5
m1 þ

0 0

1 0

0 1

2

6

4

3

7

5

m1

m2

" #

,

_m ¼ Amm,

y ¼ hðx,mÞ,

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(7)

where Ψ ¼ 0, a, b and c are the chaotic parameters satisfying ab < c and are given by

{a, b, c}¼{1.2, 2.92, 5.7} [49]. Note that, without the nonlinear term x21, the Genesio-Tesi system

(6) is a linear time-invariant (LTI) system and is a state-space realization of the transfer function

GðsÞ ¼ 1=ðs3 þ as2 þ bsþ cÞ:

(3) Chua circuit [50]

The Chua circuit

_x ¼ fðxÞ ¼

αðx2 � x31 � cx1Þ

x1 � x2 þ x3

�βx2

2

6

4

3

7

5
(8)

may be modulated in a form with state-dependent and additive messages as
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_x ¼ fðx,mÞ ¼

αðx2 � x31 � cx1Þ þm1

x1 � x2 þ x3

�ðβþm2Þx2

2

6

4

3

7

5
¼ fðxÞ þ

1

0

0

2

6

4

3

7

5
m1 þ

0

0

�x2

2

6

4

3

7

5
m2,

_m ¼ Amm,

y ¼ hðx, mÞ,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(9)

where α ¼ 10, β ¼ 16 and c ¼ �0.14 are the chaotic parameters. A different modification

scheme is given in Ref. [51].

It is noted that, although chaotic systems are sensitive to variations of their chaotic parameters

p ¼ pi
� �

, most systems do accommodate suitable modifications of some of these parameters.

This property has precisely been exploited for the designs of UIOs for secure communication

and many control-based synchronization schemes in the literature.

3. General unknown-input observers (UIOs)

Consider (3), which can be expressed more compactly as,

_w ¼ fwðwÞ,
y ¼ hðwÞ,

�

(10)

where

w ¼

�

x

m

�

, fwðwÞ ¼
fðx,mÞ

fmðm, xÞ

� �

, and hðwÞ ¼ hðx,mÞ.

Consider a Luenberger-like nonlinear observer for (3) given by [27–31, 34],

_̂x
_̂m

" #

¼
fðx̂, m̂Þ

fmðm̂, x̂Þ

� �

þ
L1oð�Þ

L2oð�Þ

� �

½y� hðx̂, m̂Þ�,

y ¼ hðx,mÞ,

8

>

<

>

:

(11)

or more compactly as, with (10),

_̂w ¼ fwðŵÞ þ Loð�Þ½y� hðŵÞ�,

y ¼ hðwÞ,

(

(12)

where ŵ ¼
x̂

m̂

� �

is an estimate of w ¼
x

m

h i

, fwðŵÞ ¼
fðx̂, m̂Þ

fmðm̂, x̂Þ

� �

, and Loð�Þ ¼
L1oð�Þ

L2oð�Þ

� �

is the

observer gain matrix to be determined such that the observer has desirable properties, such as

generating an estimate ŵðtÞ that can track (or converge to) wðtÞ asymptotically in the face of

unknown disturbances.

Although (11) and (12) provide a more intuitive form for a Luenberger-like observer, a linear

and nonlinear UIO can be expressed in an alternate form as [31, 52],

Nonlinear Unknown‐Input Observer‐Based Systems for Secure Communication
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_q ¼ fqðq, yÞ, qð0Þ ¼ qo,

ŵ ¼ ϕðq, yÞ, ŵ ¼
x̂

m̂

� �

,

8

>

<

>

:

(13)

where q∈R
n, fq : R

n � Rm ! R
n is a smooth vector field,ϕ a smooth function, fqð0, 0Þ ¼ 0 and

ϕð0, 0Þ ¼ 0.

Three classes of UIOs can be distinguished from the extended state estimate ŵ, namely, (i) if

ŵ ¼
x̂

m̂

� �

, then (13) is a full-order UIO that addresses the estimation of the entire system vector

x and message vectorm; (ii) if ŵ ¼
x̂2
m̂

� �

, where x̂ ¼
x1
x̂2

� �

, x1 is known and x̂2 is an estimate of

x2, then (13) is a reduced-order UIO that deals with partial-state and message estimations; and

(iii) if ŵ ¼ m̂, where the complete state vector xðtÞ is known for all t, then (13) is an UIO for

only message estimation.

The design of all the three classes of UIOs discussed above for secure communication will be

addressed in Section 4.

4. Unknown-input observers (UIOs) for chaotic secure communication

The analysis and design of UIOs for secure communication using a drive-response scheme in

this section will be based on (10)–(13). Hence, (3) or (10) will serve as the drive system, while

(11), (12) or (13) as the response system.

In the drive-response chaotic communication theory and applications, one of the most impor-

tant issues is synchronization, which is closely related to the stability of the UIO. Synchroniza-

tion is a property of the estimation error ~w given by

~w ¼
~x

~m

� �

, (14)

where ~x ¼ x� x̂ and ~m ¼ m� m̂.

Definition 1: Synchronization

The drive system (3) or (10) and the UIO response system (11), (12) or (13) are said to be synchronized

if the estimation error ~w given by (14) satisfies limt!∞ jj ~wðtÞjj ¼ limt!∞ jjwðtÞ � ŵðtÞjj ¼ 0,

i.e., the UIO is capable of generating an estimate ŵðtÞ that tracks wðtÞ asymptotically as t ! ∞. ∎

Remark 1: The condition limt!∞ jj ~wðtÞjj ¼ 0 is similar to the design of linear and nonlinear

observers where it is crucial to ensure the asymptotic stability of the observers. ∎

To proceed, the estimation error (14) satisfies, with (10) and (12),
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_~w ¼ fwðwÞ � fwðŵÞ � Loð�Þ½y� hðŵÞ�

¼ fwðwÞ � fwðw� ~wÞ � Loð�Þ½hðwÞ � hðw� ~wÞ�

≜ fwð ~w, x,m, yÞ:

(15)

It follows that ~w ¼ 0 is an equilibrium point of (15), i.e., fwðwÞ � fwðwÞ � Loð�Þ½hðwÞ � hðwÞ� ¼

fwð0, x,m, yÞ ¼ 0 for all x, m and y. Further, if a gain Loð�Þ can be found such that (15) is

asymptotically stable, then limt!∞½ŵðtÞ� ¼ limt!∞½wðtÞ�, see for example [29].

