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Abstract

The multiagent systems have proved to be a useful tool in the design of solutions to 
problems of distributed nature. In a distributed system, it is possible that the data, the 
control actions or even both, be distributed. The concept of agent is a suitable notion for 
capturing situations where the global knowledge about the status of a system is complex 
or even impossible to acquire in a single entity. In automotive applications, there exist a 
great number of scenarios of distributed nature, such as the traffic coordination, routes 
load balancing problems, traffic negotiation among the infrastructure and cars, to men‐
tion a few. Even more, the autonomous driving features of the new generation of cars 
will require the new methods of car to car communication, car to infrastructure negotia‐
tion, and even infrastructure to infrastructure communication. This chapter proposes the 
application of multiagent system techniques to some problems in the automotive field.

Keywords: multiagent systems, automotive applications, traffic coordination, 
automobile negotiation, car‐2‐X communication

1. Introduction

One of the primary goals of the artificial intelligence field remains open; this is the development 
of autonomous systems capable of performing self‐directed tasks in a similar way that humans 

do. Challenges and issues involved in the development of autonomous systems deployable in 

dynamic and open environments have led to fields as multiagent systems [1]. It is a discipline 

that forms a profound interdisciplinary study of fundamentals such as autonomy, agency, 

negotiation, communication, interaction, and cooperation. The major objective of this field is 
to develop autonomous systems capable of coexisting and cooperating with people and other 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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 systems in the real world. The principal motivation of this effort to develop autonomous sys‐

tems is related to how people live in a digital and interconnected world, where new challenges 

and opportunities are arising (e.g., Internet of Things (IoT), smart cities, and big data [2]) as con‐

sequence of technology is strongly embedded in our daily life. Thus, we are near to see in our 

local environment, autonomous systems like smart environments (rural and urban scenarios), 

humanoid robots, unmanned vehicles (aerial and ground), among other autonomous systems 

capable of supporting people in their daily life. An important feature of these systems is the 

autonomy because they must be capable of embodying self‐governance and decision‐making. 

In this sense, to ensure that the autonomous systems are useful, they should be endowed with 

the ability to exhibit a smart negotiation to achieve its goals through the cooperation. It is sup‐

posed that these properties enable distributed systems to improve their performance.

Negotiation enables multiagent systems to achieve their goals. Although there are several 

research achievements that concern to strategies and protocols in the field of negotiation 
nowadays, its implementation in applications in real world scenarios is still far to reach. In 

a general sense, the multiagent system (MAS) is a paradigm in the computer sciences and 

related areas where a system of interest is conceived as a set of autonomous entities called 

agents, as well as its interaction mechanisms. The agent is an autonomous entity with the abil‐

ity to “sense” the environment through a set of physical or logical sensors and to “interact” 

or “modify” such an environment by a set of physical or logical actuators, as well. A kind of 

“intelligence” or “inference” mechanism is also conferred to an agent. Thus, actions to the 

environment are based on the sensors and the inference machinery.

1.1. Multiagent systems

The MAS approach has proved to be a suitable solution for problems of distributed nature, 

where the information, the control, the processing, or all of them are not centralized but rather 

distributed. Thus, a set of problems has been well studied and useful solutions have been 

obtained. The interaction among agents is generally considered as message passing based 

on a well‐structured interaction protocols. The content of the message is “information” that 

may lay in a context called ontology. Figure 1 depicts a general layout of a MAS accordingly 

Foundation for Intelligent Physical Agents (FIPA) [3, 4].

The Foundation for Intelligent Physical Agents (FIPA) is an IEEE organization promoting the 

technology and standardization of multiagent systems. FIPA defines a set of specifications 
in the basic layer for the agent communication, management, and message transportation, 

as well as specification for the abstract architecture and applications layers. The interaction 
protocols, communicative acts, and the content of the messages interchanged between the 

agents are covered by the specifications defined by FIPA. For example, the auction and call for 
proposal mechanisms among a set of agents are defined as interaction protocols in the FIPA 
specifications [5].

1.2. Automobile applications

The automotive industry is moving toward the automated mobility. To achieve the goal of 

making mobility safer and having an optimized system for moving people in the world, 

a visionary technology is needed. The approach followed in this chapter is based on MAS 
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applied to the automotive scenarios [6]. The internet of things (IoT) is part of the design, as it 

is a trending technology for the connected cars and smart cities.

