
User-Hosted SOA Infrastructure over XMPP
João M. Gonçalves

PT Inovação e Sistemas
Universidade de Aveiro

Aveiro, Portugal
Email: joao-m-goncalves@ptinovacao.pt

Diogo Gomes
Instituto de Telecomunicações

Universidade de Aveiro
Aveiro, Portugal

Email: dgomes@av.it.pt

Abstract—The proliferation of user-owned connected devices
has brought value to mobile application developers, which can
make use of locally-available sensors and capabilities and send
their information to the web, centralizing the data flows. A
more distributed approach would have device capabilities offered
directly on the network as services hosted by the user. These
pervasive user-hosted services could be made discoverable and
available over a public federated service infrastructure. The
infrastructure would provide transport over an identity layer,
where endpoints are addressed by their identities instead of
network identifiers, and on top of which services can be exposed
to be consumed by trusted friends or anonymous users, as
the hosting user prefers. The work presented in this paper
explores the possibility of implementing such a distributed social
Service-Oriented Architecture (SOA) over Extensible Messaging
and Presence Protocol (XMPP). This SOA, which would ex-
pose re-usable coarse-grained software components in a service
ecosystem, differs from traditional SOA because it attempts to
counter the centralization existing services, in favour of a fully-
distributed service ecosystem where each peer can behave both
as service consumer and provider. Finally, an analysis is done
on how suitable XMPP is to serve as a base protocol for such
infrastructure.

Keywords—Software architecture; Distributed computing;
Middleware; Web services

I. INTRODUCTION

The Service-Oriented Architecture (SOA) paradigm advo-
cates for systems to be composed of re-usable coarse-grained
software components, which consume and provide services in
a service ecosystem in an attempt to promote loose coupling,
increasing re-usability, reducing technology lock-in and ease
extension. Although SOA is commonly mentioned in an en-
terprise context, the architectural principles that it advocates
are very present in the web today, as most web applications
expose some of their data via Representational State Transfer
(REST) APIs and Really Simple Syndication (RSS) feeds [1].

Despite this landscape, the current web is still very central-
ized, with most of the user data and most popular services
being hosted or controlled by a few dozens of companies.
Moreover, the proliferation of user owned networked devices
has untapped potential that can be capitalized by allowing
device capabilities to be offered on the network as services.
These pervasive user-hosted services could be made discover-
able and available over a public federated service ecosystem
with a social twist. This exercise of bringing together social
and pervasive computing into a user-hosted SOA was one of

the key research challenges tackled in the SOCIETIES project,
and the concept behind the work presented in this paper.

The Extensible Messaging and Presence Protocol (XMPP) is
an IETF protocol with numerous open extensions built directly
on top of TCP, which can provide an extensible messaging
infrastructure. It has built-in federation mechanisms, endpoint
authentication, resolution and presence, message routing, asyn-
chronous messaging and some degree of reliability. In recent
years XMPP has been adapted in applications other than
instant messaging, and even as a lightweight approach to
Message Oriented Middleware (MOM).

This paper describes the efforts done under the SOCIETIES
project to leverage the principles of SOA and the advantages
of using XMPP as a messaging bus by establishing a paral-
lelism between XMPP services and the generic services that
SOA describes. XMPP was used as a session-layer protocol
where authentication and federated Identinet [2] functions
are provided, abstracting the network and the wire-protocol
as much as possible. Native APIs are exposed to services
with only identity-level and service-level concepts which eases
discovery and transparently addresses transport, network and
data representation interoperability for those services.

The underlying concepts and technologies are initially de-
scribed in Section II, followed by the analysis of the distributed
user-hosed SOA vision in Section III. In Section IV the design
effort to realize the requirements using the XMPP concepts are
described, and in Section V the implementation and results
are presented. Finally, in Section VI, the benefits towards
other approaches and the problems and value of the proposed
approach are discussed.

II. BACKGROUND

SOA has been one of the most referred concepts in software
engineering in the first decade of the new millennium. As
an architectural paradigm SOA advocates that a software
system should be designed having service-orientation in mind.
Business-aware coarse-grained software components relate
with each other by being either service providers or service
consumers - they are often both, relatively to different services.
Service discovery mechanisms are made available by a service
broker for the consumers to find suitable providers. This
approach aims to enable:

• loose coupling: service consumers only depend on the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/32243196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


service interfaces and not on particular provider imple-
mentations;

• increased re-usability: a business process can be decom-
posed in several component services, that can be reused
across all business processes;

• reduced technology lock-in: services consumed are plat-
form independent and all communication is based on
open standards;

• easier extension: new logic can be added to business pro-
cesses by the addition of a new service being consumed.

