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Abstract

Whole-liver decellularization comprises the removal of the antigenic cellular content, while 
maintaining intact 3D extracellular matrix architecture and the complex native vascular 
cues. As a result, it challenges the classical hurdles of xenotransplantation and hypotheti-
cally allows the production of bioengineered human-size liver constructs. The associated 
technique and understanding of the determinants of successful application evolved rapidly 
during the last decade. In this chapter, the authors offer a comprehensive walk-through, 
starting from the simplicity of the concept to the complexity of clinical application. Avoiding 
repetition, the chapter covers the fundamentals and advances of decellularization, recellu-
larization, ex vivo perfusion culture, and sterilization techniques. The interplay between the 
main pivots of whole-liver decellularization, namely intrinsic matrix potentials, immune 
response, and vasculature is described. An effort was made to dissect the hurdles facing 
the whole-liver decellularization approach and to highlight the gaps in current literature. 
The authors also offer insights about some critical concepts including intra-scaffold flow 
dynamics, gradient zonation, critical cell mass/density, mechano-sensitivity, substrate 
modifications, nondestructive analysis, and the surgeon’s perspective, together with the 
discussion of published in vivo trials and large-scale production parameters.

Keywords: liver, decellularization, recellularization, xenograft, mechano-sensitivity, 
flow dynamics, sterilization, thrombosis, nondestructive analysis, substrate modification

1. Introduction

The whole-liver decellularization (WLD) approach, one of the organ-engineering and 

xenotransplantation approaches, comprises the removal of hepatic cellular content through 

perfusion decellularization while maintaining an intact 3D extracellular matrix (ECM) 

scaffold and the native hepatic vascular network. Intact vasculature can then be used to 
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repopulate the scaffold (a process termed “recellularization”), and thereafter allow the 
delivery of nutrients/oxygen to the newly seeded cells in a bioreactor setting, and in vivo 
after transplantation. Thus, a functional human-scale bioengineered liver can be fabricated, 

which is devoid of the original cellular antigenic content, repopulated with allogeneic or 

patient-specific cells, and relies on the ECM potentials for supporting cell proliferation and 
differentiation.

The main target of WLD approach is to provide physiologically matching liver grafts of 

xenogeneic origin for clinical transplantation and thus significantly expanding the organ har-

vest pool, which is the main focus herein. However, several other possible applications exist 

including drug testing, production of hydrogels and flask-coating materials, incorporation 
into ex vivo liver-support devices, or the use in repair of other tissues in the form of mem-

branes (Figure 1). In this chapter, the authors offer a comprehensive walk-through of the dif-
ferent aspects of WLD, with the aim of highlighting the inadequacies and advances, clarifying 

the gaps in the approach hierarchy, and offering possible explanations and few theoretical 
insights. The main focus is to discuss and link the findings of the previous relevant studies, 
rather than inclusively listing them.

2. Concept

The concept of tissue decellularization was designed to evade the classical barriers to xenotrans-

plantation and, thus, offers enormous enlargement of the tissue and organ pool for tissue repair 
and transplantation, as provoked by donor/patient mismatch crisis. The concept strongly relies on 
the intrinsic potentials of ECM as its fundamental justification. The whole-organ decellularization 
strategy was a step forward after clinical and experimental success of decellularized biological 

membranes by applying the same principles to whole organs in order to supply physiological-

size-matched scaffolds for organ engineering. The cornerstone of this advance is the reliance on 
the native organ vascular system as a cue for perfusion decellularization,  recellularization, and 

Figure 1. Schematic presentation of the whole-liver decellularization applications.

Xenotransplantation - New Insights140



nutrients/oxygen delivery after in vivo transplantation. As a result, an expansion past the limita-

tions of diffusion distance for non-vascularized grafts (about 200 μm) can be achieved. The decel-
lularized whole-liver matrix (wDLM) therefore can hypothetically evade the xenograft immune 

rejection cascade by the removal of cellular antigens, supply physiological-size-matched con-

structs through reliance on the native vascular system, and allow for acellular scaffold steriliza-

tion, thus diminishing the risk of xenozoonosis.

In fact, the attractive potentials of ECM provoked the design of different approaches to pro-

duce ECM scaffolds that can be used for cell seeding or tissue repair, and offered as an on-shelf 
product. These approaches can be categorized into synthetic and natural ECM scaffold pro-

duction techniques. Although great advancements were achieved in the ECM synthetic tech-

niques, the complexity of native organ ECM and vasculature hinders the progress into organ 

constructs through this pathway. Natural ECM scaffolds, on the other hand, can be produced 
by either in vitro cell culture and further decellularization or borrowing the native tissue/organ 

ECM through tissue decellularization techniques. The complex liver architecture and vascu-

lature renders the WLD the most attractive approach for liver ECM scaffold production on a 
logical scale.

Among other xenotransplantation approaches, the simplicity of the WLD approach also 

acquires it a relative advantage. As opposed to genetic manipulation approaches for 

instance, WLD rather represents a simple combination of natural ECM potentials and 

human cell populations, and therefore involves borrowing of functional elements rather 

than modifying them to fit the human physiology. It simply aims to shift xenotransplants to 
the allotransplants or auto-transplants zone (if patient-specific cells are used). Genetic mod-

ification on the other hand requires more complex techniques and detailed appreciation of 
all the significant differences in antigenic expression and cell function effectors. However, 
despite the clear hypothetical simplicity, the application trials repeatedly demanded for 

deeper understanding and robust refinement of the decellularization/recellularization tech-

niques provoked by suboptimal functions and ultimately the short-term in vivo survival 
after transplantation.

In order to simplify the hierarchy of WLD, three main parameters that largely govern its 

success are identified, namely sufficient DLM intrinsic potentials, avoidance of adverse 
immune/host responses, and maintenance of patent hepatic vasculature. Other parameters 

including cell sources and sterilization for example can then be considered as cofactors and 

not integral in the proof of concept paradigm. The impact of insufficiencies related to these 
three basic elements can, however, overlap in various study designs. Therefore, the exact 

delineation of error becomes a difficult task. For example, both insufficiencies related to 
the vascular system and scaffold immunogenicity can result in vascular thrombosis. Also, 
poor intrinsic ECM properties can result in endothelialization defects and therefore vascular 

incompetency. Therefore, in order to accurately locate and troubleshoot the problems along 

the WLD process, isolated testing for each of the three parameters is necessary as distinct 

main categories, followed by their combination. Figure 2 shows a simplified theoretical vali-
dation flow chart.
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3. Technique

To the authors’ knowledge, a patent by Anthony Atala in 2002 offered the earliest discussion 
of the whole-organ decellularization concept [1]. However, Matthiesen et al. [2] presented the 

first published abstract reporting a perfusion WLD study. Since then, WLD progressed rap-

idly rendering it a fast growing field. During this progress, a wide range of decellularization 
techniques have been reported. In this section, the authors focus on the basic principles and 

significant advances in decellularization techniques in recent years. For a detailed review of 
the decellularization agents and techniques, the reviews by Gilbert et al. [3], Crapo et al. [4], 

and He et al. [5] are excellent references.

The decellularization methods can be categorized into chemical, physical, and enzymatic 

techniques, or a combination of them [3]. Among the chemical agents, detergents are sub-

divided into non-ionic (e.g., Triton X-100), ionic (e.g., sodium dodecyl sulfate (SDS), sodium 
deoxycholate (SDC), and Triton X-200), and zwitterionic detergents (e.g., CHAPS) [3]. The 

most frequently used detergents for WLD are SDS and Triton X-100, which largely replaced 
the use of peracetic acid (PAA) used widely in decellularized membranes production. Briefly, 
Triton X-100 causes lipid-lipid and lipid-protein bonds disruption with an adverse effect on 
glycosaminoglycans (GAGs) content, while SDS acts through the solubilization of cytoplasmic 
and nuclear membranes, but can result in protein denaturation, and also removes GAGs [3].

Figure 2. Schematic presentation of the whole-liver decellularization validation process.
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As a general scheme, the liver is removed after vascular cannulation, and the decellularization 

protocol proceeds after animal termination. The perfusion of detergents is preceded by saline/

phosphate-buffered saline (PBS)/or deionized water perfusion to wash out the blood and is 
followed by another step of perfusion (with or without Triton X-100) to wash out the remnant 
detergents. In between, decellularization agents are perfused utilizing a peristaltic-perfusion 

pump (with or without pulse dampeners). The perfusion flow rates and durations, the decellu-

larization agents used, their concentrations, and sequences are largely variable [5, 6]. Constant 

flow pressure rather than constant flow rate was infrequently used [7, 8]. Gravity-based per-

fusion was also reported [9]. An approach of lower SDS concentration with longer perfusion 

duration or gradually increasing concentration was advocated [10, 11], aiming at minimizing 

the damage to ECM and remnant detergent contents in the decellularized scaffold. In a recent 
study [12], increasing SDS concentration to 1% resulted in adverse cell outcomes after cell seed-

ing. Substitution of SDS with ammonium hydroxide is possible [13, 14]. Trends also include the 

higher reliance on enzymatic techniques as an adjunct to detergents. Gessner et al. [15] incor-

porated phospholipase and nucleases in their rat decellularization protocol, in combination 

with 1% SDC, which yielded efficient decellularization and matrix preservation. Trypsin-EDTA 
was used in combination in human decellularized liver matrix (hDLM) production [16]. On 

the other hand, physical methods are only applied in combination with chemical detergents in 

WLD. Many protocols included freezing/thawing cycles as a step before detergents perfusion to 

induce cell lysis. Freezing temperatures reach −80°C [13]. Freezing/thawing cycles using liquid 
nitrogen to room temperature shifts resulted in deterioration of scaffold’s collagen content (in 
an osteogenic ECM) [17].

The decellularization agents are perfused through one of the hepatic vascular systems, most 

commonly the portal venous (PV) system. To a lesser extent, perfusion through the hepatic 
veins (HVs) [16], and arterial system (HA) [18], but not the biliary system was investigated. 

A comparison of portal and arterial perfusion demonstrated lower DNA and better decellu-

larization homogeneity with the arterial route (not statistically significant), while perfusion 
through the portal vein resulted in higher hepatocyte growth factor (HGF) content [18]. Only 

one recent study described a technique for in vivo decellularization by surgically isolating 

one of the rat liver lobes into a separate perfusion circuit [19]. The application of oscillating 

pressure in a custom-made chamber to mimic the intra-abdominal pressures also resulted in 

better decellularization homogeneity, lower residual DNA content (not statistically signifi-

cant), and higher GAGs content (when the arterial system was used for perfusion) [18].

Despite the large number of studies dealing with WLD, the exact quantitative delineation of the 

effect of any of the decellularization agents remains a difficult task. The use of complex proto-

cols, the characterization at the end of protocol sequence, and the variable detergent concentra-

tion, flow rate, flow duration, and characterization panels are some reasons for this difficulty. 
Designing specific studies for single detergent effects taking into consideration the perfusion 
parameters is essential; such analysis was employed in kidney decellularization for instance 
[20]. Thus far, the authors believe that comparative studies are currently the most useful tool in 

this context. A comparison of Triton X-100 + SDS proved superior to SDS in decellularization of 
sheep and rat livers in terms of cell removal and ECM preservation, augmented by the results 

of in vivo implantation [21]. Maghsoudlou et al. [22] demonstrated the impact of pretreatment 

with EDTA perfusion for 15 min in a rat 4%-SDC-based decellularization protocol. The authors 
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reported significant decrease of DNA with EDTA pretreatment; the DNA content was, however, 
10% of that in fresh liver. EDTA was more efficient in removing cellular proteins as evidenced by 
quantitative shotgun proteomics. EDTA pretreatment also yielded a significantly higher content 
of collagen and elastin, while microarchitecture was more densely packed with reduction in 
hepatocyte pocket size. This packed microarchitecture could have shared in the higher content 
of matrix components and rendered the scaffold less suitable for recellularization as concluded 
by the authors [22]. The use of 1% SDS resulted in the collapse of vascular network compared to 
its preservation using 0.5 or 1% Triton X-100 as demonstrated by corrosion casting [23]. Mattei 
et al. [24] compared several decellularization protocols for porcine liver slices with or without 

ionic detergent (0.1% SDS); a combination of agitation and immersion was, however, used for 
decellularization rather than perfusion.

