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1. Introduction

Phytohormones are regulatory compounds produced in low concentrations and serve as 

chemical messengers to regulate various plant physiological and developmental processes. 

They also play essential roles in signal transduction pathways during stress response and 

regulate internal and external stimuli [1]. Phytohormones comprise five main groups, namely 
auxins (IAAs), cytokinins (CKs), abscisic acid (ABA), gibberellins (GAs) and ethylene (ET). 
Salicylates (SAs), jasmonates (JAs), brassinosteroids (BRs), strigolactones (SLs), polyamines, 
and some peptides represent new families of phytohormones.

Hormone actions form a signaling network and regulate various systems in plants. The 
interacting actions among hormone signal transduction cascades are called crosstalk [2, 3]. 

Phytohormones interact by activating a phosphorylation cascade or a common second mes‐

senger. Furthermore, several phytohormones interact together, forming a defense network 
against environmental stresses such as JA, SA, and ABA which play a crucial role in regulat‐
ing signaling pathways [3]. Understanding the crosstalk between these phytohormones and 
defense signaling pathways helps reveal new important targets for developing host resistance 

mechanisms [3, 4]. Here, the current work presents an overview and discusses recent pro‐

gresses of phytohormone roles and their crosstalk in plant development and stress tolerance.
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2. Phytohormones signaling roles

2.1. Abscisic acid

Abscisic acid (ABA), termed stress hormone, plays an important role in plant leaves abscis‐

sion and abiotic stresses tolerance [3]. ABA also has important roles in various plant devel‐
opmental and physiological processes such as seed dormancy, embryo morphogenesis, 
stomatal opening, cell turgor maintenance, and biosynthesis of lipids and storage proteins 
[3, 5]. ABA regulates protein‐encoding genes [6]. ABA enables plants to survive under severe 
environmental factors [7] and water‐deficit conditions [8]. ABA is also important for root 
growth and architectural modifications under nitrogen deficiency [9] and drought stress [10]. 

Furthermore, ABA is involved in the biosynthesis of dehydrins, osmoprotectants and protec‐

tive proteins [3, 11, 12].

2.2. Auxins

Some pathways for auxin (IAA) biosynthesis in plants have been reported so far including 
one tryptophan‐independent and four tryptophan‐dependent pathways [3, 13]. IAA plays an 

important role in plant growth and development as well as in regulating growth under stress 

factors [14]. IAA plays essential roles in plant adaptation to salinity [15] and heavy metal 

stresses [16]. Furthermore, auxins induce the transcription of the primary auxin response 
genes which are identified in various plants such as rice, Arabidopsis and soybean [3, 17]. 

Auxin also regulates crosstalk between biotic sand abiotic stresses [18].

2.3. Cytokinins

Cytokinins (CKs) regulate plant growth and development [3, 19]. They are also involved in 

abiotic stresses [20] such as salinity [21] and drought [19]. They are also important for vari‐

ous crop traits such as productivity and enhanced stress tolerance [3, 22]. CKs also release 
seeds from dormancy [18] and are considered as abscisic acid antagonists [23]. Decreased CK 
content promotes apical dominance, which assists in the adaptation to drought stress [3, 20].

2.4. Ethylene

Ethylene (ET) is a gaseous phytohormone regulating plant growth and developmental processes, 
including flower senescence, fruit ripening, and petal and leaf abscission, as well as regulating stress 
responses [3, 24, 25]. Ethylene biosynthesis begins from methionine via S‐adenosyl‐l‐methionine 

and the cyclic amino acid ACC. ACC synthase converts S‐adenosyl‐l‐methionine to ACC, whereas 
ACC oxidase catalyzes the conversion of ACC to ET. Various abiotic stresses affect endogenous 
ethylene levels in plant species. Higher ET concentrations promote stress tolerance [26]. Ethylene 
may combine with other hormones such as jasmonates and salicylic acid and plays crucial roles 
in regulating plant defense against biotic stress factors [3, 1]. Ethylene and abscisic acid may act 
together to regulate plant growth and development [3].
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2.5. Gibberellins

Gibberellins (GAs) are carboxylic acids that may regulate plant growth and development [27]. 

They positively regulate leaf expansion, seed germination, stem elongation, flower develop‐

ment and trichome initiation [3, 28]. They also play important role in abiotic stress toler‐

ance [29] such as osmotic stress. GAs may interact with other hormones and regulate various 
developmental processes [30]. These interactions may involve both negative and positive 
regulatory roles [3, 30].