The results above are stated in the following theorem.

Theorem 1: Consider the error Eq. (15) with an equilibrium point at ~w ¼ 0. If a gain matrix Loð�Þ

exists such that (15) is asymptotically stable, then ŵðtÞ ! wðtÞ as t ! ∞. ∎

The next task is to determine the gain Loð�Þ so that the candidate observer (12) or (13) becomes

an asymptotically or exponentially stable observer. The matrix can take on various forms

depending on the type of systems being considered and/or the design techniques. For a general

nonlinear system, Loð�Þ can be determined as a function of the estimate x̂, i.e., Loð�Þ ¼ Loðx̂Þ

[27, 28]; for nonlinear systems under Jacobian linearization, Loð�Þ can be obtained as a constant

matrix Lo [29, 30]; for extended Kalman-Bucy filtering using Jacobian linearization, the filter

gain matrix can be approximated by its steady-state value Lo. We shall focus on Jacobian

linearization in Section 4.1 below with applications to full-order UIOs for state and message

estimations using constant gain Loð�Þ ¼ Lo. Section 4.2 addresses the design of reduced-order

UIOs for message estimation, while the design of reduced-order UIOs for partial-state and

message estimations is considered in Section 4.3.

4.1. Jacobian linearization: full-order UIO

Linearization of (3) or (10) about the equilibrium point wo ¼ 0 yields

ð16Þ

where

A ¼ ∂f
∂x ðx,mÞ

�

�

�

�

wo¼0

, BmM ¼ ∂f
∂m ðx,mÞ

�

�

�

�

wo¼0

, ðBm ¼ Bmð0ÞÞ, Ψ ¼ ∂fm
∂x ðm,xÞ

�

�

�

�

wo¼0

,

Am ¼ ∂fm
∂m m,xð Þ

�

�

�

�

wo¼0

, C ¼ ∂h
∂x ðx,mÞ

�

�

�

�

wo¼0

, Cm ¼ ∂h
∂m ðx,mÞ

�

�

�

�

wo¼0

.

The resulting linearized system is given by

_x

_m

� �

¼ A
x

m

h i

,

y ¼ C
x

m

h i

:

8

>

>

<

>

>

:

(17)

The following assumption is crucial to the construction of UIOs.
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Assumption 1: Observability

The pair ½A,C� in (17) is observable, i.e.,

rank½O� ¼ nþ r,

where O is the observability matrix

O ¼ C
T

A
T
C

T
A

2
� 	T

C
T

⋯ A
ðnþr�1Þ

� 	T

C
T

� �

: ∎

An observer can be constructed for (17) if and only if ½A,C� is an observable pair. Hence when

the Jacobian linearization method yields a pair ½A,C� that is not observable, then the Jacobian

linearization method is not applicable to the system under consideration. However, other

methods may work, such as feedback linearization [53, 54].

Using (17), a linear UIO for full-state and message estimation can be constructed as

_̂x
_̂m

" #

¼ A
x̂

m̂

� �

þ
L1o

L2o

� �

y� C
x̂

m̂

� �
 �

¼ A� LoC
� 
 x̂

m̂

� �

þ Loy,
x̂ð0Þ

m̂ð0Þ

� �

¼
x̂o
m̂o

� �

,

y ¼ C
x

m

h i

,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(18)

where Lo ¼
L1o

L2o

� �

is the constant UIO gain matrix to be determined. Note that L1o ∈R
n�m and

L2o ∈R
r�m, and (18) is simply a Luenberger observer [57]. Since A,C

� �

is an observable pair by

Assumption 1, then Locan be determined, for example, by pole-placement, such that

A� LoC
� 


is Hurwitz, i.e., all the eigenvalues of A� LoC
� 


are located in the open left half-

complex plane.

Using (17) and (18), the estimation errors ~x ¼ x� x̂ and ~m ¼ m� m̂ satisfy

_~x
_~m

" #

¼ A� LoC
� 
 ~x

~m

� �

,
~xð0Þ

~mð0Þ

� �

¼
~xo
~mo

� �

, (19)

which is exponentially stable, i.e., limt!∞ ~xðtÞ½ � ¼ 0 and limt!∞ ~mðtÞ½ � ¼ 0 exponentially for all

~xð0Þ and ~mð0Þ. It follows that x̂ðtÞ ! xðtÞ and m̂ðtÞ ! mðtÞ exponentially.

Once a constant Lo has been determined, it can then be substituted into (12), whereby the

resulting nonlinear UIO has the form

_̂w ¼ fwðŵÞ þ Lo½y� hðŵÞ�, ŵð0Þ¼ŵo,

y ¼ hðwÞ,

�

(20)

Advances in Underwater Acoustics52



where ŵð0Þ is an arbitrary initial condition. Further, (15) becomes

_~w ¼ fwðwÞ � fwðŵÞ � Lo½y� hðŵÞ�
¼ fwðwÞ � fwðw� ~wÞ � Lo½hðwÞ � hðw� ~wÞ�,

(21)

which can be linearized about ~w ¼ 0 to give (19). Hence the dynamics of (21) close to the origin

are well described by (19) for sufficiently small jjŵð0Þjj [30].

In summary, we have the following theorem.