The rise of SOA as a major architectural trend was accom-
panied by the ascension of a few technological solutions for
implementing SOAs, such as SOAP and WSDL, which had the
twisted effect of binding the technology and the architectural
paradigm together in the minds of many software engineers.
That bond started being severed with the popularization of
Representational State Transfer (REST), a minimalist style for
providing data services over HTTP, and with the increasing
use of raw XML and JavaScript Object Notation (JSON) to
represent the service data payloads.

Message-Oriented Middleware (MOM) is another well
known architectural paradigm with relatively successful im-
plementations and wide dissemination. A MOM infrastructure,
typically deployed internally in an enterprise, allows diverse
software components to communicate asynchronously. A coor-
dinating component usually called message broker will handle
endpoint resolution, message persistence and routing. The
most striking difference between MOM and traditional Web
Services is the messaging model: web services normally use
the request-response model, while MOM support more flex-
ible and generic asynchronous messaging, which enables the
publish-subscribe model. A MOM usually does not define any
payload format. Java Message Service (JMS) is a well known
specification of a MOM API and some implementations of it
are used in enterprise-grade software deployments. AMQP is
another well-known MOM specification which, unlike JMS,
includes the definiton of a wire-level message format, aiming
to enable interoperability between different MOM vendors.

XMPP is an IETF protocol which has open extensions,
dubbed XMPP Extension Protocols (XEPs), which are super-
vised by the XMPP Standards Foundation (XSF). It is a bi-
directional XML messaging protocol, originally aimed for IM,
built directly on top of TCP, which can provide an extensible
messaging infrastructure, with built-in federation mechanism,
supporting endpoint authentication, resolution and presence,
message routing, asynchronous messaging and some degree of
reliability. In recent years XMPP has been adapted by applica-
tions other than IM, such as VoIP [3] and microblogging [4].
More recently there have been proposals to be used for sensor
control [5]. Also, it can be used as a lightweight approach
to MOM [6], representing a more interoperable alternative
which dodges technological lock-ins of proprietary systems.
However, unlike a typical enterprise MOM, it does not provide
transaction management and is likely less scalable.

The XSF approved an extension in 2005, XEP-0072 [7],
which defines the transport of SOAP messages over XMPP.

Fig. 1. Representation of CSSs and CISs

The extension efectively defines a SOAP binding to XMPP,
as previous specs did to HTTP and SMTP. However, as
expected from a direct binding, the advanced capabilities of
XMPP such as presence and service discovery are ignored
and the protocol is used simply as transport. Furthermore, the
differences between IQ and Message are ignored in favour of
the interaction pattern being defined at the SOAP level.

III. REQUIREMENTS OF THE SOCIETIES VISION

SOCIETIES is an European project with a consortium of
16 partners, active from October 2010 to March 2014. It is
the largest integrated project out of the fifth call for project
submissions of FP7, and aims to bring together social and
pervasive computing into one integrating platform. In the
project’s vision, the proliferation of user owned networked
devices has untapped potential that can be capitalized by
allowing device capabilities to be offered on the network as
services. These devices would together form a Cooperative
Smart Space (CSS), a digital representation of a user or
organisation, enabling the sharing of user-owned services.
CSSs constitute the users’ bridge between the physical world
and the digital social communities the user is a part of. A
community is a collection of CSSs and/or supporting infras-
tructure services, who wish to collaborate for mutual agreed
purpose for which the community formed. The community’s
digital representation is called a Community Interaction Space
(CIS), through which users can access and make available
services. Figure 1 shows five CSSs, each of which repre-
sents an individual, that have formed themselves into four
communities. These services would be accessible on top of
a trust-enabled identity layer, designed with strong privacy
concerns. An open federation of identity domains would be
in place where anyone can create his domain. On top of this
identity layer, ad-hoc trust relationships can be then formed,
and access control and privacy policies should condition the
visibility and accessibility of the user-owned services, enabling
effective control of the user’s digital exposition.