The applications of MAS to automotive applications, like traffic management and load balanc‐

ing problem, include multiple possibilities, since the agents could represent different actors 
in the implementation of the solution. For example, in [6], the authors identify five types of 
agents: pedestrians, vehicles, traffic lights, streets, and parking lots. In this chapter, we con‐

sider the use of coordinators, route agents and traffic light cycles (phases), as an extension to 
the entities involved in the traffic manipulation.

The use of pedestrians as agents suffers from the problem to manage the communication with 
other agents. For example, other agents like vehicles and traffic lights can be incorporated with 
electric source and wireless link that helps power sensor systems or technology to help them 

accomplish that purpose of communication. Though, pedestrians normally do not have the 

facilities to perform those functions, however, the benefits to consider pedestrians as agents can 
be substantial due to obvious reasons. An approach to incorporate pedestrians into the system 

is to use a mobile device, such as the smart phones. By using these devices to identify pedestri‐

ans, its sensors may allow to monitor the position of the pedestrians, among other cases.

Other examples of vehicles as agents are reported in [7] and [8]. These works consider the 

communication between vehicles to coordinate the routes, every vehicle should take to reach 

its destiny. Within this approach, every vehicle has information that helps them to accomplish 

their goal, which deals with moving from point A to point B in the shortest time possible. 

The agents or cars can share or keep this information according to its heuristics which are the 

rules they use to make any decision that push them closer to complete their goal. Making local 

individual decisions based on information gathered by themselves or cooperating with other 

agents help they accomplish a global goal of coordination between vehicles in such a way 

that every agent can reach their destiny in less time than picking the common fast routes, and 

sometimes creating bottlenecks on those streets or avenues.

Figure 1. General layout of a multiagent system.
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Another popular approach is to focus on traffic lights since they are typically the most com‐

mon points where traffic loads are introduced into the system. There are several papers 
focusing on intersections like [9–12]. These works focus on coordination of phases between 

different intersections. The hypothesis is that creating local solutions in each intersection will 
produce a better performance overall in the system as a whole.

In [13] the authors propose using a set of Q‐learning iterations to approach the optimal solu‐

tion of load balancing. They also mentioned several methods to control the traffic lights and 
intersections using different techniques of the artificial intelligence, such as fuzzy rules, pre‐

defined rule‐based systems, and centralized methods. An important feature of this approach 
is that when controlling traffic lights and intersections, the phases that control traffic in differ‐

ent roads are a key element for the success of the goal of the system. Indeed, the coordination 

between changes of lights and what streets have preference before others are crucial to get a 

good traffic flow in the right direction. This feature is considered in this chapter.

Other important example that implements multiple agents as a solution to automotive sce‐

narios is [14]. In this work, the focus is to make buses arrive on time to their stops. The 

system uses four agents: the bus vehicle, the bus route, the intersections, and the stages. The 

bus vehicle drives through the route informing the route agent their times, the route agent 

checks the time between the buses in the same route and if the buses are late or early, it 

communicates with the main agent, the intersection. The intersections analyze what to do; 
if the bus is to early then the stages where the bus is not currently transiting have priority 

to be set in the traffic light. On the contrary, if the bus is too late, the stages where the bus is 
going should have more probability of appearing in the traffic light. One important aspect 
to notice is the priority, having a greater priority does not mean that automatically that 

stage will be next. It only gives to the agent more tools to coordinate with other stages to be 

the one at the top, which is a goal. The stages need to coordinate and from that process, the 

next stage in the traffic light is selected. The coordination is selected by multiple factors, the 
number of buses in the lane, the green time required by the stage, the velocity of the vehicles 

in the lane, etc.

1.3. Technology used

Based on the specifications defined by FIPA, several implementations provide frameworks for 
the development of MAS. For example, the JAVA Agent Development (JADE) Framework is 

a platform for the development of agent‐based applications. JADE is fully compliant with the 

FIPA specifications and provides a basic class for agent instantiation, communication proto‐

cols, ontology implementation, and graphical management tools. Figure 2 provides a refer‐

ence model for the management of agents within the platform [15].

When working with automotive traffic, it is difficult to find a real environment for testing. 
For example, closing a group of intersections and sending vehicles in a predefine pattern, are 
desired features for the experimentation process in MAS applied to automotive scenarios. 