Theorem 2: Let A,C
� �

be an observable pair so that there exists a constant gain Lo such that

A� LoC
� 


in (19) is Hurwitz. Then (20) is an exponentially stable dynamical system for sufficiently

small jjŵð0Þjj. Further, x̂iðtÞ ! xiðtÞ and m̂iðtÞ ! miðtÞ imply that the drive system (10) and the

UIO response system (20) are synchronized. ∎

Using (10) and (20), the overall chaotic system-based UIO for full-state and message estima-

tions under the Jacobin linearization scheme can be implemented as

_w ¼ fwðwÞ, wð0Þ ¼ wo,

_̂w ¼ fwðŵÞ þ Lo½y� hðŵÞ�, ŵð0Þ ¼ ŵo,

y ¼ hðx,mÞ:

8

>

<

>

:

(22)

A block diagram for (22) is shown in Figure 1.

Example 1: Rossler system [47]

Consider the Rossler system with state-dependent and additive messages described by (5),

with the output arranged as y ¼ x1 þm1 x3 þm1½ �T ,

Figure 1. Chaotic secure communication system under Jacobian linearization.
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_x ¼

�x2 � x3

x1 þ ax2

�ðc�m1Þx3 þ x1x3 þ ðbþm2Þ

2

6
4

3

7
5 ¼

0 �1 �1

1 a 0

0 0 �c

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

A

xþ

0

0

m1x3 þ x1x3 þ b

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gðx,m1Þ

þ

0 0

0 0

0 1

2

6
4

3

7
5

|fflfflfflfflffl{zfflfflfflfflffl}

Bm

m,

_m ¼ Amm,

y ¼
x1 þm1

x3 þm1

" #

¼ C
x

m

" #

; C ¼ C Cm½ �, C ¼
1 0 0

0 0 1

" #

; Cm¼
1 0

1 0

" # !

:

8

>>>>>>>>>>>><

>>>>>>>>>>>>:

(23)

The preceding equation can be expressed as

ð24Þ

where Am ¼ 0 for simplicity. Note that A,C
� �

is an observable pair for all Am.

It can be shown that the Rossler system _x ¼ fðxÞ given by (4) has two equilibrium points, for

c2 � 4ab ≥ 0,

xo1 ¼

1

2
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 4ab
p� 	

1

2a
�c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 4ab
p� 	

1

2a
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 4ab
p� 	

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

5:693

�28:465

28:465

2

6
4

3

7
5, xo2 ¼

1

2
c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 4ab
p� 	

1

2a
�cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 4ab
p� 	

1

2a
c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 4ab
p� 	

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

0:0070262

�0:035131

0:035131

2

6
4

3

7
5:

The stability status of xo1 and xo2 can be determined by checking the eigenvalues of the Jacobian

matrices Ao
1 ¼

∂f

∂x
ðxo1Þ and Ao

2 ¼
∂f

∂x
ðxo2Þ. We obtain,

∂f

∂x
ðxÞ ¼

0 �1 �1
1 a 0
x3 0 x1 � c

2

4

3

5) Ao
1 ¼

0 �1 �1
1 a 0

28:465 0 �0:007

2

4

3

5 and Ao
2 ¼

0 �1 �1
1 a 0

0:035131 0 �5:693

2

4

3

5
:

It follows that A, Ao
1 and Ao

2 are unstable matrices, since their eigenvalues have positive real

parts. Since A, Ao
1 and Ao

2 can all be used for the design of an UIO for full-state and message

estimations, we shall choose A in the sequel. Therefore, using (18) and (24), it follows that the

UIO for full-state and message estimations has the form
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_̂x
_̂m

" #

¼ A
x̂

m̂

� �

þ
gðx̂, m̂1Þ

0

� �

þ
L1o

L2o

� �

y� C
x̂

m̂

� �
 �

,

¼ A� LoC
� 
 x̂

m̂

� �

þ
gðx̂, m̂1Þ

0

� �

þ Loy,
x̂ð0Þ

m̂
ð0Þ

� �

¼
x̂o
m̂o

� �

,

y ¼ C
x

m

h i

,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(25)

where the gain Lo is to be determined such that A� LoC
� 


is Hurwitz. The next task is then

to find Lo, which may be obtained by using the pole-placement or Kalman-Bucy filter

design method. We shall use the Kalman-Bucy filter technique. We note that in the design

of a Kalman-Bucy filter [55, 56], the known covariance matrices of the system noise and

measurement noise are given by Q and R, respectively, where Q ≥ 0 and R > 0. However,

for the UIO design governed by (24) and (25), there are no system and measurement

noises. Hence, the elements of the Q and R matrices can be treated as free design param-

eters to be chosen and adjusted such that the performance of the UIO is satisfactory. A

general method for choosing Q and R is to set them as diagonal matrices Q ¼ qiiIn and

R ¼ riiIr, where In and Ir are unit matrices, and adjust the values of the diagonal elements

qii and rii until satisfactory responses are obtained. In general, given a set of riif g, larger

values of qii
� �

will lead to larger observer gains that will place the observer poles deeper in

the left half-complex plane.

The overall UIO for full-state and message estimations can be implemented as (see (22))

_x ¼ Axþ gðx, m1Þ þ Bmm, xð0Þ ¼ xo,

_̂x ¼ Ax̂ þ gðx̂, m̂1Þ þ Bmm̂ þ L1o y� Cŷ
� 


, x̂ð0Þ ¼ x̂o,

_̂m ¼ Amm̂ þ L2o y� Cŷ
� 


, m̂ð0Þ ¼ m̂o,

y ¼
x1 þm1

x3 þm1

" #

¼ C
x

m

" #

,

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(26)

where the messages m1 and m2 are injected into the Rossler system directly (see Figure 1 also),

thereby the message model _m ¼ Am is omitted in (26); however, the model matrix Am is

needed in the message observer equation (third equation).