Studies demonstrated the use of livers from various animal species for decellularization 

including rats [10, 25–27], mice [13], ferrets [28, 29], rabbits [9, 30, 31], sheep [14, 21], and 

swine [8, 11, 32–34]. Decellularization of whole porcine liver was first reported by Matthiesen 
et al. [2]. Several reasons render pigs the most suitable organ source for human-scale liver 

engineering based on the current understanding; reasons include the physiological size 

matching, rapid maturation, availability for organ harvest, and the possible use of genetic 

engineering techniques [35]. Wu et al. [36] compared three porcine liver decellularization 

protocols namely 1% SDS, 1% Triton X-100 + 1% SDS, 1% SDC + 1% SDS, all followed by 1% 
Triton X-100 in PBS perfusion to remove residual SDS. The authors reported better cellular 
removal, and higher collagen and GAGs content (70% of native GAGs) with Triton X-100 + 
SDS combination. The same protocol also proved to be more biocompatible after perfusion 

recellularization with primary rat hepatocytes evidenced by significantly higher urea and 
albumin media content and higher expression of some liver-specific genes. On the other hand, 
sheep were also advocated for their size matching and anatomy [14]. Kajbafzadeh et al. [14] 

compared five perfusion protocols for sheep liver decellularization and found that the utiliza-

tion of ammonium hydroxide + Triton X-100 was the most appropriate in terms of efficiency 
and intact vasculature. Recently, human liver decellularization in the form of perfusion WLD 

[16], or immersion/agitation decellularization of liver tissue discs ([37], preprint) was investi-

gated. The source for human livers was either livers rendered unsuitable for transplantation 

[16] or obtained after hepatic resection for metastatic/benign liver lesions with no underlying 

chronic disease ([37], preprint). Table 1 summarizes human and porcine liver decellulariza-

tion studies.

Apart from the decellularization protocol, the wDLM scaffold modification during or after the 
perfusion process is a continuously growing field. Examples include chemical cross-linking 
(e.g., formalin) [8], NaCl matrix stabilization, and heparin immobilization. Cross-linking pre-

serves the matrix structure, interferes with degradation, and masks the antigenic content. NaCl 
(as a high-salt buffer) was used to achieve better matrix preservation during the decellulariza-

tion process [15]. Different techniques for heparin immobilization on the other hand were stud-

ied and resulted in decreasing intra-scaffold coagulation in vitro with a relative in vivo vascular 
patency improvement [7, 15, 32]. Many aspects regarding the effect of these techniques on recel-
lularization, cell-ECM interaction, and scaffold remodeling are, however, still to be elucidated. 
In a recent study [17], immortalized death-inducible human mesenchymal cells (mesenchymal 
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Liver source Technique Decell. agents Total duration Analysis Recellularization In vivo transplantation Reference

Porcine Freeze-thaw, 
immersion, and 

agitation (200 
rpm)

2% Triton X-100 + 
0.1% ammonium 
hydroxide, ± 

followed by 5% 

PAA (six different 
wash solutions 

were compared)

11 days Removed 

93–96% of DNA, 

better collagen 
preservation with 

water wash, higher 

GAGs content with 
PBS and salt wash

HepG2 or 1ry 

human hepatocytes, 

cultured on matrix 

discs for 21 days

None Lang et al. [33]

Porcine Perfusion 
through PV

0.25 and 0.5% SDS 2 days + an 
average of 100 
min

ECM preservation, 

only few nuclei 

were observed

Human fetal 

hepatocytes and 

fetal stellate cells 

(co-culture), 

perfusion culture 

for 3, 7, and 13 days

Auxillary 

transplantation of 

acellular posterior 

segment into pig, 

perfusion for 2 h

Barakat et al. [8]

Porcine Freeze-thaw, 
perfusion 

through portal 

vein

0.01–1% SDS, 1% 
Triton X-100, 0.1% 
PAA

4 days or more Removed 98.8% of 

DNA, preserved 

ultrastructure, 

vascular systems, 

and 13–20% of GFs

Isolated porcine 

hepatocytes, 

perfusion culture 

for 7 days

None Yagi et al. [11]

Porcine Freeze-thaw, 
immersion, and 

agitation

Compared non-

ionic (1% Triton 

X-100), and ionic 
(0.1% SDS) with 
three time intervals 

for each. All 

followed by 0.1% 
Triton X-100 in PBS

3–5 days Removed 97% of 

DNA, better matrix 
preservation with 

non-ionic protocol

Hepatocytes 

for cytotoxicity 

evaluation 

(compared four 

sterilization 

protocols)

None Mattei et al. [24]

Porcine Freeze-thaw, 
perfusion 

through PV, and 
HA ± oscillating 

pressure

1% Triton X-100; 
1% SDS

7 h Better DNA 
removal, ECM 

preservation, and 

homogeneity with 

oscillating pressure

None None Struecker et al. 
[34]
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Liver source Technique Decell. agents Total duration Analysis Recellularization In vivo transplantation Reference

Porcine Freeze-thaw, 
perfusion 

through PV

Wash with 

0.1% EDTA; 1% 
Triton X-100, 1% 
SDS. Followed 
by heparin 

immobilization

<1 day Almost complete 

DNA removal; 

ECM preservation; 

70% of GAGs 
content; elimination 

of xenogenous 

antigens

Rat 1ry hepatocytes 

or HUVECs (seeded 
in wells over the 

matrix), cultured for 

3 days

Acellular median 

lobe auxillary 

transplantation into 

pigs, vessels were 

patent at 60 min with 
heparin immobilization

Bao et al. [32]

Human Freeze-thaw, 
retrograde 

perfusion 

through venous 

system (0.2–0.3 
mL/min/g)

0.025% trypsin-
EDTA, 0.01-1% 
SDS, 3% Triton 

X-100, 0.1% PAA

14 days Absent DNA; 

architecture 

preservation; 

preserved 

distribution of 

collagen and 

fibronectin; 
decreased elastin

Human cell lines: 

hepatic stellate 

cells (LX2); 
hepatocellular 

carcinoma 

(SK-Hep-1); 

hepatoblastoma 

(HepG2), cultured 
for 21 days

Into immunocompetant 

mice (in the form of 

acellular tissue cubes) 

in the SC or omentum. 

No FB reaction or 
rejection process

Mazza et al. [16]

Human (and 

porcine)

Freeze-thaw, 
immersion, and 

agitation

1 and 0.1% Triton 
X-100

3 days Heterogeneous 

outcomes in 

human livers, 

while reproducible 

results in porcine 

livers

None None Mattei et al. 
([37], preprint)

Abbreviations: Decell, decellularization; ECM, extracellular matrix; FB, foreign body; GAGs, glycosaminoglycans; GFs, growth factors; HA, hepatic artery; HUVECs, human 
umbilical vein endothelial cells; PAA, peracetic acid; PBS, phosphate-buffered saline; PV, portal vein; SC, subcutaneous; SDS, sodium dodecyl sulfate.

Table 1. Human and porcine liver decellularization studies.
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sword of Damocles stromal cell line; MSOD) were used to produce ECM in vitro, and then 

apoptosis was chemically induced to achieve decellularization. Using MSOD cells overexpress-

ing vascular endothelial growth factor (VEGF) resulted in the production of matrix significantly 
enriched with VEGF. Applying a similar approach to customize or enforce wDLM composition 
is not yet investigated.

4. Characterization

Defining the outcomes of the decellularization technique is necessary for judging the success 
of the perfusion protocols and interpretation of the subsequent steps. A standard character-

ization panel also enables comparison between DLM studies considering the widely vari-

able decellularization protocols. Unfortunately, variation is also evident in the analyzed DLM 

parameters. For the description of the normal hepatic ECM/biologic scaffolds components 
and functions, Refs. [38–40] are valuable resources.

The most constant characterization checklist includes matrix and basement membrane struc-

tural components (collagen, fibronectin, laminin, and elastin to a lesser extent) and markers 
of successful decellularization (DNA analysis and absence of nuclear material on histology). 

Quantitative analysis mostly includes collagen and DNA contents. Accordingly, several pro-

tocols resulted in complete preservation of collagen with total/subtotal removal of DNA mate-

rial; examples include [10, 15, 32]. In case of incomplete removal of DNA, many reports met 

the criteria previously established for decellularized biological membranes [4]: the absence 

of visible nuclear material on histological examination using 4′,6-diamidino-2-phenylindole 
(DAPI) or H&E, the presence of <50 ng dsDNA per mg ECM dry weight, and <200 bp DNA 
fragment length [4, 41, 42]. Structural components, other than collagens, including elastin [16, 

32], reticulin [32], fibronectin, and laminin [24], were less commonly quantified. Few studies 
showed that elastin was significantly lower in human DLM (hDLM, around 20%) [16], and 

rat DLM (20–40%) [22] compared to controls despite efficient preservation of collagen. Other 
ECM components that were evidently affected by decellularization protocols are the glycos-

aminoglycans, with highest preservation around 77% of native liver [18, 22, 32]. Based on their 
vital biological roles in cell growth regulations and matrix assembly [43], protocols achieving 

their maximal preservation are desired. A certain extent of deterioration is, however, reason-

able due to their plasma membrane and intracellular components. Regarding growth factors 

(GFs), an essential component of the bio-functional DLM, Soto-Gutierrez et al. [27] showed 

the preservation of more than 50% of hepatocyte growth factor (HGF), and around 40% of 
basic fibroblast growth factor (bFGF). Interestingly, Struecker et al. [18] reported a higher 

level of HGF in rat DLM compared to native liver. Despite this, the exogenous supply of GFs 
is feasible during the bioreactor-conditioning phase.

The optimal way of comparison between the test and control samples remains a fundamental 

issue that needs to be addressed and standardized. Normally, cell removal from hepatic tis-

sue results in collapse of the corresponding cellular spaces and consequently a more densely 

packed ECM on histological and scanning electron microscopy (SEM) analysis. As a result, 
more intense staining and marker expression can be expected on histological analysis per unit 
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area. Mattei et al. ([37], preprint) demonstrated a method for ECM collapse compensation 

during histological assessment using image analysis. The technique is more easily applicable 

in porcine liver due to the prominent interlobular septa. Meanwhile, the weight of removed 

cellular material is compensated by ECM components during quantitative biochemical analy-

sis, resulting in frequently reporting DLM collagen content per unit weight to be higher than 

native liver, which is obviously an exaggeration. Thus, the accuracy of comparison is compro-

mised for all the quantitative parameters. However, these DLM quantitative analysis figures 
do represent the true DLM biochemical characteristics as absolute values. For comparison 
purposes, the use of pre- instead of the post-decellularization weight in quantitative measures 

can be a valid option, but requires the analysis of the whole liver/liver lobe. Although this 

can be applicable in small animals, it is not practical for human-sized grafts. Using a weight 

factor based on the pre- and post-decellularization weights neglects the loss of ECM compo-

nents and assumes uniformity of decellularization. The authors believe that using predefined 
anatomical territories or pre-decellularization marked volumes, with pre-decellularization 
volume-to-weight conversion being a feasible option but lacks validation.

Architectural analysis of the collagen fibers is another crucial aspect of structural integrity 
beyond mere chemical analysis. It is mostly elucidated using SEM. Satisfactory results were 

frequently obtained (e.g., [15, 16]). Validation of complete architectural integrity depends on 
the appreciation of the delicate ECM organization, which in turn guides cell homing, provides 

the functional niche for hepatic cell populations, and maintains the hepatic acinus gradation. 