This vision is similar to Sarma and Girão’s, that envision the
Future Internet of Things as an Identinet where each endpoint,
independently of being a person, a service or software, is
represented by an identity. This Identinet provides some device
independence as what matters is the entity that the device
is operating on behalf of. Also, by employing identity man-
agement techniques, it has the potential to enable enhanced
security and privacy for users [2]. Unlike in a traditional SOA
where all services are exposed within an ecosystem, such as
an enterprise, in this social-based approach where services are
offered by individual users it makes more sense to enable
discovery of services on top of an identity-layer.

In order to realize the social re-usability vision of SOCI-
ETIES, user services have to be exposed both locally, within
a device’s internal communication and discovery mechanisms,
and remotely, over the network. Given the dynamic and dis-
tributed nature of the envisioned architecture, an extensible and
decentralised messaging framework with service announce-
ment capabilities is required for supporting the remote remote
communication. Also, we aim to support not only traditional
RPC-type request-response interactions but also asynchronous
messaging and publish-subscribe patterns. The communication
payload is not defined by interface method signatures, as it
happens in RPC and SOAP, but in a data-oriented manner
using a standard data representation.

By defining the payloads formats in this way we support
more interaction patterns and create a platform-independent
wire-protocol which can be understood by each of the specific
technologies used in each node, thus allowing for multiple
platform implementations while maintaining technical inter-
operability in the system as a whole. In the project, Java
on OSGi (Eclipse Virgo) was chosen as the base technol-
ogy for the unconstrained nodes (desktops, notebooks and
cloud deployments) while Android was the base technology
chosen for mobile, constrained, nodes. Thus, this technical
interoperability was required also in practice, for the reference
implementation of the SOCIETIES architecture and its user
trials [8], [9].

The semantic interoperability of the platform communi-
cation is addressed at two levels: at the core level, where
communicating network nodes need to convey information
about identity, network and services, and at the payload level,
where the service message semantics are understood in an
extensible way. The required flexibility and functionality can
be achieved by generically supporting data structure definitions
and enabling each service to define different structure and
respective semantics - a kind of domain specific language.

IV. SOCIETIES SERVICE AND COMMUNICATIONS
DESIGN

In the SOCIETIES European Project an identity-enabled
communication layer was implemented relying on XMPP [10].
The protocol was used as a session-layer protocol where au-
thentication and federated Identinet [2] functions are provided,
supporting application-layer control and data on top of it.
The client-server architecture of XMPP not only enables the

johndoe@ict-societies.eu/server

<<component>>

Service A Provider

Service A
Remote Interface

Data-Objects

<<Interface>>

Service A

Native Interface

<<component>>

Service B Provider

Service B
Remote Interface

Data-Objects

<<Interface>>

Service B

Native Interface

Native
Service

Bus

Identinet
MOM

janedoe@ict-societies.eu/client

<<component>>

Service A Consumer

Use

Service A
Remote Interface

Data-Objects

Use

Fig. 2. Service re-use in SOCIETIES

Identinet through theuse of servers and DNS as a resolution
mechanism, and enables servers to act as an anonymizing
trusted-third-party for most communications [11]. The im-
plementation, dubbed Communication Framework, abstracting
the network and the wire-protocol as much as possible by
exposing an API with only identity-level and service-level
concepts and transparently addressing transport, network and
interoperability in data representation.

The payloads carried in XMPP’s IQs and Messages have
custom namespaces that are under the responsibility of one
domain-specific service. They are formally defined using XML
Schemas, an interoperable format, which then can be mapped
to data structures used in many different languages. These
schemas define common data types and semantics ensuring
consistency between local and remote interactions. When
the Communications Framework implementation receives one
such message it routes it locally to the appropriate service
based on the specified XML namespace.

The XML namespace (i.e. xmlns) of the payload indicates
the payload format to be assumed for parsing purposes, a
technical interoperability feature, also defines the semantic
meaning of the message. Each service can publish its interface
data structures under a namespace, indicating both format and
semantics. These specifications could be published in a central
registry similar to the XMPP Registrar [12]. Such registry
should contain at least reference to the semantic and functional
description of that namespace, similarly to what is done with
existing XMPP Extension Protocols (XEP) [13] in XMPP.
However in SOCIETIES we simply tried to enforce and ad-hoc
description of the structures in the XML schemas themselves.