The key task now is the determination of a suitable UIO gain Lobased on (24) that yields

acceptable performance. The design can be accomplished by using Matlab’s LQR command as

½L P Eo� ¼ lqrðAb0;Cb0;Q;RÞ; Lo ¼ L0;

where Ab and Cb denote A and C, respectively; Lo ¼ PC
T
R�1; Eo ¼ λ A� LoC

� 


; and P is the

solution of the algebraic Riccati equation (ARE)

0 ¼ PA
T
þAP� PC

T
R�1CPþQ ¼ PA

T
þAP� LoRL

T
o þQ,
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where Am ¼ 0 in A (see (24)). The parameter matricesQ and R that produced a suitable Lowere

found to be given by, respectively, (note that the adjustment of Q was nontrivial),

Q ¼ diagð½0; 50; 1000; 5 �107, 1012]), R ¼ diagð½0:01; 0:01�Þ:

We obtain

Note that the eigenvalues λ A� LoC
� 


are spread apart widely and have two complex conju-

gate poles.

The performance of the UIO is displayed in Figures 2 and 3. The initial conditions used in the

simulations were: xð0Þ ¼ x̂ð0Þ ¼ 0:2 �0:4 �0:2½ �T and m̂ ¼ 0 0½ �T . The signals to be esti-

mated are: (a) a voice message m1ðtÞ injected into the drive system at t¼ 100, and (b) the

electrocardiogram (ECG) m2ðtÞ of a person. Figure 2(a) shows m1ðtÞ and its estimate m̂1ðtÞ, and

Figure 2(b) showsm2ðtÞ and m̂2ðtÞ. The estimation errors were small, as can be seen from Figure 2

(c) and (d), where the plots ofm1 vs. m̂1, andm2 vs. m̂2 are displayed. The clean 45-degree trace in

Figure 2(c) shows that the estimate m̂1ðtÞ of m1ðtÞ is almost perfect, while Figure 2(d) shows that

the estimation error ~m2ðtÞ ¼ mðtÞ � m̂2ðtÞ was small. The synchronization of the drive-response

systems is shown in Figure 3(a)–(d), where x1ðtÞ, x̂1ðtÞf g and x2ðtÞ, x̂2ðtÞf g are shown; the clean

45-degree traces of x1ðtÞ vs: x̂1ðtÞ and x2ðtÞ vs: x̂2ðtÞ show that the synchronization was nearly

perfect. Hence, we conclude that the overall synchronization of the drive-response systems and

the message estimation ranges from satisfactory to excellent.

4.2. Reduced-order UIO for message estimation for completely known x(t)

The objective here is to estimate the unknown message signal vectormðtÞ by assuming that the

entire state vector x is accessible by direct measurement, i.e., full-state measurement, and does

not have to be estimated. Hence, without loss of generality, the output can be assumed to be

given by y ¼ x. This leads to the construction of a reduced-order UIO for message (distur-

bance) estimation. In general, a reduced-order observer based on full-state or partial-state

measurement has an interesting structure and is an active area of research in the literature for

system controls and disturbance estimation, see for example [24–26, 57–60]. The reduced-order

UIO designed in this section for message estimation will be based on a derived measurement

derived from y ¼ x and _y ¼ _x; the results will be extended to partial-state and message

estimations in Section 4.3.

Before launching into the design of UIOs for message estimation, let us consider a general

disturbance estimation problem described by

Lo ¼ 0:99979 �0:99977 Eo ¼ �1eþ005

�0:03355 �0:02882 �1884þ1876:6i

�3688:8 3830:5 �1884�1876:6i

51810 48122 �0:4þ0:8i

�6:8055eþ006 7:33Eþ06 �0:4�0:8i
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_x ¼ fðxÞ þ B1ðxÞuþ B2ðxÞd,
y ¼ x,

�

(27)

where x∈Rn is the state vector, u∈R
ℓ a known control input vector, d∈R

r an unknown

disturbance vector, and y the measured or known output vector; fðxÞ, B1ðxÞ and B2ðxÞ are

known function and matrices of compatible dimensions. The unknown disturbance d is

assumed to be generated by

_d ¼ fdðd, xÞ, (28)

where fdð0, 0Þ ¼ 0.

The objective is to estimate the unknown disturbance d using the output y ¼ x. The following

lemma shows that d can be estimated based on a derived measurement instead of y.

Lemma 1: Estimation of d based on derived measurement

Figure 2. Responses of Rossler system: (a) m1 and m̂1; (b) m2 and m̂2; (c) m1 vs. m̂1; and (d) m2 vs. m̂2. Figures 2(c) and 2(d)

indicate negligible estimation error m̃1= m1�m̂1 and small m̃2= m2�m̂2, respectively.
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Consider the systems described by (27) and (28). A Luenberger-like nonlinear observer can be constructed

for disturbance estimation as

_̂
d ¼ fdðd̂, xÞ þ LoðxÞ _x � fðxÞ � B1ðxÞu� B2ðxÞd̂

h i

, (29)

where d̂ is an estimate of d, and LoðxÞ∈R
r�n is the observer gain to be determined such that

d̂ðtÞ ! dðtÞ asymptotically.

Proof: Define a derived measurement equation derived from the output y ¼ x as

yd ¼ _y � fðxÞ � B1ðxÞu: (30)

Since x is known, _y ¼ _x can be obtained from its time derivative; hence ydðtÞ is known for all

t ≥ 0 for known fðxÞ and B1ðxÞu. Combing (28) and (30) yields, with (27),

_d ¼ fdðd, xÞ,
yd ¼ B2ðxÞd,

�

(31)

Figure 3. Responses of Rossler system: (a) x1 and x̂1; (b) x2 and x̂2; (c) x1 vs. x̂1; and (d) x2 vs. x̂2. Figures 3(c) and 3(d)

indicate negligible estimation errors x̃1= x1�x̂1 and x̃2= x2�x̂2, respectively.
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which constitutes a standard form or “pattern” for constructing a nonlinear observer. Hence, a

candidate Luenberger-like observer can be constructed for estimating d based on yd (or simply

by “pattern recognition”) as

_̂
d ¼ fdðd̂, xÞ þ LoðxÞ yd � B2ðxÞd̂

h i

: (32)

