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Abstract

Post‐translational modifications, such as phosphorylation, acetylation and ubiquitina-
tion, are widely known to play various important roles in cellular signalling. Recent 
significant advances in mass spectrometry‐based proteomics technology enable us not 
only to comprehensively identify expressed proteins but also to unveil their post‐trans-
lational modifications with high sensitivity. In our advanced proteome bioinformatics 
frameworks, statistical network analyses of large‐scale information on various post‐
translational modification dynamics were conducted to define the key machinery for 
cancer stem cell properties. The bioinformatical approaches using IPA (ingenuity path-
way analysis), NetworKIN and a newly developed platform named PTMapper (post‐
translational modification mapper) allowed us to perform network‐wide prediction of 
upstream interactors/kinases with the related information on the diseases and functions, 
leading to systematic finding of novel drug candidates to regulate aberrant signalling in 
cancer stem cells. In this chapter, we apply patient‐derived glioblastoma stem cells as a 
representative model of cancer stem cells to introduce some useful platforms for statisti-
cal and mathematical network analyses based on the large‐scale phosphoproteome data.

Keywords: glioblastoma stem cells, signal transduction, proteomics, post‐translational 
modification, network analysis

1. Introduction

Glioblastoma (GBM) is known to be the most common and aggressive brain tumour in adults. 
Despite the enormous efforts to overcome this tumour for many years, the median survival 
for GBM patients remains around only 1 year [1]. GBM is characterized by high invasiveness 
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and intratumoral heterogeneity (ITH) [2, 3]. Up to date, it is known that GBM‐ITH contributes 
to the resistance to chemotherapy, radiation and surgical resection. Since functional diversity 
is the main feature of multilineage differentiation of cancer stem cells (CSCs) [4, 5], glioblas-
toma stem cells (GSCs) were thought to be major therapeutic targets of GBM. Furthermore, 
post‐translational modifications (PTMs) of GSCs are reported to tightly regulate highly 
tumourigenic potential of GSCs through aberrant signalling [6, 7]. Therefore, it is important 
to comprehensively elucidate PTM‐based GSC signalling networks for developing the effec-
tive treatment of GBM.

Advanced nanoscale liquid chromatography‐tandem mass spectrometry (nanoLC‐MS/MS) 
enables us to identify and quantify thousands of proteins in a single experiment [8]. Moreover, 
using the nanoLC‐MS/MS system coupled to the high‐affinity enrichment methods of the 
peptides with PTMs, we can also acquire in‐depth biological information on PTM dynamics. 
In this chapter, we introduce high‐resolution shotgun proteomics technology for large‐scale 
PTM determination in combination with statistical bioinformatics platforms such as IPA [9], 
NetworKIN [10, 11] and PTMapper [12].

2. System‐wide proteomic analysis of PTM dynamics

PTMs are widely known to play crucial roles in cell fate control, such as proliferation, dif-
ferentiation and apoptosis. More than 500 kinds of PTMs regarding eukaryotes and prokary-
otes have been registered with Unimod, a comprehensive database of protein modifications 
for mass spectrometry [13]. Recent technological advances in mass spectrometry‐based pro-
teomics in combination with appropriate enrichment techniques for each PTM enable us to 
perform comprehensive identification and quantification of PTMs [14]. Here, we introduce 
biochemical purification methods for highly sensitive detection of the representative PTMs: 
phosphorylation, acetylation and ubiquitination (Figure 1).

2.1. Phosphorylation

Protein phosphorylation is recognized as one of the most important and well‐studied PTMs and 
regulates a variety of biological processes by transmitting diverse external signals [15, 16]. About 
as many as 280,000 phosphorylation sites have already been registered in PhosphoSitePlus, a 
knowledgebase containing non‐redundant mammalian PTMs [17]. Titanium dioxide (TiO

2
), 

which has very high affinity for phosphorylated peptides, is widely used for large‐scale phos-
phoproteome analysis [18, 19].

2.2. Acetylation

Lysine acetylation plays a key role in modulating transcriptional regulation through the coor-
dinated function of histone acetyltransferases (HATs) and histone deacetylases (HDACs) [20]. 
The stabilization of p53, one of the most important transcription factors, is reported to greatly 
depend on lysine acetylation [21]. Thousands of lysine acetylation sites can be identified using 
an antibody against acetyl‐lysine in combination with a high‐resolution mass spectrometry 
system [22, 23].
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2.3. Ubiquitination

The ubiquitin system transmits protein degradation signal to proteasome as well as regu-
lates multiple cellular functions such as cell‐cycle progression, DNA repair and transcrip-
tional regulation. Dysfunction of this system leads to various pathological conditions [24]. 
Ubiquitination sites are detected as diglycine (Gly‐Gly) remnants on the modified lysine resi-
dues, which are generated by tryptic digestion of ubiquitinated proteins [25, 26].

3. Systematic characterization of the phosphoproteome dynamics in 

GSCs

The quantitative information on the phosphoproteome dynamics can provide us with system-

atic description of the key machinery for cellular signalling. In this section, we introduce two 
examples of global phosphoproteome analyses of GSCs using SILAC (stable isotope labelling 
by amino acids in cell culture)‐based quantitative technique [27, 28] (Figure 2). One was  carried 
out using epidermal growth factor (EGF) to elucidate the mechanism for stemness mainte-
nance of GSCs [29], whereas the other was conducted through serum‐induced differentiation 
of GSCs to unveil the key pathways responsible for disrupting stemness characteristics [30].