Mazza et al. [16] demonstrated the preservation of delicate ECM architecture in hDLM includ-

ing the portal triad micro-anatomy, lobular arrangement, and framework of empty hepato-

cyte spaces on high magnification. Maghsoudlou et al. [22] measured the size of hepatocyte 

pockets, a fine refinement for SEM analysis. The authors reported a pocket size of 20.9 ± 0.5–
11.3 ± 0.3 μm depending on the decellularization protocol. The appreciation of the location of 
ECM components by immunohistochemical techniques relative to normal liver, rather than 

validating their presence, has become increasingly evident in recent studies and is integral to 

the concept of hepatic acinus zonation [15, 44].

The authors did not observe the utilization of scoring systems as a conjugate to histological 

techniques and SEM. This can provide quantitative outcomes of decellularization and archi-

tectural preservation. On the other hand, scoring systems were developed in case of kidney 
decellularization. Caralt et al. [45] developed two semi-quantitative scores to compare dif-

ferent kidney decellularization protocols for basophilia and architectural preservation. The 
scores were applied in relation to glomeruli, tubules, and vasculature. Each component was 

assessed in 5–10 high-powered fields per histological section. This type of scores does not 
only reflect the efficiency uniformity throughout the specimen and the differential effect 
of decellularization protocol on tissue components but also allow for comparison between 

different studies. The use of image analysis for histological comparison between DLM and 
native liver ([37], preprint), and the appreciation of decellularization homogeneity [18] were 

the only close reflections of this concept in WLD.

Surprisingly, Gal epitope, a main barrier to xenotransplantation, is not a frequent charac-

terization parameter in wDLM. In one study, Gal epitope showed remarkable reduction in 
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porcine wDLM by immunohistochemistry [32]. The study also demonstrated the absence of 

swine leukocyte antigen DR-alpha, swine leukocyte antigen-2, Sus scrofa cytochrome B, and 
porcine beta-actin in DLM compared to native liver. Generally, investigators utilize the DNA 
content and histological cellular appreciation as markers of efficient decellularization. This 
does not exclude the presence of antigenic cell components. In fact, Gal epitope was detected 
in several decellularized matrix products [46], however, with no clear adverse effect on the 
final remodeling, suggesting a threshold level for adverse outcomes. In view of the short-term 
graft survival of wDLM in in vivo studies, investigating the contribution of Gal epitope in this 
cascade is essential. Meanwhile, mass spectroscopy is increasingly being utilized for ECM 

characterization in recent studies. Recently, White et al. [12] used time-of-flight secondary 
ion mass spectroscopy (ToF-SIMS) to analyze the surface of decellularized porcine urinary 
basement membranes; results showed fragment remnants of SDS, Triton X-100, SDC, and cel-
lular material in the form of phosphate and phosphocholine peaks, depending on the decel-
lularization protocol used (with variable dsDNA content). Although these results are protocol 

dependent and the tissue source is different, the findings propose ToF-SIMS as a valuable tool 
for the assessment of decellularized materials.

Because the liver is neither a weight-bearing nor a contractile organ, it could be assumed that 
mechanical properties of the scaffold are not necessary for the physiologic functions of the 
engineered liver. However, Engler et al. [47] showed that the mechanical properties of the sub-

strate can guide the differentiation lineage of stem cells. Lozoya et al. [48] further investigated 

the mechano-sensitivity principle on hepatic stem cells; variation in E-cadherin expression in 

response to alterations in mechanical properties was demonstrated by embedding in hydrogel 

with different mechanical parameters, suggesting a role of substrate consistency in guiding 
the cell remodeling and organization. Hepatocytes also showed better viability and function 
with the use of perfusion bioreactor, or trans-well devices mimicking sinusoidal circulation, 
when compared to conventional culture. The superior results with dynamic perfusion tech-

niques can, however, be as well explained by better oxygen/nutrients delivery [49–51]. Hsu 

et al. [52] demonstrated that better hepatocyte viability and functionality are achieved with 
lower parenchymal pressure in a liver-assist device with a parenchymal chamber design. The 

biomechanical environment of the liver thus includes the substrate structural properties, as 

well as the pressures induced by the blood flow and interstitial fluid (although further inves-

tigations are necessary to delineate their effects). Another contributor to the hepatic mechani-
cal environment is the intra-abdominal pressures during the respiratory cycle. The increased 

intra-abdominal pressure during inspiration squeezes the blood through the hepatic veins, 

and alternatively lower intra-abdominal pressure during expiration results in increased por-

tal venous flow; this alternating cycle of squeeze/aspiration (exemplified as a sponge) was 
reported to improve the hepatic microcirculation and perfusion [18, 53]. Therefore, achiev-

ing an optimal mechanical environment for cellular differentiation, proliferation, and func-

tion relies on both the decellularization protocol, which determines the substrate mechanical 

properties, and the bioreactor conditioning, which supplies the dynamic component of the 

mechanical environment. Few studies investigated the effect of decellularization on mechan-

ical properties of DLM. Evans et al. [54] compared the mechanical properties of perfused 

native liver and DLM of ferrets at the tissue and cellular levels. The study demonstrated a 
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significant reduction in the liver stiffness by the decellularization process with a long-term 
Young’s modulus at tissue level of 10.5 kPa in native liver versus 1.18 kPa in DLM, and 4.4 
kPa in native liver versus 0.91 kPa in DLM at the cellular level. Mattei et al. [24] also com-

pared matrix stiffness between native porcine liver and porcine DLM and observed significant 
reduction in the compressive elastic modulus after decellularization (1.62 ± 0.13 kPa for native 
liver compared to 1.25 ± 0.07 and 1.31 ± 0.09 kPa for two different decellularization protocols). 
This protocol independency implicates the cell removal as the cause of stiffness reduction, as 
concluded by the study’s authors [24]. Sabetkish et al. [21] demonstrated comparable tensile-

testing parameters of rat and sheep wDLM compared to native liver; the maximal load was 

more similar to native liver when Triton X-100 + SDS were used compared to SDS. The ability 
to maintain equivalent mechanics in the absence of cells is logically questionable; a more real-

istic approach can obtain comparable characteristics after recellularization. Characterization 

related to vascular integrity and infectious potential of wDLM is discussed later in Sections 8 

and 11, respectively.

In parallel to the standardization of DLM protocols and the characterization of scaffolds’ fine 
constituents, progress in the correlation of DLM parameters with the recellularization, cell 

behavior, and in vivo outcomes is necessary for efficient feedback tuning. Klaas et al. [55] 

demonstrated alteration in ECM composition in regenerating liver after liver damage and its 

contribution in tissue remodeling. The current concept is that maximum preservation of ECM 

is desired; a deeper understanding based on cell/host-ECM interaction can lead to a tailored 

approach that can be suitable for the developing liver and fit the cell types used for recel-
lularization. Although tissue sampling is feasible, the development of nondestructive tech-

niques for scaffold characterization is highly desired as the progress continues toward in vivo 
experimentation. The study by Geerts et al. [56] is perhaps the most relevant in this context, in 

which the authors used CT and perfusate analysis as nondestructive tools to assess decellular-

ization parameters. DNA levels showed good correlation with the liver Hounsfield unit, and 
perfusate analysis allowed the assessment of the degree of GAGs’ depletion. Nondestructive 
characterization is also available for vascular analysis. Besides magnetic resonance imaging 
(MRI) and conventional computed tomography (CT) angiography [21], Gessner et al. [15] 

reported a nondestructive imaging technique to evaluate the DLM’s vascular patency, leak-

age, and flow rates using ultrasound modalities. The application of this technique to human-
scale liver, however, was not yet elucidated. Hagen et al. [57] reported the application of X-ray 

phase contrast computed tomography (PC-CT) as a nondestructive tool for the assessment 
of anatomical details of the scaffold and reflected some microarchitectural parameters; the 
technique is also quantitative.

5. Intrinsic DLM potentials

The decellularized matrix potentials can be mainly attributed to its bio-inductive and bio-

mechanical properties [5]. The authors find this functional categorization (bio-inductive/
biomechanical) most suitable for simplification of the whole-organ ECM concept, although 
the mechanical properties contribute to the bio-inductive potentials as previously discussed. 
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The main hypothesis is that the liver ECM—although neither the main nor the viable compo-

nent of the liver—is able to provide a framework to harness the heterogeneous cell popula-

tions of the native liver, maintain their function, and guide their maturation, differentiation, 
and the graft regeneration process.

Before discussing the evidence and shortcomings regarding this assumption, a major concep-

tual question should be raised, namely how long should the DLM provide these functions? 

In vivo studies of ECM-derived membranes for wound healing and tissue reconstruction 

demonstrated the dynamic interaction between the ECM material and the host environment 

resulting in initial degradation followed by remodeling. Small intestinal submucosa used to 

repair canine Achilles tendon was 60% degraded within 1 month, and complete degradation 
occurred in a 3-month period as host cells took over ending in successful remodeling [58]. In 

other words, the decellularized scaffold largely acts as a catalyst and guide for the process 
of cell migration and initial proliferation, thus a remodeling process can be initiated. In this 

paradigm, the ECM degradation acts as a release mechanism for bioactive molecules and thus 

is required for optimal host interaction [38]. However, the concept of biodegradation is not 

clarified in case of whole-organ scaffolds due to the limitations facing the in vivo experiments. 
As a result, the fate of the recellularized whole-organ scaffold remains rather vague, taking 
into consideration that the DLM serves as a transplantable functioning cell reservoir rather 

than simply guiding the healing process as in case of membrane or tissue repair scaffolds.

DLM-functional expectations include the ability to provide the volume and support for effi-

cient cell engraftment, for a heterogeneous group of cell types (discussed in Section 6), and 

to grant a bio-inductive environment for their initial proliferation and function (in a biore-

actor in case of ex vivo prepping, or in the recipient in case of auxiliary liver transplant). 

Studies have indeed showed that perfusion DLM proved superior or at least equivalent to 

regular culture conditions or collagen-sandwich technique in terms of hepatocytic functions 

and gene expression. For example, immortalized human fetal hepatocytes (IHFHs) showed 
2.5–3.5 times increase in mRNA expression of albumin (Alb) and alpha-1-antitrypsin (AAT) 
after 7 days of culture on DLM compared to regular culture conditions [59].

On the other hand, in vivo studies highlighted the transient functionality of the recellular-

ized DLM (r-DLM). Of significance in this regard are the studies in which seeded DLM slices 
have been implanted in immuno-compromised animal models, as the adverse host immune 

response and complex vasculature can be largely excluded, and as a result a more clear appre-

ciation of the in-built DLM potential is achieved. Zhou et al. [59] showed that the activity of 

IHFH-seeded DLM decreased gradually reaching 2.65% at 8 weeks using luciferase/biolumi-
nescence in vivo monitoring in immune-deficient mice, which proved superior to both IHFH-
seeded-Matrigel implants and splenic infusions. In the same study, primary hepatocytes 

remained viable and functioning on DLM slices in vivo for 6 weeks as shown by green fluo-

rescent protein (GFP) labeling and polymerase chain reaction (PCR) analysis of the explanted 
scaffolds, where functions comparable to freshly isolated hepatocytes were observed. The 
change of the primary hepatocytes functions along the 6-week duration was not, however, 
detailed. Microscopic examination showed the migration of GFP-negative cells into the scaf-
folds, the nature of which was not also demonstrated. Migrating cells were observed after 
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cross-species implantation of hDLM in another study [16]. This time, negative smooth muscle 

actin (SMA) staining suggested a fibroblastic nature. The temporary function of r-DLM in 
vivo raises doubts about the inherent abilities of DLM, the core of the WLD hierarchy. A 

suboptimal construct oxygenation and neovascularization, single-cell-type seeding, and the 

absent role of positive immune modulation may provide other explanations. The visualiza-

tion of DLM as a slow release device for bioactive molecules obviously suggests that the 

inherent stores are gradually drained and therefore required to be replenished by either the 

seeded cell populations or host contributions in which a positive immune response can be an 

effector. In this context, the aforementioned fibroblastic infiltration should be considered. It 
is worth mentioning that different liver cell populations are implicated in the process of ECM 
production during fibrosis [60]. A study also demonstrated that the behavior of hepatocytes 

and stellate cells in this regard varied in isolated versus co-culture conditions [61].