Fortunately, there are some computer traffic simulators that, with some sort of work, could be 
coupled to MAS development frameworks such as JADE, which is one of the target environ‐

ments of this chapter.
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To mention some simulators, consider for example VISSIM, Paramics, Aimsun, Dynameq, 

MITSIMLab, Simulation Urban Mobility (SUMO), DRACULA, DynaMIT, MEANET, and 

MATSim [14]. The simulators provide different characteristics that made them ideal for mul‐
tiple scenarios. However, SUMO [18] seems to be used more often because it is microscopic, 

free, and easy to use. This chapter will focus on SUMO to simulate required traffic patterns 
and to interconnect these results with the JADE development framework in the section 

devoted to the negotiation and coordination applied to traffic load balancing with the use of 
intuitive ideas and common sense decisions [19].

SUMO stands for Simulation Urban Mobility, and is an open source project to create a por‐

table traffic simulator. This simulator provides a lot of characteristics that made it ideal for the 
experiments of the last scenario considered in this chapter. First, the interfaces are visual and 

easy to use, the way to create routes and export them to be used is very much like a city simu‐

lation game. In the interface, multiple lanes can be created for a single street, intersections can 

be configured to set the phases of the traffic light, and the behaviors that vehicles can perform. 
SUMO provides an API to manipulate the simulation and obtain information about the same, 

making it ideal to work with other systems like the JADE framework, which was successfully 

used in the construction of Multiagent systems [20].

SUMO provides the user with tools to easily represent real streets and roads, then insert into 

the simulation elements like vehicles, which try to behave as their counter parts in the real 

world. In this way, the simulations are quicker and cheaper than the real‐time events and 

allow to test the same rules in different environments in a practical way.

Figure 2. Agent management reference model in JADE.
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Within the SUMO simulator, some designs have been taken to fit with the scenarios required 
in this chapter. Basically, there are two kinds of simulation processes, macroscopic and micro‐

scopic. The macroscopic simulation focuses on the system as a whole. It considers the state of 

the system at every moment, density, speed, and volume of vehicles. On the other hand, the 

microscopic simulation focuses on the actions of individual members of the systems. Thus, 

the approach followed in this chapter is the microscopic simulations, since the actions of the 

agents can be easily applied to members of the simulation, and within the approach proposed 

in this chapter, it corresponds to vehicle and infrastructure actions.

The most common simulation scenarios of interaction between agents considered in this chap‐

ter are the intersections. Among the two most common intersections where vehicles interact 

are the crossroad and the T, as depicted in Figure 3.

A simulation is composed by several elements but mainly defined by two principal configura‐

tions, the network configuration and the traffic demand configuration [11, 12]. This configu‐

ration is done through xml files. The network configuration contains multiple components 
starting with the nodes and edges. A node represents a joint point between edges, while edges 

represent the roads through which traffic will be circulating. A node is simply a representa‐

tion of a point in the map that only requires three elements, an identifier and a pair (x, y) of 

coordinates.

1.4. Contributions of this chapter

This work presents application scenarios that take advantage of the MAS in the automotive 

field. In this work, the cars and infrastructure devices, like semaphores, are considered to be 
agents. The agents are communicating with each other by using a wireless network, through 

the usage of well‐structured ACL messages. The agents send messages to know the status of 

the system, and based on that information, they can make decisions on how to use the avail‐

able resources, for example, the roads.

In the approach proposed in this chapter, the infrastructure devices have information about 

routes they are managing. When a vehicle agent requests information about a specific route, 
the infrastructure device informs the status of the variables of such a route. Once the vehicle 

Figure 3. To the left, a crossroad and to the right, a T form intersection.
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has the information, it evaluates which route is the best based on its goals and in some cases, 

the individual agents consider information about the preferences of other agents to get a suit‐

able global solution.

In this way, a cooperative, distributed multiagent system can be used to improve dynamic 

routing and traffic management. Distributed artificial intelligence techniques, those appli‐
cable to MAS, could be used to solve decision‐making problems to solve city mobility issues 

with the new technology cars.

2. QoS approach applied to traffic balancing

The QoS approach considers a method to calculate the best route for a vehicle based on a set 

of requirements, of the drivers as well of the infrastructure. It was firstly proposed in the tele‐

phony and computer network industries to measure the requirements of different users. To 
quantify the service of the network, several aspects of the service are considered such as the 

bit rate, mean of errors in the transmissions, throughout, jitter, transmission delays, or avail‐
ability, among others. In QoS, a weight is assigned to each of the goals of the user, depending 

on the importance assigned to each aspect of the service they require. Then, a negotiation 

process is executed between the clients and the service network.

In the context of the automotive field, such interaction helps to find a better route for an 
agent, or rather the driver it represents. On one hand, as far as information of different routes 
is shared, the traffic management system (the network) tries to maintain a balanced traffic 
accordingly to its own goals. On the other hand, the vehicle agents have their own priorities. 