The actual normative binding between service and payload
namespace occurs locally in each node. Services that are
started in a SOCIETIES node attempt to locally register their
payload namespaces in the Communications Framework. If no
collisions are detected, the Communications Framework will
from then on route incoming messages with the defined pay-
load to the referred service, with no explicit service reference
being required.

These services are both accessible locally in the SOCI-
ETIES node and remotely over the network, as illustrated in



Figure 2. Locally, they are exposed in technology-dependent
way because there are looser interoperability constraints:
within the same node we assume the same software stack is
used to implement all services. For the OSGi node the OSGi
service discovery mechanisms were used, while in Android
the Intent mechanism mimicked that functionality. However,
remotely, the services need to be exposed in a more agnostic
way.

The binding of services and namespaces is already a com-
mon practice in XMPP, as defined in the Service Discovery ex-
tension [14], despite some differences between XMPP services
and generic SOA services. As advised in the XMPP Exten-
sion design guidelines [15], the Service Discovery extension
was re-used by the SOCIETIES Communications Framework,
making remote services discoverable via this XMPP standard
protocol. Any node can query any other node regarding the
services it supports, and the response will carry the names-
paces of the supported services.

Thanks to the SOCIETIES Communications Framework,
only a few lines of code need to be written in order to make
a native local service accessible this way through a network.
First, an XML Schema version of the data structures needs to
be specified, defining also a namespace and describing the ser-
vice’s remote functionality. The Communications Framework
provides tools to generate native objects representing those
data structures which are used to build a service wrapper. This
wrapper basically consists of generic payload reception meth-
ods which, depending on the received objects, call specific
methods with underlying parameters of that service. All the
XML parsing and XMPP packet building and routing is done
transparently.

Besides the original IQ and Message communication pat-
terns supported natively by XMPP, the SOCIETIES Communi-
cations Framework also supports Publish-Subscribe (PubSub),
piggybacking on an existing XMPP extension [16]. A spe-
cial service within the SOCIETIES node, the Pubsub Client
Service, handles PubSub-type interactions. Any service can
subscribe and publish to as well as receive notifications from
a remote node by interacting with the Pubsub Client Service
local API.

V. IMPLEMENTATION AND RESULTS

The SOCIETIES Communications Framework became a
core part of the SOCIETIES project, with its API being used
both in OSGi and Android by most of the project from the
initial stable release in February 2012 until the User Trial
#2 in November 2013 [9]. More than 15 developers defined
over 40 payload schemas through which they exposed their
SOCIETIES services over the network [10]. One of the first
steps of the work was to draft an example remote service along
with an XEP-like document describing it, which was made
available under the Seed initiative [10]. The goal was to drive
adoption inside SOCIETIES and to ease the learning curve for
developers. While the Communications Framework enjoyed
wide adoption in the project, the XEP-like documentation

practices, which would form the bases for a SOCIETIES
Registrar, unfortunately weren’t adopted.

The services were mostly implemented in Java, by im-
plementing an interface called IFeatureServer which defines
the following request handling methods: getQuery, setQuery
and receiveMessage. Inside that method the developer only
needs to verify if the received object is of the expected type,
dynamically generated from the XML schema, and used it as
a data object to execute the necessary business logic. In the
case of the getQuery and setQuery methods an Object can be
returned, which is serialized to XML and included in the IQ
result. A client that accesses a remote service is required to im-
plement ICommCallback, which defines an IQ result reception
method and an IQ error reception method. In order to initiate
an IQ the client can use the SOCIETIES Communications
Framework, and whenever the response arrives the respective
callback method is executed.

Example 1 SOCIETIES Node Service Discovery Response

<i q from= ’ u s e r 1 . s o c i e t i e s . l o c a l ’ t y p e = ’ r e s u l t ’
i d = ’ i n f o 1 ’ t o = ’ c l i e n t @ s o c i e t i e s . l o c a l / d e v i c e ’>
<que ry

xmlns= ’ h t t p : / / j a b b e r . o rg / p r o t o c o l / d i s c o # i n f o ’>
< i d e n t i t y c a t e g o r y = ’ component ’ t y p e = ’ g e n e r i c ’