The gradient nature of the hepatic acinus ECM is largely overlooked in decellularization 
experimental studies. Briefly, the ECM components vary from Zone 1 to Zone 3 of the hepatic 
acinus and therefore provide variable micro-environments for intrahepatic cell populations. 

Consequently, hepatocytes from different zones showed variation in size and enzymatic func-

tions [62–64]. Zone 1 (periportal) ECM provides the suitable environment for hepatoblastic 

nature where proliferation is promoted, while Zone 3 ECM (pericentral) promotes cell differ-

entiation. This gradient was evident in ECM components of the space of Disse, in which the 

Zone 1 ECM resembles fetal/neonatal composition while Zone 3 ECM resembles adult com-

position [65]. Thus, this delicate ECM gradient allows for corresponding transition of cells 

from undifferentiated/progenitor cells to hepatoblast-like cells and ending in differentiated 
hepatocytes toward Zone 3 region. In vitro, ECM components like laminin, collagen III, and 
collagen IV (Zone 1 components) stimulated cologenic expansion of human hepatic progeni-
tor cells, while cell arrest and hepatocytic differentiation were induced by collagen I which is 
a component of Zone 3 [63]. The appreciation of zonal gradient should be more evident in the 

design and interpretation of liver decellularization-recellularization studies. Hypothetically, 

a whole-liver model should preserve the ability to finely tune the functions of different cell 
population and therefore has to maintain the differential zonal composition. Gessner et al. 
[15] showed that Hep3B cell line seeded into decellularized rat livers demonstrated zonal-
related markers expression. Only cells in zone 1 expressed epithelial cell adhesion molecule 
(EpCAM), which is a marker of undifferentiated/progenitor cells, compared to higher albu-

min expression in Zone 2 and 3 regions. Characterization of the used rat scaffold also showed 
the preservation of matrix components in their normal zonal location [44]. Therefore, it can 

be concluded that delicate decellularization protocols can not only preserve a certain zonal 

structural gradation but also the respective zonal potentials. The extent of this preservation 

remains unverified. Klaas et al. [55] also showed that differential changes occur in ECM com-

position throughout the zonal distribution in response to damage and guide the remodeling 

process. Establishment of this understanding paves the way for tailored ECM approaches. 

On the other hand, this gradient of hepatocyte maturation may not only be a function of 

ECM composition but also has been classically linked to oxygen gradient. In a recent review, 
Kietzmann proposed interplay between oxygen gradient, beta-catenin signaling, and hedge-

hog pathway to underlie the classical acinus zonation [66].
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As aforementioned, studies highlighted the influence of the mechanical properties of the scaffold 
on cellular behavior and subsequently contribute to the intrinsic bio-inductive arsenal. With this 

understanding, should an optimum human-scale liver scaffold resemble adult liver regarding 
its composition and mechanical aspects or rather the fetal and regenerating liver properties? If 

biodegradation and remodeling is desired, should the DLM preserve almost 100% of its chemical 
constituents? Should matrix-stabilizing techniques be used? Answers to these questions remain 

largely vague. Another issue to be considered is the discrepancy in the ECM composition/archi-

tecture between human and animal liver tissue. The porcine liver ECM is most consequential as 

it is considered the model capable of providing human-scale liver scaffolds. Indeed, the porcine 
liver is classically demarcated from human liver by its complete interlobular septa [67]; com-

parative analysis of ECM composition in regard to architecture and zonation is, however, still 

lacking. Accordingly, differences in interaction of porcine-derived DLM with human-derived 
cells may exist.

6. Recellularization

The ability to repopulate the DLM with human cells is an integral part of the WLD scheme. 

Animal-derived cells were frequently used to test the WLD hypothesis and improve the tech-

niques. However, the repopulation with human cells is essential for clinical application for 

immunological and functional reasons. In order to simplify the process, recellularization 

will be discussed in terms of cell sources, recellularization technique, and optimal cell mass/

density.

The liver is composed of a heterogeneous cellular environment, including hepatocytes, hepa-

toblasts, endothelial cells (ECs), progenitor cells, fibroblasts, Kupffer cells, undifferentiated 
cells, and cholangiocytes. An ex vivo-engineered liver should contain all of these cell popula-

tions whether by seeding them as differentiated cells or as undifferentiated/progenitor cells 
along their respective cell lineages and allowing them to differentiate in ex vivo bioreactor 
setting. In vivo differentiation, although a hypothetical alternative, may lead to blood seques-

tration issues if the scaffold is insufficiently recellularized due to void intra-matrix spaces.

Different cell sources including cell lines and/or freshly isolated cells were used in recellulariza-

tion studies to demonstrate the efficiency of the technique, cyto-compatibility of the scaffold, 
and its intrinsic ability to maintain cell functions or guide the differentiation process. Some of 
these cell sources are, however, not suitable for clinical application, and others face evident 

limitations regarding in vitro expansion. As an example, fetal hepatic cells were used to dem-

onstrate the feasibility of DLM recellularization and intrinsic potential of DLM to maintain 

hepatocyte-specific functions including urea and albumin production [8, 21, 29, 59, 68]; they 

are, however, not suitable for clinical application [69] but can be used for liver-support devices 

[70]. Primary hepatocytes were frequently investigated in recellularization studies [69] and on 

the functional level are ideal on the background of hepatocyte transplantation research. The 
main source for primary human hepatocytes is the harvested livers that were found unsuit-

able for transplantation, which represent a very limited resource [71]. The difficulty with 1ry 
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hepatocyte propagation in cell culture is another limitation [72], taking into consideration the 
minimum number of cells required for clinically valid engineered liver (discussed later). On 

the other hand, the use of stem cells, whether of embryonic origin (ESCs) or induced pluripo-

tent stem cells (iPSCs), offers several attractive advantages including the capacity to differenti-
ate into various cell lineages and therefore covers the spectrum of parenchymal, vascular and 

stromal cell components, feasibility of in vitro expansion, and the suitability for patient-specific 
recellularization approach (in case of iPSCs where the patient’s autologous cells can be uti-
lized). However, wDLM recellularization with ESCs and iPSCs, and the potential of DLM to 
efficiently drive the differentiation into the different cell lineages (with or without differentia-

tion cocktails) remain largely uninvestigated [69]. Despite that mesenchymal stem cells (MSCs) 

offer a differentiation potential along a more restricted range of cell lineages, they provide a 
source for stromal components, chemokines, and cytokines. Jiang et al. [13] used bone marrow 

MSCs to repopulate DLM and showed their hepatic differentiation with hepatocyte-related 
expression profiles; the recellularized DLMs were able to rescue a model of hepatic failure after 
their in vivo implantation. The aforementioned cell types can be used alone or in combination 

to repopulate the liver parenchyma. In case of repopulation with 1ry hepatocytes, the seeding 

of other cell components is necessary for vascular endothelialization and to reconstitute the 

hepatic stromal compartment. On the other hand, stem cells may be able to repopulate the 

three compartments (parenchymal, vascular, and stromal), confirming that these assumptions 
are, however, still required. Cell sources used for vascular re-endothelialization are discussed 

in Section 8. Stromal cells including mural cells, stellate cells, and Kupffer cells all share in the 
hepatic microenvironment, and therefore it is necessary to reestablish them. Baptista et al. [29] 

showed that the use of fetal hepatic stellate cells with fetal hepatocytes for recellularization 

is superior to hepatocytes alone. Cells that are not naturally native to human liver may also 

represent an addition to the recellularization armamentarium. Examples of these cells are the 

regulatory T-cells (tREGs) that are increasingly investigated for their role in immunomodula-

tion of xenograft rejection and may therefore be a valuable conjugate [73]. A degree of host-cell 

migration into the wDLM is possible, which can share in replenishing the stromal compart-

ment or the remodeling process. Few studies demonstrated the migration of host cells into 
the DLM slices, but the nature of these cells was not fully elucidated [32, 74]. Mazza et al. [16] 

showed the migration of SMA −ve host cells (probably fibroblasts) into human DLM implanted 
in rats. The fate of migrating host cells and their contribution in DLM remodeling requires 

further investigation.

Regarding in vivo recellularization, Sabetkish et al. [21] compared in vitro recellularization 

with in vivo recellularization of rat and sheep perfusion DLM placed in the sub-hepatic region. 

The authors concluded that in vitro recellularization is superior to the in vivo approach. 

Histological examination after 8 weeks showed an evidence of angiogenesis, binuclear cells, 
fibroblasts, and inflammatory cells, with more superior findings with one of the decellulariza-

tion protocols (Triton X-100 + SDS) and homografts. Liver enzymes were evidently inferior 
to both in vitro recellularization and native liver [21]. Bao et al. [7] observed a tiny number 

of PECAM-1 and von Willebrand factor (vWF)-positive cells in non-endothelialized wDLM 
after in vivo implantation (that lasted 72 h). The study’s authors suggested that the cells may 
have extended from the portal system. However, the in vivo approach may not be suitable 
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for vascularized grafts unless thrombosis can be efficiently prevented. Vascular thrombosis 
was reported to occur in 20 min after non-recellularized DLM transplantation. Blood seques-

tration in the empty matrix spaces is another concern [32]. In fact, the urgent need for organ 

replacement in acute liver failure and the debilitated general condition of end-stage liver fail-

ure patients make the in vivo recellularization clinical scenario unclear.

The two main recellularization techniques are vascular infusion and direct parenchymal 

injection. Despite that a report by Shirakigawa et al. [23] showed that directly injected hepa-

tocytes/spheroids (in gelatin) were able to reach a peri-vascular location in the DLM, the vas-

cular pathway was the most commonly used for whole-organ recellularization as it allows 

for uniform distribution of infused cells and can be suitable for recellularization of all hepatic 

compartments (parenchymal, stromal, and vascular). Soto-Gutierrez et al. [27] showed bet-

ter engraftment of cells using vascular perfusion compared to direct injection (≥67 and 13%, 
respectively). Cell seeding through the portal and hepatic venous systems was the most 

commonly used with variation in resulting spatial cell distribution. Generally, portal seed-

ing results in higher peri-portal engraftment, while hepatic venous seeding results in higher 

peri-central engraftment [29]. The simultaneous use of both routes can thus enable better dis-

tribution [29]. Hassanein et al. [75] demonstrated that neonatal cell slurry seeded through the 

biliary tree repopulated the parenchymal regions, CK-7 positivity also marked the presence 
of cholangiocytes. A comparison between biliary and portal seeding showed that more cells 

entered the parenchyma with the biliary approach (80% vs. 20% only) [76]. Regarding the 

infusion technique, stepwise infusion with periods of 10–15-min static resting intervals has 
repeatedly achieved better engraftment outcomes (≥86% vs. 70% engraftment, respectively) 
[10, 11, 13, 15, 27], implying the importance of stasis for engraftment. Several perfusion cycles 

can, however, be required to achieve the desired cell mass.

It is rational that the seeding of whole DLM requires the use of a perfusion bioreactor, as this 

setting will be mandatory for nutrients and oxygen delivery to seeded cells once the recel-
lularization is undertaken apart from the technique of seeding (bioreactor conditioning is 
discussed in a separate section). The way the infused cells reach the intra-matrix spaces is yet 

controversial. Baptista et al. [29] suggested that cell migration occurs through the gaps caused 

by decellularization detergents that render the vascular wall permeable to infused cells or 

through selective matrix binding. Interestingly, in a study by Gessner et al. [15], the authors 

showed that recellularization was successful despite the integrity and non-leakage of the vas-

cular network for 1–5-μm micro-bubble contrast material. The authors postulated that cells 
leave the intact vascular system through a technique similar to hepatocyte transplantation, 

where migration into the liver parenchyma was shown to occur through sinusoidal endothe-

lial disruption which provides sufficient spaces for cell migration into the parenchyma [77]. 