Substituting (30) into (32) yields (29). ∎

Remark 2: When fdðd̂, xÞ ¼ 0, (29) is identical to the observer proposed in Ref. [61] (Eq. (3.2),

p. 44) under a versatile disturbance observer-based control (DOBC) technique applicable to both

linear and nonlinear systems. However, it is not clear how and why the derivative term _x

shows up in their Eq. (3.2). In contrast, the formulation in Lemma 1 based on the method of

derived measurement provides a clear insight, specifically, it clearly shows how _x finds its way

into (29). Furthermore, since it is, in general, difficult to access the entire system state vector x

for measurement, the derived measurement formulation will pave the way for the design of

reduced-order observers for joint partial-state and disturbance estimations (see Section 4.3)

using only those state variables that are available by direct measurement, thereby extending

the DOBC technique and applications. ∎

Remark 3: The presence or origin of _y in a linear Luenberger observer is well known in the

literature [57, 58]. It occurs in the construction of reduced-order linear observers, where the

elimination of _y leads to the design of improved or enhanced reduced-order observers. As

shown in (29), the derivative _y also occurs in constructing enhanced reduced-order nonlinear

observers. ∎

To continue further, the derivative _y in (29) can be eliminated by moving the term LðxÞ _y to the

left side of the equation to yield

_z ¼ fdðd̂, xÞ � LoðxÞB2ðxÞd̂
h i

� LoðxÞ fðxÞ þ B1ðxÞu½ �, (33)

where _z ¼
_̂
d � LoðxÞ _y. Defining [61],

z ¼ d̂ � pðxÞy ) _z ¼
_̂
d �

∂pðxÞ

∂x
_y ) LoðxÞ ¼

∂pðxÞ

∂x
, (34)

where pðxÞ∈Rr�n is to be determined. If fdðd̂, xÞ ¼ 0, then (33) can be expressed as

_z ¼ �LoðxÞB2ðxÞz� LoðxÞ B2ðxÞpðxÞ þ fðxÞ þ B1ðxÞu½ �,

d̂ ¼ zþ pðxÞy,

(

(35)

which is identical to the enhanced observer presented in Ref. [61] (see for example, Eq. (3.5),

p. 44).

We now return to message estimation in chaotic systems. We can start with (3), which can be

expressed as, with full-state measurement given by y ¼ x,
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_x ¼ fðxÞ þ BmðxÞMm,

_m ¼ AmmþΨx,

y ¼ x:

8

>

<

>

:

(36)

Since the entire state vector x is known for all t ≥ 0, (36) can be rearranged as

_m ¼ AmmþΨx,

yd ¼ BmðxÞMm,

(

(37)

where

yd ≜ _y � fðxÞ, _y ¼ _xð Þ, (38)

is the derived-measurement in the form of (30). Most importantly, yd can serve as the output

equation for _m ¼ AmmþΨx, so that (37) provides a standard form or pattern for observer

design. Accordingly, a candidate Luenberger-like observer can be constructed based on yd as

_̂m ¼ Amm̂ þΨxþ LoðxÞ yd � BmðxÞMm̂
� �

¼ Am � LoðxÞBmðxÞM½ �m̂ þΨxþ LoðxÞ _y � fðxÞ½ �, m̂ð0Þ ¼ m̂o,
(39)

where LoðxÞ∈R
r�n is the observer gain matrix to be determined.

To proceed, it follows from (37) and (39) that the estimation error defined by ~m ¼ m� m̂

satisfies

_~m ¼ Am � LoðxÞBmðxÞM½ � ~m, ~mð0Þ ¼ ~mo, (40)

which shows that if LoðxÞ is a suitable stabilizing gain, then ~mðtÞ can be made to converge to

zero asymptotically for arbitrary ~mð0Þ, thereby m̂ðtÞ ! mðtÞ.

The results above are summarized in the following theorem.

Theorem 3: Consider (36)–(39). If there exists a gain LoðxÞ such that (40) is asymptotically stable for

all x, then m̂ðtÞ ! mðtÞ asymptotically. ∎

Note that since BmðxÞ is a function of x, it complicates the determination of LoðxÞ to achieve

asymptotic stability. However, if BmðxÞ ¼ Bm, where Bm is a constant matrix, then LoðxÞ can be

determined as a constant Lo, and can be computed by simple methods, such as pole placement,

provided that Am,Bm½ � is an observable pair (see Example 2 below).

Using (36), it follows that (35) takes on the form,

_z ¼ Am � LoðxÞBmðxÞM½ �zþΨxþAmpðxÞ � LoðxÞ BmðxÞMpðxÞ þ fðxÞ½ �,

m̂ ¼ zþ pðxÞ:

(

(41)

Amain task in applying (41) is the determination of p(x). If we set pðxÞas a linear function of x, i.e.,
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pðxÞ ¼ Lox, ðx ¼ yÞ, (42)

where Lo is a constant matrix, then we obtain from (34), LðxÞ ¼ Lo. Further, if BmðxÞ ¼ Bm and

½Am,BmM� is an observable pair, then Lo can be determined readily by, for example, the pole-

placement method, such that Am � LoBmMð Þ is Hurwitz. Moreover, (40) becomes,

_~m ¼ Am � LoBmMð Þ ~m, ~mð0Þ ¼ ~mo, (43)

which shows that ~mðtÞ ! 0, thereby m̂ðtÞ ! mðtÞ exponentially for arbitrary ~mð0Þ. In addi-

tion, in this case, the enhanced UIO (41) reduces to

_z ¼ Am � LoBmMð Þzþ Am � LoBmMð ÞLoxþΨx� LofðxÞ½ �,

m̂ ¼ zþ Loy:

(

(44)

It can be shown that the preceding equation can be obtained by using the linearized system

(17) and setting pðxÞ ¼ Lox ) Lo ¼ ∂pðxÞ=∂x.