For example, it could be possible that for a specific type of driver, the distance it will travel 
is quite important; while for the another one, the number of turns it will make on its travel is 
the key parameter. Consider, the case of a big cargo truck versus a utilitarian car, for example.

In this approach, the information about traffic is currently used to decide whether to use a 
certain route or not. However, infrastructure typically does not take part in a system to keep 

the traffic balanced. It is supposed that the infrastructure could play an important role in the 
load balancing strategy. In this approach, the infrastructure may consider information about 

building constructions in certain areas. Thus, an objective of the infrastructure could be to 

reduce the traffic flow in those areas.

The implementation described in this chapter explains how a distributed system changes the 

perspective of the traffic in a city, and how important is to see it as part of a smart infrastruc‐

ture where all agents play an important role. The definition of the objectives of the drivers and 
the infrastructure play a key role in this approach.

2.1. Goal definition by a utility function

The car agents must define in a quantitative way, the goals and preferences of the drivers 
they represent. Based on the received information, vehicle agents may calculate the utility as 

follows:
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   U   ip  =  ∑ 
g
      W  

g
  i    N  
g
  ip   (1)

such that:

   ∑ 
g
      W  

g
  i   = 100  (2)

Where  i  stands for the  i − th  agent,  p  is the specific path,  g  is the specific goal,  U  is the overall util‐

ity function,  W  is the weight conferred to specific goal by  i − th  agent, and  N  is the normalized 

score for goal  g  by  i − th  agent.

The goals that a vehicle agent considers are based on the driver preferences. For example, but 

not limited, to the following goals:

a. Minimize Travel Time,   g  
1
   

b. Minimize Travel Distance,   g  
2
   

c. Minimize/Maximize Arterial Streets,   g  
3
   

d. Minimize Number of turns,   g  
4
   

e. Minimize/Maximize Roadway classification changes,   g  
5
   

Thus, for example, a cargo truck may confer big weight to the number of turns in the selection 

of its best route, as follows:

   U   cargoTruck  = 10  g  
1
   + 10  g  

2
   + 0  g  

3
   + 80  g  

4
   + 0  g  

5
    (3)

In a similar way, the other types of cars can define the preferences of their drivers in the 
negotiation of the best route based on the QoS approach. For additional information about 

the goal‐based QoS.

2.2. Architectural design

Figure 4 provides a conceptual diagram of the agent interaction proposed in this chapter 

for the architecture implementing the QoS approach. In the figure, the car agents “request” 
information about the “status” of the infrastructure is done by asking to the proper agent. 

With the information of the nearby lanes, the car agents can decide which one provides the 

best solution for the goals of the driver they represent. The diagram is supported in the JADE 

framework [15].

2.3. Experimentation

In this approach, the implementation considers the following aspects:

• The number of car agents in the MAS is arbitrary. That is, it could be from two agents, i.e., 

one car and one infrastructure or route, to an open number of cars and routes.
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• The agents of the system are implemented on an embedded board, e.g., the Intel Galileo 

Board Single hardware Figure 5, based in the JADE framework [15] where human decision 

of driving agents are tried to be programmed algorithmically [16, 17].

• The architecture distinguishes two types of agents: unsteady (e.g., routes) and steady (e.g., 

cars).

• The architecture considers a load balancing algorithm among the car agents and route 

agents based on QoS.

• The architecture considers that the route agents shall send their parameters of interest to 

all the car agents that request them. The parameters of interest are automatically updated 

in every 1 min.

• The car agents use the information provided by the route agents to calculate its best 

route.

• The distributed load balancing algorithm considers the infrastructure requirements, for 

example, to keep some route under some peak value of traffic density.

For illustrative purposes, Table 1 summarizes the parameters for the experiments in the QoS 

approach. There are four routes available, each one known by an infrastructure agent. There 

are two vehicles that would receive information from such routes. According to the MAS, 

they will be “born” with some attributes that will receive through the arguments, which are 
described in Table 1.

Figure 4. Conceptual diagram of the agent's interaction.
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The first group of five arguments (columns) represents the weight (importance) that each 
agent gives to that goal. The first group of four agents (rows) represents routes. The routes 
have a zero value on those arguments because they do not have such goals. Rather, their job 

is to inform those conditions to the vehicle agents.

The sixth argument, i.e. Vehicle?, it is only used to indicate whether the agent is a vehicle or an 

infrastructure agent, since they share the same base class that the JADE framework provides 

for every implementation of an agent. Finally, the seventh argument indicates the route num‐

ber. This value only concerns the infrastructure agents and its objective is to have a unique ID 

for each route.