Similarly, the authors suggested a sequence of cell attachment and squeeze through the sinu-

soidal fenestrations [15]. For an overview of decellularized organ recellularization studies, the 
review by Scarritt et al. [69] is an excellent resource.

Despite the aforementioned advances with recellularization trials, a recellularized liver cell 

mass/density valid for clinical transplantation is yet difficult to achieve. To understand the 
recellularization targets, it is necessary to elaborate regarding the minimum requirements for 
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clinical transplantation. Thus, the authors believe it is necessary to differentiate between three 
parameters, namely “functional” cell mass, graft size, and cell density. In a thoughtful review 
by Caralt et al. [62], the authors suggested that a cell mass equivalent to 5–10% of host’s liver 
weight is the minimum requirement of scaffold cellular content based on the results of clinical 
hepatocyte transplantation in patients with acute liver failure. It should, however, be clarified 
that in hepatocyte transplantation, an intact liver is preserved and transplanted hepatocytes 

function partially by stimulating liver regeneration besides sharing in the repopulation pro-

cess (the latter considered as the main mechanism) [78] and therefore may not exactly mimic 

the seeded-scaffold situation. The aforementioned cell mass was also advocated for acute 
liver failure and not standardized for all transplantation indications. On the other hand, it 

is widely accepted as a standard for clinical liver transplantation to use graft weight/recipi-

ent weight (GRWR) ratio of 0.8% as the minimum for transplantation. Meanwhile, the 0.8%-
GRWR graft possesses native liver hepatocyte density and functions. Accordingly, a 60-kg 
individual will require a minimum graft weight of 0.48 kg. Hepato-cellularity assessment 
showed that human liver contains 139 ± 25 × 106 hepatocytes/g [79]. Therefore, successful 

engraftment of 49,920–78,720 billion hepatocytes may be required to achieve comparable 
hepato-cellularity (compared to approximately 10 billion hepatocytes if a cell mass equivalent 
to 5–10% of human liver weight is required), provided that the cell functionality is similar, 
otherwise a higher number may be necessary. To date, functional parameters of recellular-

ized wDLM equivalent to native liver were not achieved [10, 21]. The authors of this chapter 

believe that clinical liver transplantation calculations may represent a closer estimation for 

the whole-organ-engineering requirements and are more generalizable to various transplan-

tation indications in the context of orthotopic liver transplantation. To further augment this, 

portal implantation of recellularized DLM containing approximately 10% of total liver cell 
mass could not achieve long-term survival in 90% hepatectomized rats (n = 40), despite pro-

longing survival from 16 to 72 h [7]. The 10% rule may, however, be applicable if auxiliary 
liver transplantation or bridging is desired. The short-term failure in [7] can also be attributed 
to suboptimal function as an alternative explanation.

The second parameter is the optimal cell density. Human liver contains 1.23 × 108 hepato-

cytes’ nuclei per milliliter of liver tissue compared to 1.69 × 108 in rat liver [80]. A study using 

porcine hepatocytes in bio-artificial liver demonstrated a cell density of 5 × 106 cells/mL to be 

optimal for most of the functional parameters [81]. Interestingly, hepatocytes demonstrated 

lower functional profiles and viability at low densities, while a density of 5 × 106 or higher was 

associated with superior parameters in alginate scaffold [82]. Thus far, equivalent densities 

to native liver could not be achieved considering the inferior cell numbers per gram of recel-

lularized tissue ([7] for example), which can be logically considered to have at least an equal 

volume to a gram of native liver. The delivery of high concentration of cells can also face tech-

nical issues in the form of vascular blockage [62] and insufficient oxygen/nutrients delivery.

Based on the inferior cell density and intra-scaffold function, the graft size in case of recel-
lularized DLM will be consequently larger than that for clinical transplantation. Finally, 
many parameters regarding recellularization efficiency and substrate potentials require con-

siderable improvement; in addition, the limited cell sources are considered a major hurdle 

facing the recellularization concept. Dependency on harvested livers deemed unsuitable 
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for transplantation as the source for primary hepatocytes is insufficient. Therefore, the 
development of alternative cell sources including undifferentiated cells/progenitors, the tech-

nical refinement of in vitro cell expansion, and bioreactor conditioning is necessary to achieve 
clinical relevant cell mass.

7. Immunologic aspects

The efficient removal of xenoantigens by the decellularization process and thus evading a 
destructive rejection cascade are imperative to the success of WLD. Repopulation of the scaf-

fold by autologous or allogeneic cells is designed to allow the use of no or routine immu-

nosuppressive therapy, respectively. The oligosaccharide α-Gal (Galα1,3-Galβ1–4GlcNAc-R; 
Gal epitope), which is mainly found as a cell membrane antigen, and xenogeneic DNA are 
considered the main antigens stimulating the rejection cascade for xenogeneic biomaterial [46].

Studies showed that commercially available decellularized biologic scaffolds and prosthesis 
retain a variable amount of Gal epitope. An increase in anti-Gal antibody levels was also 
noted after transplantation of xenogeneic material [83, 84]. The use of galactosidase resulted 

in a decrease in T-lymphocytic infiltration in porcine cartilage grafts [84]. Ex vivo exposure 

of small intestinal submucosa (SIS) of porcine origin to human plasma showed predominant 

IgG2 fraction conjugation; Gal epitope was shown to stimulate the same fraction [85, 86]. 

However, complement activation did not occur, probably due to the low density of the epi-

tope [87, 88], suggesting a threshold for adverse outcomes. Raeder et al. [89] showed that 

the implantation of SIS in Gal knockout mice resulted in the formation of anti-Gal antibod-

ies; furthermore, pre-sensitization with sheep erythrocytes resulted in more intense early 

inflammatory cellular infiltration. Despite that these findings highlight the retention of a vari-
able amount of Gal epitope after tissue processing, the host response did not affect the final 
remodeling outcome. On the other hand, analysis of commercially available ECM products 

also showed the presence of DNA material [90, 91]. Although remnant DNA was shown to 

drive an inflammatory process, the clinical success of these materials implies that adverse 
host responses are also unlikely to occur below a certain threshold amount of DNA frag-

ments retained. The ECM biodegradation process should normally include the remnant DNA 

content as well [46]. Crapo et al. [4] suggested criteria for remnant DNA that are necessary 

to avoid an adverse inflammatory/immune response and therefore allow graft remodeling; 
these criteria are the absence of visible nuclear material on histological examination using 

4′,6-diamidino-2-phenylindole (DAPI) or H&E, the presence of <50 ng dsDNA per mg ECM 
dry weight, and <200 bp DNA fragment length [4, 41, 42]. These criteria were frequently 

met in WLD studies. A recent study demonstrated complete removal of DNA from human 

DLM [16]. However, Gal epitope analysis is not routinely included in DLM characterization 
panel as aforementioned. Bao et al. [32] demonstrated remarkable reduction in Gal epitope 
compared to native liver by immunohistochemical staining. Although both the consistent 

efficiency of the decellularization outcome ([37], preprint) and the complete removal of all 

cellular components [4] are debated, the current decellularization parameters of wDLM were 

enough for the clinical success of the decellularized biologic membrane scaffolds [4].
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Transplantation of porcine organs into primates results in rapid innate immune response 

driven by natural antibodies, which bind to vascular endothelium and result in complement 

activation and hyper-acute rejection (HAR). An innate cellular response comprising mac-

rophages, neutrophils, monocytes, and natural killer cells coexists. Innate cellular immune 
response results in the development of a delayed form of rejection commonly named acute 

vascular rejection (AVR) if HAR was successfully evaded [35, 73]. The extent of adaptive 

immune response and the contribution of T-cell in acute cellular rejection (ACR), a classical 

component of allo-response, are, however, controversial [73].

Few in vivo studies have examined the immunologic response to perfusion DLM slices across 
species. The first [74] examined a pig DLM to rat xenotransplantation model and rat DLM 

to rat allotransplantation model, where DLMs were implanted in the subcutaneous dorsal 

adipose tissue. The specimens showed no capsulation, exudation, or a noticeable adverse 

host response in the adjacent tissue in both models along 28 days. The total WBCs count 
did not show a significant increase as well over 28 days. Although cellular infiltration was 
evident after 7 and 28 days, low to no CD3+ T-lymphocyte activation was noted, the infiltrat-
ing cells showed positivity for the pan-macrophage marker (CD68), but neither M1 nor M2 
phenotypic markers were evident. The second [16] examined a human DLM to rat xenotrans-

plantation model. Cubic DLM fragments were implanted both subcutaneously and in the 

omentum. Mild inflammatory response was observed in the surrounding tissue after 7 days 
in the form of polymorphonuclear (PMN) cells and lymphocytes infiltration, while reduced or 
no inflammation was detected after 21 days. Analysis demonstrated predominance of CD3+ 
T-cells. SMA −ve cells (probably fibroblasts) were observed at the time of explantation. In both 
aforementioned studies, scaffolds were well characterized regarding the DNA content and 
structural components, and no adverse immune response was observed. On the other hand, 

Sabetkish et al. [21] reported inferior results of in vivo recellularization of xenografts (sheep 

to rat) compared to homografts (rat to rat) after sub-hepatic implantation of DLMs; xenografts 

also showed more marked inflammation and fibrosis.

It is important, however, to highlight that the biological membrane and in vivo DLM slices 

studies may not accurately mimic the immune response to bioengineered whole-organ trans-

plants for four reasons: (1) the techniques of decellularization and processing of biological 

membranes differ from that for DLM; therefore, host responses can vary. A comparison of 
host responses to five different ECM products—four of them were xenogeneic—showed a 
considerable variation in host response, explained by their different processing techniques 
[46, 92]. (2) Studies demonstrated the difference in immune response between vascularized 
and non-vascularized grafts represented in the antigen immune dominance and the strength 

of indirect allo-response [93, 94]. Although these findings are related to HLA antigens, which 
have less/no significance (apart from the current debate) in clinical liver transplantation and 
obviously no direct link with decellularized material, a discrepancy in the response may still 
exist. The presence of Gal epitope on vascular endothelial cells is in fact considered the main 
drive for the hyper-acute rejection of xenotransplants [46, 95–97], and this cannot be eluci-

dated using DLM slices. The three previous studies used non-vascularized grafts and thus 

the classical sequence of HAR and AVR (the main pivots of xenotransplantation rejection 
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cascade) could not be examined. (3) Transient immune/host response considered as benign in 

the aforementioned studies can be sufficient to induce vascular/sinusoidal thrombosis/block-

age in the vascularized model. In vivo studies of xeno-response to vascularized DLMs are still 

missing. The last two assumptions are yet impossible to investigate due to the short-term graft 

survival in wDLM transplantation trials, taking into consideration however that an immune/
inflammatory response can contribute to this short-term failure. (4) Finally, despite the fact 
that human-to-rat, pig-to-rat, and sheep-to-rat models are xenotransplantation models by 

definition, their relevance to pig-to-human xenotransplantation model is largely question-

able. The aforementioned xenotransplantation models do not represent Gal-positive to pre-
sensitized Gal-negative transplantation models [35]. It would be very interesting to elucidate 

the immune response in a complement-enriched, pre-sensitized Gal-knockout or non-human 
primate (old world monkeys) recipient after vascular anastomosis.

Two important approaches should be mentioned in this context because of their capability 

to largely bypass the host/immune response to xeno-grafts dilemma if all the other param-

eters were optimized. The first is using human livers for the decellularization process; liv-

ers that are found unsuitable for transplantation are good candidates for this approach [16]. 