name= ’ S o c i e t i e s Communicat ion Manager ’ />
<f e a t u r e v a r = ’ h t t p : / / j a b b e r . o rg / p r o t o c o l / d i s c o # i n f o ’ />
<f e a t u r e v a r = ’ u r n : x m p p : p i n g ’ />
<f e a t u r e v a r = ’ j a b b e r : i q : l a s t ’ />
<f e a t u r e v a r = ’ u r n : x m p p : t i m e ’ />
<f e a t u r e v a r = ’ h t t p : / / j a b b e r . o rg / p r o t o c o l / pubsub ’ />
<f e a t u r e v a r = ’ h t t p : / / s o c i e t i e s . o rg / a p i / schema /

p r i v a c y t r u s t / t r u s t / b r o k e r ’ />
<f e a t u r e v a r = ’ h t t p : / / s o c i e t i e s . o rg / a p i / schema /

p r i v a c y t r u s t / t r u s t / model ’ />
<f e a t u r e v a r = ’ h t t p : / / s o c i e t i e s . o rg / a p i / schema /

p r i v a c y t r u s t / t r u s t / e v i d e n c e / c o l l e c t o r ’ />
</ que ry>

</ i q>

The services implementing IFeatureServer register them-
selves with the SOCIETIES Communications Framework and
reference the Java package containing the XML-bound data
objects. The SOCIETIES Communications Framework uses
the XML namespace to which this Java package is bound to
advertise the support of this service through XMPP Service
Discovery [14], as shown in Example 1. One a service has
been remotely discovered, remote consumers (or clients, in a
more XMPP-oriented terminology) can send XML encoded
payloads to them.

Example 2 SOCIETIES wire-protocol of a CIS Join Request

<i q t y p e = ’ s e t ’ from= ’ c s s 1 @ s o c i e t i e s . l o c a l / d e v i c e ’
t o = ’ c i s 1 . s o c i e t i e s . l o c a l ’ i d = ’ j o i n 1 ’>
<community xmlns= ’ h t t p : / / s o c i e t i e s . o rg / community ’>

<j o i n />
</ community>

</ i q>

Example 2 shows a simple XMPP-based SOCIETIES re-
quest from CSS css1 to join CIS cis1. Upon the reception
of a message, the SOCIETIES platform takes these XMPP
identifiers, JIDs, and converts them to an agnostic identity data



structure, abstracting XMPP specifics from the services. Sim-
ilarly, when a message is to be sent, the inverse happens. This
process implements a correspondence between the conceptual
SOCIEITES identity model and the underlying communica-
tion identifiers. This correspondence also allows SOCIETIES
components to be interoperable, at the identification level, with
pure XMPP clients.

For implementing the Communications Framework itself,
two XMPP open source libraries were used: Smack and
Whack, both provided by Ignite Realtime [17], [18]. Also, the
open source SimpleXML [19] serialization library was used.
A key factor that contributed to the choice of these libraries
over others was their compatibility with Android. In order to
keep the implementation simple, a significant part of the code
is platform-agnostic, running both in Android and standard
Java.

Another significant technical detail of the Communica-
tions Framework implementation has to do with the modular
nature of OSGi. Because the Communications Framework
(de)serializes XML payloads transparently to other OSGi
services, it would require to dynamically import all of these
services data objects, which is seen as somewhat of an OSGi
anti-pattern. It caused, beyond performance problems, OSGi
to re-resolve the Communications Framework package imports
each time a service would no longer be available. For that
reason, we decided to make Communications Framework
OSGi aware, and to explicitly handle class-loading contexts.
This enables the Communications Framework to transparently
transform XML to and from Java Objects in the class-loading
context of the interested service, effectively maintaining the
benefits of OSGi while abstracting the (de)serialization code.

VI. DISCUSSION AND CONCLUSION

The work presented in this paper explores the possibility of
implementing a distributed social SOA over XMPP. It differs
from traditional SOA because it attempts to counter the current
centralization status quo of the web in favour of a service
ecosystem composed by user-hosted peers that can behave at
the same time as service consumers and providers. However
these peers need coordination both in the service domain,
where a discovery and routing infrastructure is necessary, and
on the identity domain, so that they can establish social and
trust relations. In SOCIETIES we attempted to implement
such an infrastructure by relying in XMPP, and by adopting
as much of the core protocol and its extensions as possible.
The result was an open source implementation used by the
project partners to implement the services that provided the
functionality for the user trials.