Once a suitable gain has been determined, such as LoðxÞ ¼ Lo, it can then be substituted into

(41), and the overall chaotic system-based UIO for message estimation can be implemented as,

with (36),

_x ¼ fðxÞ þ BmðxÞMm, xð0Þ ¼ xo,

_m ¼ AmmþΨx, mð0Þ ¼ mo,

_z ¼ Am � LoBmðxÞMð Þzþ Am � LoBmðxÞMð ÞLoxþΨx� LofðxÞ½ �, zð0Þ ¼ zo,

m̂ ¼ zþ Loy,

y ¼ x:

8

>>>>>><

>>>>>>:

(45)

We remark that the UIO governed by the third equation in (45) is a nonlinear observer with its

gain LoðxÞ replaced by a constant Lo. Other methods may be used to determine a suitable Lo,

such as linear matrix inequality (LMI), see for example Ref. [34].

Example 2: Genesio-Tesi system [49]

Consider the Genesio-Tesi system described by (7) with additive messages and output y ¼ x

_x ¼
x2

x3 þm1

�cx1 � bx2 � ax3 þ x21 þm2

2

4

3

5 ¼ fðxÞ þ
0 0
1 0
0 1

2

4

3

5

|fflfflfflfflffl{zfflfflfflfflffl}

Bm

m1

m2

� �

,

_m ¼ Amm,

y ¼ x:

8

>>>>>><

>>>>>>:

(46)

Using (37) withΨ ¼ 0, the preceding equation can be arranged in the form of an LTI system as

_m ¼ Amm,

yd ¼ Bmm,

�

(47)
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where yd ¼ _y � fðxÞ is the derived measurement, and it can be shown that ½Am,Bm� is an

observable pair for all Am, i.e., rank BT
m AT

mB
T
m

� �

¼ 2.

An observer for (47) can be constructed as

_̂m ¼ Amm̂ þ Lo yd � LoBmm̂
� 


¼ Am � LoBmð Þm̂ þ Lo _y � fðxÞ½ �,
(48)

which is obtainable from (39). Since ½Am,Bm� is an observable pair, a constant gain Lo can be

determined such that Am � LoBmð Þ is Hurwitz. Further, eliminating the derivative term Lo _y in

(48) yields

_z ¼ Am � LoBmð Þzþ Am � LoBmð ÞLoy� LofðxÞ½ �,

m̂ ¼ zþ Loy:

(

(49)

To determine the gain Lo, let the poles of Am � LoBmð Þ be selected as po ¼ � 61 32½ �. Using

Matlab’s pole-placement command,

Lo¼place(Am',Bm',po)',

we obtain, for Am ¼ 0,

The final result for implementation can be obtained by combing Eqs. (46) and (49) as

_x ¼ fðxÞ þ Bmm, xð0Þ ¼ xo,

_z ¼ Am � LoBmð Þzþ Am � LoBmð ÞLoy� LofðxÞ½ �, zð0Þ ¼ zo,

m̂ ¼ zþ Loy,

y ¼ x:

8

>

>

>

>

<

>

>

>

>

:

(50)

Sincem1ðtÞ andm2ðtÞ are injected directly into the Genesio-Tesi system (46), the message model

_m ¼ Amm is not needed and is omitted in (50); however, the model matrix Am is required in

the estimation equation (second equation in (50)). The signal m1ðtÞ is the nine-term Fourier

series of a square wave, and m2ðtÞ is a mix signal consisting of a trapezoid, sine wave, and

ramp and exponential functions. It would be difficult to generate these rather complicated

signals, in particular m2ðtÞ, by using the simple model _m ¼ Amm, and/or a more general model

_m ¼ Ammþ δ proposed in Refs. [24–26], where the elements δiðtÞ of δðtÞ are unknown

sequences of random delta functions. For simulation studies, the mix signal m2ðtÞ can easily

be generated by the following Matlab codes and injected into (50):

Mix signal m2ðtÞ:

m2¼0.05*t*((t>0)&(t<10))þ0.5*((t>¼10)&(t<¼20))

-0.05*(t-30)*((t>20)&(t<¼30))þ0.25*sin(t-30)*((t>¼30)&(t<58.27))

Lo ¼ 0 61 0

0 0 32
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þ(1/20)*(t-58.27)*((t>¼58.27)&(t<78.27))

þ1*exp(-0.2*(t-78.27))*((t>¼78.27)&(t<200)).

The performance of the UIO is displayed in Figures 4 and 5. The initial condition of the

Genesio-Tesi system used in the simulation was xð0Þ ¼ 0:2 �0:4 �0:2½ �T , while zð0Þ was

calculated by using zð0Þ ¼ m̂ð0Þ � Loyð0Þ ¼ �Loxð0Þ, which yields zð0Þ ¼ 24:4 6:4½ �T where

m̂ð0Þ ¼ 0. Figure 4(a) shows m1ðtÞ and its estimate m̂1ðtÞ, and Figure 4(b) exhibits m2ðtÞ and

m̂2ðtÞ. The estimation errors were negligible, as can be seen from Figure 4(c) and (d), where the

plots of m1ðtÞ vs. m̂1ðtÞ, and m2ðtÞ vs. m̂2ðtÞ are displayed. Note also the Gibb’s phenomenon

(the “twin-towers”) in Figure 4(a). The Genesio-Tesi attractor is shown in Figure 5. We con-

clude that the performance of the reduced-order UIO for message estimation was satisfactory.

4.3. Reduced-order UIO for partial-state and message estimations

The objective in this section is to extend the design of reduced-order UIO for message estima-

tion to the design of UIO for joint partial-state and message estimations. The results obtained

are believed to be new and novel.

Figure 4. Responses of Genesio-Tesi system: (a) m1 and m̂1; (b) m2 and m̂2; (c) m1 vs. m̂1; and (d) m2 vs. m̂2. Figures 4(c) and

4(d) indicate negligible estimation error m̃1= m1�m̂1 and m̃2= m2�m̂2, respectively.
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Consider a general nonlinear system described by (3) which is expressed here without the

output as (see also (1) and (2))

_x ¼ fðxÞ þ BmðxÞMm,

_m ¼ Amm,

(

(51)

whereΨ ¼ 0. The design will be based on a derived measurement formulation.