However, despite the structural and immunological advantage, this approach does not mas-

sively expand the organ pool. The second is using the native liver for an in vivo decellulariza-

tion process. In a very interesting study, Pan et al. [19] showed the possibility of in situ liver 

decellularization by constructing a separate perfusion circuit in vivo for one of the rat liver 

lobes and using it for the decellularization and recellularization sequence. This may represent 

the optimal approach regarding the immunological aspect and organ conservation; however, 

it requires healthy ECM and structural integrity (and thus excludes malignancy, cirrhosis, 

and biliary atresia for example as an indication for transplantation). Also, many parameters 

should be addressed in the ex vivo setting before transferring them into an in vivo model. 
Both models will not be further discussed in order to keep the context of xenotransplantation.

8. Vasculature

An intact vascular network able to convey oxygen and nutrients to the deeply seated het-
erogeneous cell populations is perhaps the most attractive feature of wDLM scaffolds due to 
the difficulty of the artificial imitation of such complexity. Intact vasculature is essential for 
the transition of ECM applications from membranes/slices to the complex 3D organ format. 

Meanwhile, thrombus formation and blockage of the vascular network is largely adopted as 
the explanation for the repetitive failure of wDLM in vivo experiments, even when heparin-

ization is employed.

The liver contains three vascular networks namely the portal venous system, the arterial 
system, and the hepatic venous drainage, in addition to the biliary system. Although all 

the routes except for the biliary system have been utilized for perfusion decellularization, 

the portal venous system remains the most widely used cue for both decellularization and 

recellularization as discussed previously. Ideal characteristics of the vascular system after 
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decellularization include the following overlapping parameters: full integrity, sustainable 

patency, non-thrombogenicity, ability to withstand blood pressures within the physiological 

ranges without leakage or rupture, complete decellularization, and efficient recellularization. 
Most decellularization studies include tests for vascular integrity as a part of their character-

ization panel, including corrosion casting [8, 10, 25, 27], CT angiography [21], fluoroscopy [9, 

28, 29], dye injection, MRI [21], ultrasonography modalities, and confocal microscopy [29], or 

a combination of them [8, 29]. SEM on the other hand is frequently used to demonstrate the 

vascular architecture and the inter-vascular relations. However, characterization is sometimes 

restricted to the portal and hepatic venous system as it is the route used for perfusion and pre-

sumptively suffers the maximum burden of the decellularization reagents. Nondestructive 
approaches (e.g., angiography, fluoroscopy, MRI, and ultrasonography) that are applicable 
in human-sized liver model are more suitable for the clinical approach. The ability to demon-

strate leakage, besides structural integrity, is also important [15]. An intact DLM portal venous 

system has been sufficiently demonstrated in several reports. Gessner et al. [15] demonstrated 

the patency and integrity of DLM portal/hepatic vasculature using 1–5-μm micro-bubble con-

trast agent, which did not leak into the scaffold matrix. An advantage of this technique is 
the validation of sinusoidal compartment integrity. The patency of the arterial and biliary 

systems has been less frequently demonstrated using the corrosion-casting technique [10, 27]. 

Their patency/integrity is, however, necessary for clinical application. Although the combina-

tion of corrosion casting with SEM can offer some quantitative parameters for the vascular 
tree [98], the ability of corrosion casts to demonstrate leaks through minute gaps in the vas-

cular wall is questionable.

Blockages by cellular elements or thrombosis can interfere with vascular patency in vivo. 
The prevention of in vivo occlusion/thrombosis is, however, a complex task and is currently 
viewed as the bottleneck for the progression of wDLM in vivo experimentation. Herein, the 
authors try to dissect the confounding factors of this adverse outcome. For the decellularized 
vessels to be non-thrombogenic, two conditions need to coexist: (1) efficient decellulariza-

tion/antigen removal, with successful evasion of intravascular inflammation, HAR, and AVR 
cascades. An inflammatory response with leukocyte recruitment can act as the nidus initi-
ating thrombus formation. Acute rather than chronic inflammation was associated with an 
increased risk of venous thrombosis [99]; and (2) efficient vascular re-endothelialization. Thus, 
the exposure of underlying matrix components that can provoke platelet adhesion/aggrega-

tion ending in thrombus formation can be prevented. It is thus important herein to refer to 

the classical Virchow triad of venous thrombosis, including stasis, changes in vessel wall, 
and blood changes. Incomplete recellularization results in considerable empty matrix spaces 

and therefore permits pooling of blood and stasis. On the other hand, a suboptimal vascular 

endothelium falls under the “vessel wall changes” component along with the actual vessel 
wall damage by the decellularization protocols. Appreciation of the functional parameters of 

seeded endothelium along with the seeding efficiency, viability, cell attachment, and endothe-

lial distribution is essential. Of special significance is the expression of anticoagulant proteins, 
which can again be affected by hypoxia and inflammation [99]. Robertson et al. [100] described 

the application of an ex vivo thrombomodulin assay to assess the anticoagulant functions of 

seeded endothelium in decellularized heart scaffold. This is achieved through perfusion of 
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human alpha-thrombin and protein C followed by the assessment of thrombomodulin and 

thrombin-mediated protein C activity. Seeded scaffolds showed six- to eightfolds significantly 
higher thrombomodulin and thrombin-mediated protein C activity compared to acellular 

ones, signifying their capability of coagulation cascade inhibition. Further investigations of 
the seeded-endothelial-functional profile in wDLM are necessary.

In case of small-caliber decellularized vascular grafts, an animal study demonstrated the 

patency of most of the small-caliber (1.5-mm inner diameter) decellularized arterial xeno-

grafts (without pre-implantation endothelialization) after 4 weeks when used for the repair 
of carotid arteries [101]. The patency of 4-mm-diameter decellularized vascular grafts was 

improved by surface heparin treatment resulting in only 8% thrombosis after 6 months in 

another study; vessels also showed efficient in vivo cellular migration and remodeling [102]. 

On the contrary, in vivo implantation of non-recellularized porcine DLM resulted in complete 

vascular occlusion after only 20 min, compared to preserved patency at 60 min when a hepa-

rin immobilization technique was used [32]. Several factors including the smaller vascular 

diameters, the length of the vascular tree, and blood flow dynamics inside the scaffold (e.g., 
flow rate and turbulence) can result in this discrepancy when the wDLM and decellularized 
vascular xenograft models are compared. Complete vascular recellularization at the time of 

implantation is therefore necessary in wDLM [69]. Baptista et al. [29] performed ex vivo blood 

perfusion in ferret wDLM with or without endothelial cell seeding and reported significantly 
less platelet adhesion in seeded scaffolds. Human umbilical vein endothelial cells (HUVECs)-
seeded scaffolds also demonstrated less leakage compared to non-seeded scaffolds in another 
study [23].

For parenchymal recellularization, choosing the appropriate cell sources, seeding technique, 
and maturation process design are paramount to optimal vascular re-endothelialization. 

Basically, autologous cells should be used for vascular recellularization if a non-immunogenic 
DLM is the target. However, using allogeneic cells is another option with the use of immune-

suppressants, with reference to clinical transplantation. The cells used should possess a 

considerable proliferative capacity in vitro to allow the repopulation of the entire hepatic 

vascular surface area. Therefore, other alternative cell sources besides endothelial cells are 

needed. Bone-marrow MScs, iPScs, and progenitor cells were suggested for endothelializa-

tion of decellularized vascular grafts [103]. Another desired characteristic is the ability to 

differentiate into the different vascular wall components (mainly ECs and smooth muscle 
cells “SMCs”); otherwise, they should be supplied independently. Interaction with endothe-

lial ECM was demonstrated to guide the endothelial differentiation of MSCs without other 
stimulants [104]. MSCs from bone marrow and adipose tissue also possess the ability to dif-

ferentiate into SMCs, rendering MSCs an attractive option for vascular recellularization [105, 

106]. The review by Bajpai et al. [103] is an excellent review of stem cell sources in vascular 

graft engineering.

ECs of different sources were the only cell type investigated for wDLM re-endothelialization. 
Uygun et al. [10] used microvascular ECs to seed rat DLM previously recellularized by hepa-

tocytes; the ECs were seen lining the vascular elements after 3 days of culture. Baptista et al. 
[29] seeded ECs into ferret DLM; although evidence of vascular coverage was noted, technical 
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limitations did not allow the confirmation of complete coverage of the vascular system. In the 
same study, seeded HUVECs through portal vein showed a distribution of capillary pattern 
around larger vascular structures. Shirikagawa et al. [23] also demonstrated the seeding of 

HUVECs into rat DLM. The seeded HUVECs despite not leaking outside the vascular system 
and attachment to internal surface of vascular element, they were only observed in a lim-

ited cavity. ESCs and iPSCs were used for vascular recellularization of other decellularized 
organs but not DLM [69]. Infusion recellularization is the technique generally adopted for 

DLM endothelialization. Interestingly, Ko et al. [107] reported a two-step endothelialization 

technique comprising a static and dynamic phases starting with the static component. The 

technique resulted in efficient re-endothelialization with the use of antibody conjugation to 
DLM. The portal vein is the route commonly utilized for this purpose [10, 23, 29]. As previ-

ously mentioned, Baptista et al. [29] compared the portal and hepatic venous recellularization 

approaches for epithelial cells and concluded that using multiple routes can result in better 
scaffold recellularization. Ko et al. [107] simultaneously used inferior vena cava (IVC), PV, 
and HA for vascular re-endothelialization of porcine DLM but without comparison to perfu-

sion through a single route.

After the process of vascular recellularization, a period of in vitro maturation in a dynamic 

bioreactor design is necessary for cell differentiation, expansion, production of ECM, and 
remodeling before implantation. For decellularized vascular grafts, the maturation can be 
achieved in 3 weeks [108], in which exposure to physiological cyclic pressures inside the bio-

reactor setting is a constant core concept.

Bao et al. [32] applied heparin immobilization to a well-characterized porcine whole DLM 

using three different techniques. End-point attachment technique proved to be the most effi-

cient. Interestingly, thrombosis did not occur in heparin-immobilized DLM after the auxiliary 

transplantation of the median lobe into pigs, and blood flow continued for 60 min though 
not endothelialized compared to 20 min in control DLM. The vessels proved to be patent by 
histological examination at explantation. However, it was not clear why perfusion was not 

continued after the 60-min period. Also, the arterial system was not anastomosed and the in 
vitro study showed that heparin is released from the scaffold to reach 3.6% at the seventh day. 
The authors concluded that heparin immobilization can boost the anti-thrombogenic nature 

of DLM and showed that it did not interfere with cell seeding. The effect of heparin immo-

bilization on endothelial cell seeding is, however, unknown. The study also highlighted the 
discrepancy between the outflow and inflow rates, which the authors explained by sequestra-

tion of blood inside the DLM. This finding highlights the need for efficient parenchymal recel-
lularization before transplantation, as stagnation of blood in the suboptimally recellularized 

matrix zones can also promote intra-parenchymal blood clotting and interfere with oxygen 
and nutrient delivery.

In a trial to maximize endothelialization of wDLM, Ko et al. [107] used anti-endothelial 

antibody conjugation to porcine wDLM, coupled with endothelial cell seeding. The authors 

reported efficient re-endothelialization of 80–90% of the extra-capillary vasculature evidenced 
by green fluorescent protein utilization. The endothelialized scaffolds showed three- to four-

folds lower platelet adhesion in vitro and maintained superior vascular patency 24 h after in 
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vivo transplantation. Lastly, the mechanical strain effected by the blood flow and pressure 
within the physiological ranges represents part of the mechanical environment of the liver 

[62]. As aforementioned, mechanical factors can influence the cell behavior and affect the 
hepatocytic and endothelial cell functions. Therefore, imitation of these physiological pres-

sures in vitro in view of the dual nature of hepatic blood supply can have an impact on vessel 

wall acclimatization and cell functions.