As Roy Fielding created REST by re-using the HTTP verbs
and enabling a minimalist alternative to SOAP, in SOCIETIES
we tried to re-use the rich functionality set of XMPP for a
similar goal. Compared to XEP-0072 [7], which defines SOAP
over XMPP, the SOCIETIES approach wins in a number
of evaluation criteria. First, as recommended in the XMPP
Extension design guidelines [15], it re-uses existing extensions
relevant for the use case, namely Service Discovery [14] and

TABLE I
COMPARISON OF ARCHITECTURAL-STYLE TECNHOLOGIES

SOAP REST AMQP XMPP User-
-hosted SOA

Typical
Deployment
Scope

intranets Internet intranets Internet

Service
Discovery

dynamic,
via polling

static, via
convention
and docu-
mentation

out of
scope

dynamic, via
polling and
notification

Wire-
Protocol
Format

XML over
HTTP

JSON over
HTTP

AMQP
over TCP

XML over
TCP

Payload
Structure
Definition

machine-
readable,
integrated

with
endpoint

human-
readable, via
convention
and docu-
mentation

out of
scope

machine-
readable, via
convention

Messaging
Patterns

request-
response

request-
response

message
routing
by key

message
routing by
identifier

Transaction
Support add-on no optional no

Typical
End-User
Role

consumer consumer not
involved

provider and
consumer

Publish Subscribe [16]. Second, it makes use of XMPP’s
pre-existing support for asynchronous messaging and Publish-
Subscribe while XEP-0072 leaves interaction patterns for the
business logic layer, blindingly executing them using XMPP
IQs or Messages. Finally, the resulting wire-protocol is more
compact and XMPP-like.

A part of work that was designed but not implemented
was the support for a more flexible service discovery mecha-
nism. Beyond having a typical polling-based service discovery
protocol, we aimed to re-use the mechanism of capability
advertisement over presence defined in the Entity Capabilities
XEP [20] to advertise client-hosted services. That way, the ser-
vices exposed by a network node would be propagated along
with the node’s presence across the user’s contact network,
enabling an event-driven service discovery environment. Also,
Entity Capabilities propagate service information in a very
network-efficient way, by passing client fingerprints around.
An explicit service discovery request is only required in case
the fingerprint hasn’t been previously cached.

Table I illustrates the differences in service infrastructure
functionality for key architectural-style technologies - SOAP,
REST and AMQP - and for the solution proposed in this
paper. AMQP clearly differentiates from the other technologies
because it does not define a full stack and service ecosystem
functionality. Instead it focuses on providing flexible, high-
performance messaging with transaction support for enter-
prise environments. Its use for communication with end-user
applications is unheard of, despite technologically feasible,
probably because the such application would require an out-
of-band method for queue configuration.



The approach presented in this paper clearly distinguishes
itself from SOAP and REST in three dimensions: support of
reactive presence-based service discovery, flexible messaging
patterns and enabling clients to behave as providers. Regarding
payload structure definition, our approach is a middle-ground
between SOAP and REST: while it sticks with a machine-
readable format, it privileges convention over querying for the
format on runtime.

The most relevant issue identified throughout the work pre-
sented in this paper relies in a mismatch between XMPP and
SOCIETIES. In SOCIETIES we’d like that users host services
themselves, forming a distributed social service ecosystem.
This was a key orientation in the project, drawing from the
prevasive-social vision and supported by the adopted privacy
architecture. On the other hand, the XSF aims to keep XMPP
clients (read user-side software) as simple as possible [15],
preferring that services are generally provided by XMPP
components [21]. While XMPP doesn’t restrict the ability
for clients to behave as service providers - IQ queries get
routed to them just as it happens for components - there are
underlying client-server assumptions in a number of XEPs.
Most relevantly, the mechanisms defined in Service Discovery
[14] and Entity Capabilities [20] don’t establish a difference in
feature announcement when the client is advertising capability
to consume a service versus providing it: clients are always
assumed to be consumers while servers/components are the
providers. The compromise solution found within SOCIETIES
was to treat XMPP components as if they were user-owned,
despite lacking the rich identity features that XMPP clients
have, and forcing us to drop the idealized presence-based
service advertisement previously described.

ACKNOWLEDGMENT

We would like to thank the SOCIETIES project colleagues
which gave ideas and feedback regarding the design of the
Communications Framework, namely Micheal Crotty for vi-
sion input, Miquel Martin for the technical and philosophical
discussions, and Alec Leckey for the outstanding coordination
and support. Also, thanks to the rest of the SOCIETIES devel-
opment team which used the Communications Framework and
gave implementation-level feedback, namely: Nikos, Nicolas,
Pavlos, Sancho, Eliza, Patrick, Sarah, Stuart, Maria, Liam,
Thomas and Olivier.