2.6. Brassinosteroids

Brassinosteroids (BRs) comprise polyhydroxy steroidal phytohormones which regulate plant 
growth and developmental processes including root and stem growth, and flower initiation 
and development [3]. BRs were first isolated from Brassica napus. Brassinolide, 24‐epibrassino‐

lide, and 28‐homobrassinolide are the most bioactive BRs widely used in physiological stud‐

ies [31]. They are found in flower buds, pollen, fruits, vascular cambium, seeds, leaves, roots, 
and shoots [32]. BRs also play important roles in abiotic stress responses such as chilling, high 
temperature, soil salinity, drought, light, flooding, and organic pollutants [3].

2.7. Jasmonates

Jasmonates (JAs) are multifunctional phytohormones derived from the membrane fatty acids 
metabolism and are widely distributed in several plant species [3]. JAs play crucial roles in 
growth and developmental processes such as fruiting, flowering, senescence and secondary 
metabolism [3, 33]. JAs are also involved in biotic and abiotic stress responses such as salin‐

ity, drought, irradiation and low temperature [3, 34]. Exogenous concentrations of methyl 

jasmonate (MeJA) minimize salinity stress symptoms [35]. Additionally, endogenous levels 
of JA are induced in roots under salinity stress [36]. JA levels also reduce heavy metal stress 
through inducing the antioxidant machinery [3, 37]. MeJA accumulates phytochelatins, con‐

ferring tolerance against Cu and Cd stress [38].

2.8. Salicylic acid

Salicylic acid (SA) is a phenolic compound which regulates the expression of pathogenesis‐

associated proteins [39]. SA plays an important role in plant growth and development, as well 
as in biotic and abiotic stress responses [3, 40]. SA has two biosynthesis pathways: the major 
isochorismate (IC) pathway and the phenylalanine ammonia‐lyase (PAL) pathway. Low lev‐

els of SA promote the plant antioxidant capacity [3]. However, the high SA levels may result 
in cell death [41]. SA comprises genes encoding chaperones, antioxidants, heat shock pro‐

teins, and secondary metabolite biosynthetic genes such as cinnamyl alcohol dehydrogenase, 
sinapyl alcohol dehydrogenase and cytochrome P450 [3, 41]. SA may also combine with ABA 
to regulate drought response [39]. However, the SA mechanism in abiotic stress tolerance 
remains mainly unknown and still needs more investigations.
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2.9. Strigolactones

Strigolactones (SLs) are carotenoid‐derived compounds, produced in small quantities in 
roots, or synthesized in several plant species [3, 42]. SLs play an important role in root archi‐
tecture and development [43]. They induce nodulation during interaction processes [44] and 

may be used for inducing the parasitic plants seed germination [45]. SLs are also involved in 
biotic and abiotic responses [3].

3. Phytohormones crosstalk

Sessile plants should maintain growth plasticity and adaptation ability to severe environ‐

mental conditions. Stress‐responsive hormones assist in the alteration of cellular dynamics 

and thus regulating plant growth under stress conditions [3, 46]. The interacting actions 

among hormone signal transduction cascades are called crosstalk and form a signaling net‐
work [2, 3]. In this case, hormones interact by activating a phosphorylation cascade or a 
common second messenger. Several phytohormones interact together forming a defense 

network against environmental stresses such as JA, SA, and ABA which play a crucial role 
in regulating signaling pathways [3]. Understanding the crosstalk between these phytohor‐

mones and defense signaling pathways helps reveal new important targets for developing 

host resistance mechanisms [3, 4].

A complex signaling network regulates stomatal closure. ABA regulates gene expression 
which mediates root growth maintenance and water uptake. ABA interacts with signaling 
molecules and other phytohormones such as nitric oxide and JA to induce stomatal clo‐

sure, as well as to induce genes controlling response to cytokinin, ethylene or auxin [2, 3]. 

Furthermore, exogenous treatment of ABA down‐regulated the key cytokinin biosynthetic 
pathway gene, termed isopentenyltransferase, but up‐regulated genes encoding cytokinin 
dehydrogenases and oxidases [3, 21]. GA is also included in the hormonal crosstalk in envi‐
ronmental signals [47]. In conclusion, like the potential use of molecular and genetic markers 
in crop improvement [48–57], phytohormones play crucial roles in development and stress 
tolerance of crops.
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