9. Bioreactor conditioning

Once a whole-liver scaffold is recellularized, the use of a perfusion culture is necessary to 
allow nutrients and oxygen delivery to the depth of the scaffold. The term bioreactor is com-

monly used to describe the perfusion culture setting that should also include an oxygenation 
system, bubble trapping, and allow for media replacement and sampling. The bioreactor does 

not only serve as a temporary viability maintainer till transplantation but is incorporated in 

many study designs as a station for scaffold preparation and optimization. The bioreactor set-
ting also provides a 3D in vitro culture model to assess the different parameters of cell-ECM 
interactions.

An optimal scaffold/bioreactor combination should be capable of supplying the most suit-
able microenvironment for cell proliferation and differentiation of stem/progenitor cells along 
the hepatic lineages. Defining the parameters of the optimal environment and developing 
the appropriate techniques to achieve them are thus necessary; neither, however, is a simple 

endeavor. Mimicking the native human liver perfusion dynamics is generally visualized as 
most appropriate for mechanical acclimatization and optimal cell functionality. Briefly, the liver 
receives 75% of its blood supply through the PV with a low flow pressure (4–10 mmHg, non-
pulsatile flow), low pO2 (30–40 mmHg), and carries nutrients absorbed from the intestines. The 
HA supplies the other 25% of blood supply with a flow pressure around 120 mmHg, high pO2 

(90–100 mmHg), and a pulsatile flow pattern [62]. Apart from the technical difficulty to achieve 
such a complex dual perfusion pattern (considering the single outflow and the differential pO2 

content at least), the suitability of these parameters for the developing recellularized graft is 

questionable for several reasons: (1) in the absence of complete endothelial barrier, the shear 

stress resulting from the high flow pressures can have adverse effects on the hepatocyte viabil-
ity and function [62]. (2) These defined flow parameters may not be the optimum for the devel-
oping liver tissue, in which higher proliferation and maturation activity are expected, or in case 

of recellularization with stem/progenitor cells. For example, the developing fetal liver receives 
its blood supply from the umbilical vein, the PV (low oxygen and nutrient content), and the HA, 
with differential contributions to the right and left hepatic lobes, where portal vein supplies 
only the right lobe [109]. Therefore, a design based on the cell/target-specific requirements can 
be more appropriate at the developing stage than mimicking the developed liver parameters. 
(3) Mimicking natural flow parameters in the perfusion system does not guarantee mimick-

ing natural equivalent values at the cell level due to the discrepancy between the intra-hepatic 

flow pattern in the decellularized/recellularized graft (e.g., turbulence) and the native liver, 
besides the use of artificial oxygen delivery modalities. Nishii et al. [110] studied the mechanical 
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micro-environment in decellularized versus native ferrets liver in an ex vivo setting with portal 
perfusion (flow rates 3–12 mL/min), and integrated the data into multi-scale computational 
model. Decellularization resulted in 82% decrease in vascular resistance with mean fluid pres-

sures of 0.6–2.4 mmHg and mean velocities of 250–840 μm/s along four different studied flow 
rates. The authors also reported a 5.6 times increase in hydraulic conductivity as a measure of 

tissue permeability in decellularized livers. These findings are of great relevance to the process 
of perfusion recellularization and bioreactor conditioning. However, further similar studies for 

recellularized livers are desired as the seeding process can expectedly impact the vascular flow 
dynamics. In fact, Bao et al. [7] reported portal hypertension and ascites after portal implanta-

tion of recellularized grafts rather than decreased vascular resistance, which can result from the 

seeding process (hepatocyte spheroids in this case). Also, the arterial flow dynamics and the 
application of similar computational methods in porcine liver need to be explored.

In order to evade high shear stress, most studies adopted a sub-physiological PV flow rate 
ranging from 0.5 [29] to 15 mL/min [10]. The duration required for conditioning is a function 

of the cell source/mass and the desired degree of recellularization. More than 1 month can 

be needed for stem cell differentiation [62]. Decellularized vascular grafts on the other hand 

require a period of 2–3 weeks for maturation [108]. Despite the development of hepatocyte-

specific functions and hepatocyte-related gene expression in the perfusion culture setting 
comparable to levels in collagen-sandwich culture, they only represented 20 and 30%, respec-

tively, compared to in vivo levels of albumin production and gene expression [10]. Such sub-

physiological levels can be explained by either an inferior cell-cell and cell-ECM interaction or 

an unsuitable bioreactor setting. The failure of a heterotopic rat-transplant model containing 
around 10% of liver total cell mass to support long-term survival despite sustained native 
portal perfusion after 90% hepatectomy fortifies the first possibility.

Studies of hepatocyte hypoxia and oxygen tension at cellular level rather than cell viability 

are needed. Oxygen delivery methodology should also be reevaluated. The development of 

nondestructive modalities for monitoring cell parameters inside a bioreactor is necessary for 

continuous troubleshooting. Ren et al. [111] developed a nondestructive technique to assess 

cell viability in decellularized whole organs based on a resazurin reduction perfusion assay. 

The application in decellularized rat lung seeded with endothelial cells showed good match-

ing with histology and interestingly showed no significant difference between constant flow 
rate (2 mL/min) and gradually increasing flow rate (from 2 to 8 mL/min) along 7 days.

10. Vascularized DLM in vivo studies

The transplantation of recellularized DLM (vascular/parenchymal) across a physiologically rel-

evant xenotransplantation model through vascular anastomosis is the best tool to collectively 

test the whole-liver decellularization hypothesis. However, reasons for adverse outcomes in 

this setting consequently can be multifactorial. A limited number of studies investigated the in 
vivo vascularized graft survival/function or vascular patency using different combination of the 
aforementioned parameters. Uygun et al. [10] reported a rat-to-rat heterotopic transplantation 
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of recellularized DLM (1ry hepatocytes only) using arterio-venous anastomosis for portal flow 
reconstruction, with harvest after 8 h. Despite retaining the location, morphology, and some 

functional markers of hepatocytes, the authors observed minimal damage to hepatocytes due 
to the shear stress caused by arterial flow and minimal ischemic damage. No comments were 
offered regarding the vascular tree patency and platelet adhesion; anticoagulation was, however, 
used. Bao et al. [32] reported heterotopic pig-to-pig transplantation of decellularized median lobe 

(without recellularization) to assess the effect of scaffold heparin immobilization in preventing 
vascular thrombosis; the portal inflow was established using the left renal vein. Complete vascu-

lar thrombosis occurred in controls after 20 min, while patency was sustained for 60 min in case 
of heparin immobilization. The immunologically relevant status of the donor/recipient match 

was not elucidated in the aforementioned studies. Bao et al. [7] described a rat-to-rat (inbred) 

heterotopic recellularized DLM transplantation (hepatocyte only); the DLM was modified by 
layer-by-layer heparin immobilization before cell seeding. The recipients were 90% hepatecto-

mized before transplantation of the graft, which was implanted in continuity with the portal 

vein. After 72 h, the hepatocytes maintained morphology, organized into aggregates with vessel-
like structures formation, and expressed several liver-related genes and liver-specific functions 
with minimal apoptosis and detected proliferation marker (BrdU). The authors observed a tiny 
number of PECAM-1- and vWF-positive cells that may have extended from the portal system. 
Rats also developed ascites and gastrointestinal congestion due to portal hypertension, which 

was explained by the authors as small-for-size syndrome. Although the heterotopic liver slowed 

down the rise of ammonia level and was able to significantly prolong the survival time after 
hepatectomy from 16 to 72 h, it did not allow for long-term rat survival. The authors did not com-

ment on the extent of vascular thrombosis in this transplantation scenario. However, in the same 

study, non-recellularized DLM with heparin immobilization was thrombo-resistant for 3 h after 

heterotopic transplantation. Two very important inferences of this study are (1) if the vascular-

ized DLM can be able to function long enough without thrombosis, it is probable that endothelial 

cell ingrowth from the nearby vasculature can occur as suggested by the authors [7], a similar 

fashion to which occurs in decellularized vascular grafts may apply, and (2) the hurdles against in 
vivo application are not restricted to vascular patency; the function capabilities of recellularized 

vascular grafts in vivo were also non-optimal (taking into consideration that the graft contained 
a mean of 10.65% of the whole rat liver cell mass as evidenced by DNA content). Surprisingly, 
except for the last study, the rationale behind the time frame of the in vivo study was not clearly 

elucidated. Bruinsma et al. [112] also examined the layer-by-layer heparinization technique. The 

authors confirmed that recellularization with primary rat hepatocytes was not affected by the 
process. The heparinized grafts showed no visible clots and better flow during ex vivo perfusion. 
However, after heterotopic transplantation, the heparin layering did not improve the flow or 
transplantation outcomes despite lower evidence of thrombosis. A main difference between the 
last two in vivo studies with heparin immobilization is the 90% hepatectomy performed in the 
former one, which may have affected the coagulation profile.

Ko et al. [107] on the other hand reported in vivo implantation of efficiently endothelialized por-

cine DLM making use of antibody conjugation technique. The grafts demonstrated evidently 
better patency and lower platelet adhesion compared to acellular grafts. Table 2 summarizes 

the trials of vascularized DLM transplantation. No immunological studies of vascularized DLM 
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transplantation yet exist. Further in vivo transplantation studies are highly desired for both 
isolated and combined parameters. The advances in recellularization and the upgraded under-

standing of the underlying scaffold and blood-flow mechanical contributions pave the way for 
in-depth analysis of in vivo experiments.

11. Sterilization

A prerequisite for the success of WLD is the efficient elimination of infectious potential of 
the scaffold to prevent xenosis. The absence of cellular content allows the use of sterilization 
techniques, since no concerns regarding cellular damage exist. However, validation of the 

efficiency and cytotoxic effects of individual sterilization techniques is necessary for recel-
lularization and in vivo progress.

Techniques used for sterilization of acellular scaffolds include ethylene oxide (EO), peracetic 
acid, and ultraviolet and gamma radiations (GRs). Kajbafzadeh et al. [14] compared six dif-

ferent sterilization protocols on sheep DLM including EO, GR, freeze-drying (FD), EO + GR, 
FD + GR, and PAA + GR. Interestingly, the protocols utilizing a single agent did not achieve 
efficient sterilization compared to full sterilization by combination protocols. However, com-

bination with FD resulted in inferior mechanical outcome, while EO + GR and PAA + GR had 
no mechanical influence. Mattei et al. [24] investigated the cytotoxic effects of three steriliza-

tion protocols on porcine DLM, including PAA, exposure to chloroform gas, H2O2 gas plasma, 

or a combination of the last two agents, all after FD. The study identified PAA and chloroform 
gas as the best agents in terms of cyto-compatibility.

Bao et al. [32] investigated the effect of decellularization protocol on the infectious potential 
of porcine DLM. Interestingly, the DLMs were devoid of porcine endogenous retroviruses 

(PERVs), a major concern in porcine grafts, and PERV polymerase compared to native liver. 
Sarikaya et al. [113] demonstrated the antibacterial activity of ECM extracts derived from 

porcine small intestinal submucosa and urinary bladder submucosa against Gram-positive 
Staphylococcus aureus and Gram-negative Escherichia coli. Extracts were able to inhibit bacterial 

growth for at least 13 h. Antibacterial and antifungal medications can also be added to the 

matrix during the process of perfusion to improve sterilization.

12. Large-scale production

It is rational that the success of the clinical trials should be achieved before seeking large-
scale production of on-shelf wDLM scaffolds. However, in this section, the authors try to 
delineate the parameters highlighted by previous studies along the pathway to on-shelf 

commercialization.

Animal source: a consensus regarding the most suitable animal species and age for organ harvest-

ing was not yet reached. However, the most prevalent opinion favors the use of porcine liver. 

Despite the previously outlined discrepancy in ECM structure between human and porcine 
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Study* Donor Decell graft 

modification
Recellularization Recipient Technique Heparinization Graft 

survival/

harvest for 

analysis

Findings Reasons 

for study 

termination

Uygun 

et al. 