Figure 5. Example of agents’ communication.

Arguments

Agent name Travel time Travel 

distance

Arterial 

streets

Turns Roadway 

changes

Vehicle? Route number

Route_1 0 0 0 0 0 False 1

Route_2 0 0 0 0 0 False 2

Route_3 0 0 0 0 0 False 3

Route_4 0 0 0 0 0 False 4

Vehicle_1 55 10 5 5 25 True 0

Vehicle_2 5 5 80 5 5 True 0

Table 1. Agents parameters for the scenario.
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In the current implementation, the vehicle agents ask for the normalized values of each condi‐

tion every 10 s. As soon as it receives the values of each route, it calculates the best route based 

on the weights (driver preferences) given when it was born. The vehicle has a list of routes, in 

case there is a new one, it will add such route to the array list routes List, defined as a global 
variable in the agent class.

The calculations were made analytically to compare against the results computed by the car 

agents. Table 2 shows the weights that each agent assigns to each goal.

Tables 3–6 show the selection of the results of the utility of the routes in the experiments. 

These results agree with the expected values accordingly with the weights of the agents.

Priorities/goals Vehicle_1 weights (%) Vehicle_2 weights (%)

Travel time 55 5

Travel distance 10 5

Arterial streets 5 80

Number of turns 5 5

Roadway classification changes 25 5

Table 2. Vehicle weights.

Route_1 Vehicle_1 utility Vehicle_2 utility

0.11 0.0605 0.0055

0.52 0.052 0.026

0.69 0.0345 0.552

0.88 0.044 0.044

0.45 0.1125 0.0225

0.3035 0.65

Table 3. Route_1 utilities.

Route_2 Vehicle_1 utility Vehicle_2 utility

0.88 0.484 0.044

0.12 0.012 0.006

0.12 0.006 0.096

0.73 0.0365 0.0365

0.99 0.2475 0.0495

0.786 0.232

Table 4. Route_2 utilities.
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Route_4 Vehicle_1 utility Vehicle_2 utility

0.44 0.242 0.022

0.43 0.043 0.0215

0.19 0.0095 0.152

0.25 0.0125 0.0125

0.81 0.2025 0.0405

0.5095 0.2485

Table 6. Route_4 utilities.

Route_3 Vehicle_1 utility Vehicle_2 utility

0.23 0.1265 0.0115

0.22 0.022 0.011

0.88 0.044 0.704

0.43 0.0215 0.0215

0.25 0.0625 0.0125

0.2765 0.7605

Table 5. Route_3 utilities.

Figure 6. Lane and junctions.

Multi-agent Systems54



The agents obtain the maximum of all the routes, the result will be the best route. In this case, 

Route_2 will be the best for Vehicle_1 with a total utility of 0.786 and Route_3 will be the best 

for Vehicle_2 with a total utility of 0.760. Figure 6 shows a screenshot of the GUI of the Sniffer 
agent capturing the ACL messages of the interaction between the cars and routes. The main 

container with the administrative tools of the JADE platform, including the sniffer agent, is 
running in a laptop. The agents are running on an Intel Galileo development board.

3. Agent negotiation and coordination

The coordination of agents is a key element in the MAS field. This coordination can be accom‐

plished by using multiple methods. For example, if the agents are competing to obtain a 

resource, an auction can be a good mechanism.

3.1. Design description

The approach considered in this section is like the one provided in Ref. [21]. However, instead 

of focusing only in the buses, we will focus on all the vehicles going through an intersection. The 

proposed design has three main agents: the lane agent, the junction agent, and the phase agent.

3.1.1. Lane agent

The lane agent represents one of the lanes of an edge. More precisely, let say there is a street 

section that goes from junction A to B, and that street goes in both directions A to B and B to 

A. Then, the lane agent 1 will be the lane closer to the right in the section that goes from A to 

B, while the lane agent 2 is the second closest to the right. A similar approach is applied to the 

section that goes from B to A. The lane closest to the right will be lane agent 3 and finally, the 
second closest lane is the lane agent 4. This approach could be followed incrementally. That 

is, the street can have one or more lanes going in the same direction which means that a street 

can have multiple lane agents assigned to them, as previously described. Figure 7 provides an 

illustration of the junctions and lane agents.