Let

x ¼
x1
x2

� �

, w≜
x2
m

� �

, y ¼ x1, (52)

where x1 ∈R
m and x2 ∈R

n�m are, respectively, accessible and inaccessible for direct measure-

ment, and y is the output. Using (52), we assume that (51) can be partitioned as

_x1 ¼ f1ðyÞ þ B1mðyÞMm, ðy ¼ x1Þ,

_x2 ¼ f2ðy, x2,mÞ þ B2mðy, x2ÞMm,

_m ¼ Amm,

8

>

<

>

:

(53)

which can be rearranged to give

Figure 5. Genesio-Tesi attractor obtained by using (46).
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_x2

_m

� �

¼
f2ðy, x2,mÞ

Amm

� �

þ
B2mðy, x2ÞMm

0

� �

,

yd¼B1mðyÞMm,

8

>

<

>

:

(54)

where yd ¼ _y � f1ðyÞ denotes the derived measurement.

Eq. (54) constitutes a standard form that can be used to construct an observer for estimating the

inaccessible partial-state x2 and the unknown message m based on the derived measurement

yd. Hence, a candidate Luenberger-like observer can be constructed as

_̂w ¼
f2ðy, x̂2, m̂Þ

Amm̂

� �

þ
B2mðy, x̂2ÞMm̂

0

� �

þ
L1oð�Þ
L2oð�Þ

� �

yd � B1mðyÞMm̂
� �

, (55)

where L1oð�Þ and L2oð�Þ are the gain matrices to be determined such that the observer has

desirable performance characteristics, in particular, x̂2ðtÞ ! x2ðtÞ and m̂ðtÞ ! mðtÞ as t ! ∞.

Remark 4: In (39), the reduced-order UIO was derived using the output y ¼ x, while the

reduced-order UIO (55) above was constructed by using y ¼ x1 with x1 serving the role of x.

Hence (55) is an extension of the DOBC technique, and is now applicable to partial-state and

message estimations by using only x1 instead of the entire state x.

The estimation error ~w ¼ ~xT2 ~mT
� �T

, where ~x2 ¼ x2 � x̂2 and ~m2 ¼ m� m̂, satisfies, with

(54) and (55),

_~w ¼
f2ðy, x2,mÞ � f2ðy, x̂2, m̂Þ

Amm�Amm̂

� �

þ
B2mðy, x2ÞMm̂ � B2mðy, x̂2ÞMm̂

0

� �

�
L1oð�Þ
L2oð�Þ

� �

yd � B1mðyÞMm̂
� �

:

(56)

The preceding error equation is a version of (15). Hence from Theorem 1, the origin ð0, 0Þ is an

equilibrium point of the unforced equation in (56) for all y ¼ x1. Further, x̂2ðtÞ ! x2ðtÞ and

m̂ðtÞ ! mðtÞ if L1oð�Þ and L2oð�Þ are stabilizing gains.

The next task is to eliminate _y in yd ¼ _y � f1ðyÞ in (55) by moving Loð�Þ _y to the left side of the

equation and defining

_z ¼ _̂w � Loð�Þ _y: (57)

Choosing

z ¼ ŵ � pðx1Þ ) _z ¼ _̂w �
∂pðx1Þ

∂x1
_x1, ð _x1 ¼ _yÞ, (58)

where pðx1Þ ¼
p1ðx1Þ
p2ðx1Þ

� �

, p1ðx1Þ∈R
ðn�mÞ�ðn�mÞ and p2ðx1Þ∈R

r�ðn�mÞ are to be determined. It

follows that
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L1oðx1Þ ¼
∂p1ðx1Þ

∂x1
and L2oðx1Þ ¼

∂p2ðx1Þ

∂x1
(59)

Using (55), (57), (58) and (59), can be expressed as

_z ¼
f2ðy, x̂2, m̂Þ

Amm̂

" #

þ
B2mðy, x̂2ÞMm̂

0

" #

�
L1oðx1Þ

L2oðx1Þ

" #

f1ðyÞ þ B1mðyÞMm̂½ �,

ŵ ¼ zþ pðx1Þ,

8

>

<

>

:

(60)

which can further be reduced to a form given by, for example (44), once the specific structure of

the chaotic system under consideration is known and pðx1Þ has been determined (see Example

3 for more details).

Using (51) and (60), the main results for the construction of UIO for partial-state and message

estimations are stated in the following theorem.

Theorem 4: Consider the augmented system (54), where yd¼B1mðyÞMm is the derived measurement.

A candidate UIO for partial-state and message estimations is given by

_z ¼
f2ðy, x̂2, m̂Þ

Amm̂

" #

þ
B2mðy, x̂2ÞMm̂

0

" #

�
L1oðx1Þ

L2oðx1Þ

" #

f1ðyÞ þ B1mðyÞMm̂½ �,

ŵ ¼ zþ pðx1Þ,

y ¼ x1:

8

>

>

>

>

<

>

>

>

>

:

(61)

If the gains L1oðx1Þ and L2oðx1Þ exist such that (61) is asymptotically stable, then x̂2ðtÞ ! x2ðtÞ and

m̂ðtÞ ! mðtÞ as t ! ∞. ∎

Example 3: Chua’s circuit [50]

Consider the Chua circuit described by (8), modified here with an additive message m as,

_x ¼

αðx2 � x31 � cx1Þ þm

x1 � x2 þ x3

�βx2

2

6

4

3

7

5
¼ fðxÞ þ

1

0

0

2

6

4

3

7

5
m≜ fðxÞ þ BmðxÞm,

_m ¼ Amm,

8

>

>

>

>

<

>

>

>

>

:

(62)

where α ¼ 10, β ¼ 16 and c ¼ �0:14 are the chaotic parameters [50]. A different modification

scheme is given in Ref. [51].