[10]

Female 
Lewis 

rats

None 1ry rat 

hepatocytes

Male Lewis rats After Lt. 

nephrectomy, 

LRA to PV, 
IVC to LRV

1 mL saline 

containing: 

heparin (100 
U) + Fab of 
chimeric 

monoclonal Ab 

(0.25 mg/kg) 
was injected 

into the penile 

vein.

8 h Flow: efflux within 
5 min. Hepatocytes: 

minimal damage and 

ischemia, retained 

parenchymal 

position, morphology, 

hepatic functions 

(albumin, G6pc, 
Ugt1a) by IHC. 

Thrombosis: NM

NM

Bao et 
al. [7]

Male 

Lewis 

rats

Layer-by -layer self- 

assembly heparin 

immobilization 

(8 BL)

Hepatic cells Male Lewis rats 

(90% hepatecto- 
mized, 

syngeneic)/ 

n = 40

Right median 

lobe only. In 

continuity 

with the PV

Systemic 

heparinization

72 h Did not support 

long-term survival 

but significantly 
prolonged survival 

from 16 to 72 h. 
PHTN with GIT 
congestion and 

ascites. Hepatocytes: 

expressed several 

liver-related genes 

and liver-specific 
functions. Evidence 

of tiny amount of 

PECAM-1 or VWF 
+ve cells. Minimal 
apoptosis, evidence of 

proliferation.

Liver 

failure

W
hole-Liver D
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Study* Donor Decell graft 

modification
Recellularization Recipient Technique Heparinization Graft 

survival/

harvest for 

analysis

Findings Reasons 

for study 

termination

Ko 

et al. 

[107]

Piglets Test: conjugation 

of rat anti-mouse 

CD31 antibodies and 

re-endothelialization 

Control: No 

modification**

Mouse vascular 

endothelial cells 

(MS1) in test 

group

Female Yorkshire 
pigs/n = 3 per 

group

After Lt 

nephrectomy, 

LRA to PV, 
IHIVC to 
LRV

NM 24 h Flow: after 24 h, test 
maintained flow at 
inflow, outflow, and 
intra-parenchymal. 

Absent flow into 
control implants. ECs 

were present within 

vasculature of test 

group. Thrombosis: 

maintained patency 

in test. Complete 

absence of patency 

in control except for 

main portal branches. 

Significantly lower 
plt. adhesion in test

Harvest for 

assessment

Bao 
et al. 

[32]

Male 

Bama 
miniature 

pigs

Test: Heparin 

immobilization 

by EPA Control: 
No heparin 

immobilization

None Pigs/n = 12 Median lobe 

only, RV to 
PV, IVC to SV

Before 
implantation, 

100 mL saline 
with 25 IU/mL 
heparin was 

injected through 

PV into scaffold

Complete 

vascular 

occlusion 

at 20 min in 
control. Test 

maintained 

patency at 

60 min

Flow: significant 
difference between 
inflow and outflow 
(? Bld sequestration) 
Acellular grafts 

Thrombosis: complete 

vascular occlusion 

after 20 min in 
control, test patent at 

60 min

Control: 

vascular 

occlusion 

Test: NM
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Study* Donor Decell graft 

modification
Recellularization Recipient Technique Heparinization Graft 

survival/

harvest for 

analysis

Findings Reasons 

for study 

termination

Bruin-

sma 

et al. 

2015 
[112]

Female 
Lewis 

rats

Test: Layer-

by-layer self-

assembly heparin 

immobilization (4 

and 8 BL) Control: 
No heparin 

immobilization.

1ry rat 

hepatocytes

Female 
Lewis rats 

(syngeneic)/n = 3 

per group

Median lobe 

only. After Rt 

nephrectomy, 

proximal 

IHIVC to PV, 
SHIVC to 
distal IHIVC

Preconditioned 
with 

heparinized dil. 

whole blood 

(16.67 U/mL).

24 h Flow: no significant 
bleeding, congested 

proximal IHIVC after 
30 min, minimal 
outflow at harvest 
in all groups. 

Hepatocytes: NM 

Thrombosis: profuse 

erythrocytes and 

thrombosis in control, 

reduced thrombosis 

in 8 BL group.

Harvest for 

assessment

Abbreviations: Ab, antibody; BL, bilayer; Decell, decellularized; Dil, diluted; ECs, endothelial cells; EPA, end-point attachment; IHC, immunohistochemistry; IHIVC, infra-
hepatic inferior vena cava; IVC, inferior vena cava; LRA, left renal artery; LRV, left renal vein; Lt, left; NM, not mentioned; plt, platelet; PV, portal vein; Rt, right; RV, renal 
vein; SHIVC, supra-hepatic inferior vena cava; SV, splenic vein.
*Two other studies [8, 29] demonstrated in vivo transplantation of vascularized grafts, but were not tabulated due to insufficient published post-transplantation data.
**Decellularized matrices contained 20% remnant DNA after decellularization.

Table 2. In vivo transplantation of vascularized decellularized liver matrix.
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liver, porcine liver possesses several significant advantages. These include size/weight match-

ing, animal availability, the ability to define the breeding and environmental exposure, and the 
availability of established techniques for genetic modification which can be combined with the 
decellularization protocols.

Standardization: standardization is a requirement for both the decellularization and steriliza-

tion protocols. Studies of whole-liver decellularization show great technical variability. A trial 

to define the optimal characterization cutoffs for all ECM constituents based on the in vivo 
outcomes seems futile at this stage. In a study by Mattei et al. ([37], preprint), the authors 

showed variation in decellularization efficiency of human immersion/agitation DLM from 
five donors despite using the same protocol. However, this observation was not highlighted 
in human perfusion DLM, where standard deviation for DNA content was 5.82 ng/mg [16]. 

Several studies described a relatively fast decellularization protocols for porcine [18], rabbit 

[9], and rat livers [25]. The utilization of automated perfusion systems, however, renders the 

duration of decellularization process a less important parameter, as opposed to the duration 

required for recellularization and ex vivo prepping.

Multi-organ decellularization: Park et al. [114] reported a technique for simultaneous multi-

organ decellularization in rat through carotid artery and portal vein catheters. The process 

resulted in efficient decellularization of heart, liver, kidney, and other organs (e.g., stomach, 
intestine, etc.). This approach can prove practical for large-scale production of decellularized 

whole organs. On the other hand, the simultaneous decellularization of multiple whole livers 

using a multi-channel perfusion system is also possible.

Storage/preservation: cryopreservation and lyophilization are the techniques commonly advo-

cated for the preservation of ECM products. Two techniques for cryopreservation include 

freezing and vitrification; hindering ice-crystal formation is the main challenge in both of 
them [108]. Washing of cryo-preservative agents is necessary after storage before proceeding 

with reseeding and implantation for cytotoxic concerns [108]. Poornejad et al. [115] studied 

the effects of freezing/thawing as a preservation technique for porcine whole-kidney decel-
lularized scaffolds, without using cryoprotectants. Freezing/thawing did not affect the elastic 
modulus or adversely affect recellularization. However, this resulted in a decreased arterial 
pressure (as a measure of structural integrity) by a factor of 4 and caused partial damage of 

collagen and elastic fibers. The preservation of recellularized wDLMs remains unexplored.

Food and Drug Administration (FDA): eventually, decellularized/recellularized whole livers will 

have to meet FDA regulations in a similar fashion to commercially available decellularized 
human dermal grafts (e.g., AlloDerm©, Lifecell©, etc.) for both the pre-market and post-market 
prerequisites. As a regenerative medicine technology, recellularized scaffolds fall in the “com-

bination product” category which involves products that combine two or more regulated 
components that are produced as a single entity. Engineered whole livers can obtain market 
approval as either a “biologic” or “medical device” based on the mechanism of action [69].

Market potential: artificial organ market estimates consistently show enormous potentials due 
to the expanding transplantation demands. In 2014, a report by a US-based market research 
and consulting company estimated that the global artificial organ and bionics market can 
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reach USD 38.75 billion by 2020. Artificial kidney took the lead in 2013 by global market of 
USD 12.21 billion. Interestingly, the artificial liver category was regarded as the most rapidly 
growing segment from 2014 to 2020 [116].

13. Surgeon’s perspective

Engineered whole organs are considered a very attractive solution for organ-shortage crisis. It 
is thus important to elaborate on some fundamental parameters related to clinical application. 

Liver transplantation is indicated for a wide range of pathologies. Although indication-specific 
differences exist concerning the surgical technique and perioperative care, the graft-functional 
requirements are basically similar. Taking into consideration the variable approaches inves-

tigated for WLD, it can be noted that not all approaches are suitable for the different indica-

tions of liver transplantation. For example, a fully functioning liver graft will be required for 
fulminant liver failure, ex vivo liver-support device, end-stage liver failure, and malignancies. 

For these indications, lengthy ex vivo conditioning and in vivo proliferation approaches may 
not thus be suitable. Long ex vivo conditioning can be, however, acceptable in patients with 

biliary atresia, congenital absence of portal vein, or cirrhotic patients with lower model for 

end-stage liver disease (MELD)/pediatric end-stage liver disease (PELD) scores. In vivo pro-

liferation can only be applied where auxiliary transplantation is feasible. Another example is 

in vivo decellularization; reasonably, this approach will not be suitable when an architectural 

abnormality is present as in the case of cirrhosis or biliary atresia, or in malignant conditions.

Implications of functional cell mass were discussed in Section 6. Problems related to the size 
of the graft can be anticipated in pediatric recipients, as a larger graft volume, in comparison 

to allografts, will be required to attain the required critical cell mass based on the current 
seeding densities. A smaller cell mass may be required in case of bridging, metabolic liver 

conditions, and acute liver failure. Feasibility of surgical implantation in different animal 
models was verified by the previously discussed in vivo experiments. PV anastomosis was 
feasible even without recellularization [32]. However, these studies did not tackle arterial or 
biliary anastomosis. In vivo studies that can accurately define the transplantation require-

ments are still lagging. Finally, the ability to produce an engineered liver that can be trans-

planted without the need of immunosuppression is highly desired. Still, the engineering of 

a liver graft from xenogeneic source that requires standard immunosuppression regimens 

similar to allograft will be a breakthrough, especially with the ever-increasing advances in the 
field of immune-suppressive medications.

14. Conclusions

In this chapter, an effort was made to put all the parameters of the WLD approach on 
display. This was done in order to link the different steps of the process together, to pro-

vide an overall insight of the approach progress and deficiencies, and to highlight the 
gaps in the published literature. It is undeniable that the understanding of the perfusion 
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decellularization and the determinant factors of wDLM potentials has evidently evolved 

since the introduction of the concept in 2002. This understanding greatly challenged the 
simplicity of the approach viewed originally as crude borrowing of natural ECM platform 

and demanded for delicate appreciation of the ECM effectors. The simplicity of borrowing 
the human cell machinery and the patient-specific-tailoring concept on the other hand still 
lends the approach a very attractive edge among the other approaches of xenotransplanta-

tion. A higher appreciation of cell mechano-sensitivity, hepatic zonation, intra-wDLM flow 
dynamics, spatial cell-seeding organization, critical cell mass, and substrate modification can 
be easily noted in the recent publications. The WLD experimentation in a parallel, instead 

of sequential, fashion offered great insights and allowed a degree of feedback-based modi-
fications. An awareness of the advances in the non-hepatic whole-organ decellularization 
trials, the other approaches for xenotransplantation, and material modification science is 
encouraged when dealing with WLD, together with accurate outlining of the clinical target. 

Therefore, a collaborative teamwork is necessary to offer complementary envisions. Finally, 
the suboptimal recellularization, intra-bioreactor cell function, and failures with in vivo 

long-term graft survival highlight deficiencies with two of the three main previously sug-

gested players, namely the intrinsic DLM potentials and vascular competency. The third 

player (immune/host responses) remains largely unexplored for wDLM. The need for robust 

stepwise optimization is clear.
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