Figure 7. Connections and phase representation.
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The objective for the lane agent is to keep the lowest number of automobiles in the street at 

any time. To accomplish that aim, the lane has a priority that is related with the capacity of 

the street and how close it is to reach its limit. This limit is when the lane reaches the priority 

1, which means the street is almost empty. On the other hand, when the lane is at the priority 

5, it means the street is at full capacity.

To calculate the lane capacity, multiple parameter are in play, for example, the length of each 

vehicle (C), the space between each vehicle (S), the number of vehicles (N), the length of the 

lane (L), and the maximum number a priority can reach (M). The following equation captures 

these parameters:

  P =    
 ∑ 

i=0
  N    (    S  

i
   +  C  

i
   )  
 __________ 

L
  M + 1  (4)

3.1.2. Junction agent

This represents an intersection in a real scenario, which is a junction between two or more 

streets, which also may contains a traffic light in it. The objective of this agent is to man‐

age the traffic light cycles, which for the systems are called the phases, in such a way that 
the streets can allow traffic to move through the intersection. This agent is responsible for 
keeping the phases in a stack to inform what the current stage is and rotating the phases 

 according to that stack.

3.1.3. Phase agent

This agent represents a traffic light cycle. The objective for this agent is to negotiate with other 
phases to go up in the stack from the junction agent. The phase has a priority to know what 

kind of actions it needs to negotiate with other agents and tries to stay as much time as pos‐

sible at the top of the stack. To accomplish that aim, every phase agent has several seconds 

that can be used to negotiate with other agents.

A phase contains two arrays of elements, one with the time of the cycle and the other with a 

string representing the behavior that vehicles can have during that phase. These elements are 

represented as follows:

[31, 6]

[“GGGgrrrrGGGgrrrr”, “yyygrrrryyygrrrr”]

The array of string represents the behavior of the traffic lights during the cycle. For example, 
starting from the first lane at the top left in Figure 6, the vehicles can turn right in first lane and 
go straight, in the second lane. The same vehicles can go straight and turn right with precau‐

tion (this represents the lowercase g in the above character string). All the red lines in Figure 7 

represent connections that vehicles cannot use during this phase.
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3.2. Agent coordination in QoS

This process starts when the lane agent calculates its priority. This may happen every certain 

quantum of time depending on the configuration of the system. The lane agent calculates its 
priority by checking the lane capacity with the formula seen in section describing the lane 

agent. That calculation returns the priority level the lane should have and if it is different from 
the current priority, then it sends a message to the junction agent notifying the priority change. 

A diagram representing this interaction by means of ACL messages is depicted in Figure 8. The 

junction agent receives the message and notifies the affected phases to calculate its priority. 
The phase agent will use the largest priority of the lanes that require the use of such a phase.

This simple system of three agents allows us to experiment with different methods of coor‐

dination. The proposed implementation method is to create a trade system where one phase 

Figure 8. Diagram of negotiation process.
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exchanges time for the possibility of the get up in the queue of priorities. Each phase calcu‐

lates the priority as per the total number of vehicles each lane supports and the current num‐

ber in the lane at a specific stage. With that information, the lane can setup a priority from one 
to five, where five means it is critical for that phase to be next one in the cycle.

One important aspect to consider is the fairness of the system. That is, some traffic light phases 
will have more seconds to negotiate than others. The rule of the tomb is a strategy for a system 

that can be beneficial for the phases with lower number of seconds and the phases with more 
seconds to spend. For this reason, instead of using the second as a raw currency, this work 

proposes to use the concept of a unit.

A unit may represent several seconds. However, the units may vary depending on the phase. 

That is, the unit will be the expected time of the phase divided by five. In this case, five is the 
number of columns we want our agents to work with. Thus, the expected value will be in any 

case that corresponds to the middle column. Accordingly, in the negotiations, any phase will 

have the unit value of two columns to the left to spent, and the unit value of the two columns 

to the right to gain. Table 7 shows the unit values of the phase agents that it uses in the offer‐

ing stage of the negotiate process.

The offer table contains the priority number as row and the number of units to gain, or lose, 
as columns. If the phase is at a certain priority and at a certain column, then with a simple 

lookup process, it is possible to determine the value that one phase agent should offer to take 
in the queue of another phase.

The accept table works in a similar fashion as the offer table. However, in this case when the 
phase receives an offer for its position in the queue, then it should check the accept table to 
decide whether to accept or reject the offer. The minimum value that the phase agent should 
accept is at the column and row of this table. Notice that there are some infinite symbols in 
the entries of the table. It means that for those situations, it does not matter the number of 
units offered, the phase will reject any offer, since that phase agent is at a situation where it is 
required to get into the junction cycle as soon as possible. Table 8 shows the unit values of the 

phase agents that it uses in the accepting stage of the negotiate process.