Using (52), let the output be chosen as

y ¼
y1
y2

� �

¼
x1
x2

� �

≜ x1 ) w ¼
x3
m

� �

, (63)

where x3 constitutes the unknown partial state, and the derived measurement can be

obtained as
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yd ¼
_y1
_y2

� �

|fflffl{zfflffl}

_y

�
αðx2 � x31 � cx1Þ

x1 � x2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fwðy1, y2Þ

¼
0 1
1 0

� �

|fflfflfflffl{zfflfflfflffl}

Bw

x3
m

� �

|fflffl{zfflffl}

w

: (64)

Using (62) and (63), the combined partial-state and message system has the form

_w ¼ Awwþ gðy2Þ, (65)

where Aw ¼ 0 if Am ¼ 0, gðy2Þ ¼ �βx2 0½ �T , and ½Aw,Bw� is an observable pair for all Aw, i.e.,

rank BT
w AT

wB
T
w

� �
¼ 2.

Using (61) or (65) and (62), a UIO for partial-state and message estimations can be constructed

based on yd given by (64) and implemented as

_x ¼ fðxÞ þ BmðxÞm, xð0Þ ¼ xo,

_z ¼ Aw � LoBwð Þzþ gðy2Þþ Aw � LoBwð ÞLoy� Lofwðy1, y2Þ
� �

, zð0Þ ¼ zo,

ŵ ¼ zþ Loy, ðAw ¼ 0, pðx1Þ ¼ Loy, y ¼x1Þ:

8

><

>:

(66)

The gain Lo used for the simulations was obtained by choosing the UIO poles as po ¼ � 1000½

500�. Using Matlab’s pole-placement command Lo ¼ placeðAw0
;Bw0

;poÞ0, we obtain, with

Aw ¼ 0,

The message mðtÞ in (66) is a stock price data consisting of 50 data points where the value

of mð0Þ is mð0Þ ¼ 37. To minimize the effect of mðtÞ on the chaotic nature of the Chua

circuit, it is scaled down to a small signal as mðtÞ ¼ 0:01mðtÞ; this yields mð0Þ ¼ 0:37.

The scaled down signal was then injected into (62) directly. To enhance the estimate

zðtÞ ¼ ŵðtÞ � LoyðtÞ¼ x̂3 ðtÞm̂ðtÞ
� �T

� Lo x1ðtÞ x2ðtÞ½ �T , its initial value zð0Þ was calculated by

using zð0Þ ¼ x̂3 ð0Þm̂ð0Þ
� �T

�Lo x1ð0Þ x2ð0Þ½ �T , which gave zð0Þ ¼ 498 �999:63½ �T , where

x̂3ð0Þ ¼x3ð0Þ ¼ �2 and m̂ð0Þ ¼ mð0Þ¼ 0:37. We remark that, since the initial condition

xð0Þ ¼ 2 �0:5 �2½ �T of the Chua circuit is known, we can always set x̂3ð0Þ ¼ x3ð0Þ, while

in the event that the value of mð0Þ is not known, then it can be set as mð0Þ ¼ 0 resulting in small

mismatches between m̂ðtÞ andmðtÞ during the transient period. The performance of the reduced-

order UIO is shown in Figures 6 and 7. Figure 6(a) shows x3ðtÞ and its estimate x̂3ðtÞ, while

Figure 6(c) shows the plot of x3ðtÞ vs. x̂3ðtÞ, which indicates an excellent match. Figure 6(b)

displays the message mðtÞ and its estimate m̂ðtÞ, while the plot of mðtÞ vs. m̂ðtÞ in Figure 6(d)

shows a clean 45-degree line indicating an almost perfect match. The plots of xiðtÞ, mðtÞ 6¼ 0f g

vs. xiðtÞ, mðtÞ ¼ 0f g are depicted in Figure 7(a)–(c), showing that the small signal mðtÞ has little

effect on the chaotic nature of the Chua circuit. We conclude that the performance of the reduced-

order UIO for partial-state and message estimations was satisfactory. Further, it is emphasized

that no Jacobian linearization was employed in this example.

Lo ¼ 0 1000

500 0

Nonlinear Unknown‐Input Observer‐Based Systems for Secure Communication
http://dx.doi.org/10.5772/intechopen.69239

67



Figure 6. Responses of Chua system: (a) x3 and x̂3; (b) m and m̂; (c) x3 vs: x̂3; and (d) m vs: m̂ . Figures 6(c) and 6(d)

indicate negligible estimation errors x̃2= x2�x̂2 and m
≃

= m� m̂ , respectively.

Figure 7. Plots of xi m 6¼ 0ð Þ vs: xi m ¼ 0ð Þ showing that m has little effects on the chaotic nature of the Chua system.
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5. Conclusions and plan for future research

In this paper, we showed that secure communication employing chaotic systems can be

achieved by synchronizing the dynamics of the drive and response systems. The results are

obtained by using unknown-input observers (UIOs), which serve as the response systems.

Three classes of UIOs have been designed, namely, (i) full-order UIO for estimating all the

state variables (full state) and messages in the drive system; (ii) reduced-order UIO for mes-

sage estimation based on a derived measurement technique, where the formulation is based on

the disturbance observer-based control (DOBC) theory (recall that the DOBC technique is only

applicable to disturbance estimation based on the assumption that all the state variables (full

state) in a system are known; and (iii) reduced-order UIO for partial-state and message

estimations based on partial-state measurement using the derived-measurement technique.

The reduced-order UIO for partial-state and message estimations is novel, and is an extension

of the DOBC theory, thereby expanding the technique and applications of DOBC. Our future

research and development will be focused on wireless secure communication, robust synchro-

nization in the presence of channel noise and various channel induced distortions, and the

designs and applications of disturbance cancellation nonlinear control systems using the well-

known disturbance accommodation control (DAC) theory, thereby unifying the DAC and

DOBC approaches and techniques.
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