The work presented in this paper was supported by the Eu-
ropean Commission via the ICT FP7 SOCIETIES Integrated
Project (No. 257493).

REFERENCES

[1] C. Schroth and T. Janner, “Web 2.0 and SOA: Converging concepts
enabling the internet of services,” IT Professional, vol. 9, no. 3, pp.
36–41, 2007. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs\
all.jsp?arnumber=4216107

[2] J. a. Girão and A. C. Sarma, “Identities in the Future Internet of Things,”
Wireless Personal Communications, vol. 49, no. 3, pp. 353–363, 2009.

[3] S. Ludwig, J. Beda, P. Saint-Andre, R. McQueen, S. Egan,
and J. Hildebrand, “XEP-0166: Jingle,” 2009. [Online]. Available:
http://xmpp.org/extensions/xep-0166.html

[4] P. Saint-Andre, J. Hildebrand, S. Dobrov, and V. Saliou, “XEP-
0277: Microblogging over XMPP,” 2012. [Online]. Available: http:
//xmpp.org/extensions/xep-0277.html

[5] P. Waher, “XEP-0323: Internet of Things - Sensor Data,” 2013.
[Online]. Available: http://xmpp.org/extensions/xep-0323.html

[6] L. Johansson, “XMPP as MOM,” in Greater NOrdic
MIddleware Symposium (GNOMIS), 2005. [Online]. Available:
http://www.gnomis.org/presentasjoner/oslo2005/xmpp.pdf

[7] F. Forno and P. Saint-Andre, “XEP-0072: SOAP Over XMPP,” 2005.
[Online]. Available: http://xmpp.org/extensions/xep-0072.html

[8] K. Doolin, “SOCIETIES completes Enterprise User Trial,”
2013. [Online]. Available: http://www.ict-societies.eu/2013/04/23/
societies-completes-enterprise-user-trial/

[9] ——, “SOCIETIES Enterprise User Trial #2
Complete RELEVANCE @ ICT2013,” 2013.
[Online]. Available: http://www.ict-societies.eu/2013/11/12/
societies-enterprise-user-trial-2-complete-relevance-ict2013/

[10] SOCIETIES, “GitHub: SOCIETIES,” 2011. [Online]. Available:
https://github.com/societies/

[11] M. Hansen, P. Berlich, J. Camenisch, S. Clauß, A. Pfitzmann, and
M. Waidner, “Privacy-enhancing identity management,” Information
Security Technical Report, vol. 9, no. 1, pp. 35–44, Jan. 2004.

[12] XMPP Standards Foundation, “XMPP Registrar,” 1999. [Online].
Available: http://xmpp.org/resources/registrar/

[13] ——, “XMPP Extensions,” 1999. [Online]. Available: http://xmpp.org/
extensions/

[14] J. Hildebrand, P. Millard, R. Eatmon, and P. Saint-Andre, “XEP-
0030: Service Discovery,” 2008. [Online]. Available: http://xmpp.org/
extensions/xep-0030.html

[15] P. Saint-Andre, “XEP-0134: XMPP Design Guidelines,” 2004. [Online].
Available: http://xmpp.org/extensions/xep-0134.html

[16] P. Millard, P. Saint-Andre, and R. Meijer, “XEP-0060: Publish-
Subscribe,” 2010. [Online]. Available: http://xmpp.org/extensions/
xep-0060.html

[17] Ignite Realtime, “Smack.” [Online]. Available: http://
www.igniterealtime.org/projects/smack/index.jsp

[18] ——, “Whack.” [Online]. Available: http://www.igniterealtime.org/
projects/whack/index.jsp

[19] N. Gallagher, “Simple XML Serialization.” [Online]. Available:
http://simple.sourceforge.net/

[20] J. Hildebrand, P. Saint-Andre, R. Tronçon, and J. Konieczny, “Entity
Capabilities,” 2008. [Online]. Available: http://xmpp.org/extensions/
xep-0115.html

[21] P. Saint-Andre, “XEP-0114: Jabber Component Protocol,” 2012.
[Online]. Available: http://xmpp.org/extensions/xep-0114.html