For example, if the phase agent has 15 s of green time, then the unit value is 3 s (15 divided by 

5).In this mechanism, the phase is not allowed to get lower than two units (6 s) and not bigger 

Time (s)

Priority −2 −1 0 +1 +2

1 0 0 0 0 1

2 0 0 0 1 1

3 0 0 1 1 2

4 0 1 1 2 3

5 1 1 2 3 4

Table 7. Offer table.
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than two units (6 s again). In this case, the negotiation units are in Table 9. Thus, if the phase is 

in priority 5, for instance, and currently has 15 s, then it will offer two units to the phase at the 
top in the queue. If that phase does not accept the offer, then the negotiation ends. However, 
if the phase at the top of the queue accepts, then the offering phase will take the place of the 
accepting phase in the queue. Accordingly, the offering phase will lower two units of time, 
with 9 s of green light, but up in the queue. The phase that accepted the offer will increase its 
time by two units, i.e., with 21 s of green light, but lower in the queue.

3.3. Experimentation

To test the negotiation strategy described in the previous subsection, the first step is to simu‐

late the basic scenario when coordination may occur.

Figure 10 shows a four‐road intersection in the SUMO simulator, which is used to simulate 

the negotiation process. The implementation of the four roads needs four phases to be fully 

functional. To represent the states of the phases, four cardinal points, North, South, East, and 

West, are considered Figure 9.

In phase 1, the cars can move in both directions, North‐South and South‐North. In phase 2, 

the cars go from North‐East and South‐West. In phase 3, the cars are allowed to move from 

East‐West and West‐East. Finally, in phase 4, the vehicles can go from West‐North and East‐

South. With these four phases, all vehicles can move from one direction to all other different 

Time (s)

Priority −2 −1 0 +1 +2

1 2 1 1 1 8

2 3 2 1 1 8

3 4 3 2 1 8

4 4 3 2 8 8

5 8 8 8 8 8

Table 8. Accept table.

Time (s)

Priority 9 s 12 s 15 s 18 s 21 s

1 0 0 0 0 1

2 0 0 0 1 1

3 0 0 1 1 2

4 0 1 1 2 3

5 1 1 2 3 4

Table 9. Offer table for green time of 15 s.
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Figure 10. Simulation values.

Figure 9. Four roads intersection.
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locations they require to fully travel the intersection, even considering right turns allowed at 

any moment with precaution.

3.3.1. Integration of JADE agent platform and TraSMAPI

To implement the negotiation system, the SUMO simulator is interfaced with the JADE devel‐

opment framework. JADE requires a JVM to be executed. To execute the runtime environ‐

ment, a simple command can be used to accomplish that goal:

java ‐cp <classpath> jade.Boot

where the classpath is the place where the jade.jar file lives in the system. However, it will 
create and empty the platform and the container, solely with the basic structure and no other 

than the default agents.

JADE provides a set of classes in the JAVA language that can be used to create the agents 

that implement the different pieces of the negotiation system previously described. The most 
important class for this purpose is the agent. The agents have a unique identifier, denoted as 
AID, which is used to uniquely determine a specific agent. The AID can be obtained using 
the method getAID. The identifiers in JADE are using a convention like an email address, i.e., 
<nickname>@<platform‐name>; however, it is only a name and should be considered like that.

All the agents in JADE should extend the agent class. This inherits a set of methods to work in 

JADE framework. The two methods that require more attention are the setup and takedown.

The setup method is the place where the initialization of the agent occurs. It is used instead 

of the constructor method of a JAVA class. The agent class provides this different method, 
because it is safer to use and it can warrant that the system is up and running at that moment. 

This is something that cannot be possible with the traditional constructor. In the setup method, 

the agent parameters can be read to populate attributes by using the getArguments method.

The takedown method is invoked after the agent is terminated and this can be done by using 

the doDelete method in any place of the agent. The purpose of this method is to clean up any 

necessary objects or operations.

The communication between agents is the core functionality that needs to be implemented in 

JADE. To accomplish this task, JADE provides a behavior class. An agent can have different 
behaviors and all of them should be included using the addBehavior method. The behaviors 

are the mechanisms to implement the actions and methods of the agent.

There are a complete set of behaviors in JADE for different objectives. One shot behaviors, 
cyclic behaviors, generic behaviors, wake behaviors, and ticker behaviors, to mention some. 

One shot behaviors are implemented using the OneShotBehaviour class, this is meant to be 

executed only one time and after that delete the behavior from the agent. The cyclic behav‐

iors use CyclicBehaviour class and they return false in the done method all the time, so this 

behavior repeats and keeps executing. The generic behaviors correspond to the Behaviour 

class, this is a vanilla class that can be extended and used as the user requires especially with 

Multiagent Systems in Automotive Applications
http://dx.doi.org/10.5772/intechopen.69687

61



 communicative acts that requires several messages between agents. The waker behaviors 

relate to the WakerBehaviour class and will be executed after a certain condition is reached, 

commonly a time set like an alarm. Finally, the ticker behaviors use TickerBehaviour class and 

are repeated every certain interval of time.

The communication between the JADE agents with the simulator SUMO is required. For 

example, the lane agent requires to know the number of vehicles in the simulator lane, and 

the junction agent needs to modify the traffic light in the simulation according to the queue. 
To establish a communication between the two frameworks, this chapter uses the traSMAPI 

middleware.

TraSMAPI is a project from the University of Porto, which is an API to communicate with 

microscopic traffic simulator (like SUMO). This allows to get information and manipulate the 
different elements of the simulation like vehicles, traffic light, etc. One of the most important 
aspects is that it is written in JAVA, the same language as JADE allowing to easily integrate 
the multiagent environment with the Simulation [12].

The way TraSMAPI manipulates the simulation is through an interface created in SUMO, 

which is called TraCI (Traffic Control Interface) [22]. The interface can be accessed by enabling 

a remote port in SUMO. By using the command line, this can be done by adding the parame‐

ter—remote‐port [portNumber] or in the sumocfg gile adding the traci_server section like this:

<traci_server>

<remote‐port value=”portNumber”/>

</traci_server>

With this, a series of bytes can be sent through that port to the SUMO simulation, the bytes 

correspond to the values of the instructions required to interact, first byte reserved for the 
command and the following, for parameters required to get data or modify any characteris‐

tics of the running simulation.

3.4. Experimentation

To test the implementation, two types of traffic light scenarios will be used. One with the 
traditional static, or fix, times for the lights in the semaphores, and one with dynamic phases 
negotiation that use agents.

The vehicles will be generated using a fix number per hour. Two combinations will be used 
to simulate more traffic flowing from north‐south lines. In north to south lines, the flow will 
be a complete load of vehicles and in east to west lines, 50% of the full load. The full load will 

have values of 500, 750, 1000, and 1250 vehicles per hour. The details of the intersection are 

depicted in Figure 11. For the traffic, light phases, we will be using four phases as described 
in Table 10.

The results using static (s) traffic lights and using dynamic (d) traffic lights are shown in 
Figure 11.
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The result shows a similar behavior in the static traffic light and the dynamic ones using the 
negotiation mechanism with agents. At 1250 veh/h, both systems have difficulties to manage 
the vehicles load. Further experimentation is encouraged with different phases and times in 
the traffic light. It is clear that other coordination tables may be constructed to improve the 
balancing of vehicles under different load conditions and street configurations.

4. Conclusions

This chapter proposed the application of the MAS technology and concepts to the solution 

of problems in the automotive field. The MAS has provided suitable solution to problems of 
distributed nature, such as those present in the automotive field. The vehicles (both, cargo and 
utilitarian), the infrastructure (lane, semaphores, etc.), and even the pedestrian are suitable to 

Figure 11. Static versus dynamic results.

Phase Direction Green time (s) Yellow time (s)

1 NS‐SN 15 4

2 NE‐SW 6 4

3 WE‐EW 15 4

4 WN‐ES 6 4

Table 10. Configuration of the phase.
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be modeled as agents. This simplifies the modeling and simulation, and thus the construc‐

tion of solution to problems of smart traffic systems. The communication mechanisms of the 
MAS are well suited to implement with simplicity, complex interaction protocols for the car‐

2‐X communication. In particular, this chapter proposed the application of two mechanisms 

of the MAS to the automotive field. One the one hand, it proposed the utilization of QoS 
mechanism to the coordination between the cars and the infrastructure. On the other hand, it 

proposed the utilization of an auction‐based mechanism for the negotiation between faces in 

lane intersections.

By using the set of tools and techniques described in this chapter, solutions to intelligent 

traffic systems may be approached from the MAS field. The experimentation with the traffic 
simulators and the framework for the agent implementation seem to be a new way to design 

solutions that may be quite complex to implement with other approaches.
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