Figure 1. Strategy for mass spectrometry‐based identification of peptides modified with phosphorylation, acetylation 
and ubiquitination. Regarding ubiquitinated lysine residues, Gly‐Gly remnants are generated from the C‐terminal 
of ubiquitin as a consequence of tryptic digestion. PTMs: post‐translational modifications, P: phosphorylation, Ac: 
acetylation, Ub: ubiquitination, TiO

2
: titanium dioxide.
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3.1. Global quantitative phosphoproteome analyses of EGF‐stimulated GSCs

EGF is known to be essential for maintenance and growth of GSCs [31]. The quantitative 
phosphoproteomic analysis of EGF‐stimulated GSCs was performed to acquire network‐wide 
information on the molecules related to stemness maintenance. As a result, a total of 6073 
phosphopeptides from 2282 phosphorylated proteins were identified, leading to quantitative 
classification of 516 upregulated and 275 downregulated phosphorylation sites [29].

Figure 2. Schematic workflow for quantitative proteome analysis using SILAC, a representative relative quantitation 
technique based on metabolic labelling of specific amino acids such as arginine. Two populations of GSCs were cultured in 
the media supplemented with 12C

6

14N
4
‐Arg (light) or 13C

6

15N
4
‐Arg (heavy), respectively. After one of the two cell populations 

was stimulated/perturbed, both of the cells were lysed, equally combined and enzymatically digested to perform nanoLC‐
MS/MS analyses. The intensity of each mass peak is used for relative quantitation of each peptide with high accuracy.
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3.1.1. IPA‐based network analysis

IPA canonical pathway analysis was then performed using SILAC‐based quantitative phos-

phoproteome data on EGF‐stimulated GSCs [29] (Figure 3). Protein synthesis‐related path-

ways (EIF2 signalling, mTOR signalling) and cell cycle regulation‐related pathways (cyclins 
and cell cycle regulation, cell cycle: G1/S checkpoint regulation, cell cycle: G2/M DNA dam-

age checkpoint regulation) were extracted with statistical significance (‐log (p‐value) > 5).

3.1.2. Upstream kinase prediction analysis

Protein phosphorylation is known to be controlled by specific kinases depending on consen-

sus sequence motifs of substrates [32]. The motif‐x algorithm [33, 34] is applicable to statistical 
extraction of significant consensus sequence motifs from the large‐scale phosphoproteome 
data on EGF‐stimulated GSCs (Figure 4(A) and (B)).

NetworKIN [10, 11] is designed to predict upstream kinases based on the sequence motifs 
around the functionally regulated phosphorylation sites through construction of the related 
protein‐protein interaction (PPI) networks using STRING [35]. The NetworKIN algorithm 
enables further interpretation of the results obtained from the motif‐x analyses (Figure 4 (C)).

3.2. Global quantitative phosphoproteome analyses of serum‐induced GSCs

CSCs are regarded as one of the most clinically important cell populations in causing tumour 
heterogeneity, which is responsible for the resistance to chemotherapy [36]. As recent studies 
have demonstrated that non‐CSCs can also readily acquire CSC‐like characteristics [37], it is 
very important to figure out the detailed mechanisms underlying CSC differentiation and 

Figure 3. IPA‐based pathway analysis of the quantitative phosphoproteome data on EGF‐stimulated GSCs. (A) The 
significant canonical pathways across the entire dataset (‐log (p‐value) > 5). (B) The mTOR signalling pathway is 
representatively depicted with the predicted information on the biological activities related to this pathway.
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understand the principle of their heterogeneity. Serum‐induced phosphoproteome dynamics 
in GSCs was measured to systematically elucidate the regulatory nodes for stemness alter-
ation over the entire signalling networks [30]. Among 2876 phosphorylation sites on 1584 
proteins identified, 732 phosphorylation sites on 419 proteins were found to be regulated 
through serum‐induced differentiation. The integrative network analyses of the quantitative 
phosphoproteome data using various bioinformatical tools including IPA and NetworKIN 
indicated that transforming growth factor‐β receptor type‐2 (TGFBR2) might be one of the 
crucial upstream regulators concerning GSC alteration (Figure 5).

Figure 4. Phosphorylation site‐oriented network analysis of the quantitative phosphoproteome data on EGF‐stimulated 
GSCs. The consensus sequence motifs surrounding the quantitatively regulated phosphorylation sites regarding (A) 
downregulation and (B) upregulation can be described as a result of the motif‐x analyses. (C) The numerical distribution 
of the putative kinases predicted by NetworKIN. The colour of cells reflects the number of the predicted kinases for each 
consensus sequence as described in (A) and (B).
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Figure 5. Upstream kinase/regulator analyses based on the regulated phosphoproteome data on serum‐induced GSCs. 
(A) Heatmap of the over‐representation p‐values calculated for each predicted kinase using PhosphoSiteAnalyzer, a 
bioinformatical platform for the NetworKIN prediction results from the phosphoproteome data [38]. The subset ‘serum (−)’ 
indicates SILAC ratio > 2.0, whereas ‘serum (+)’ shows SILAC ratio < 0.5. TGFBR2 and ACVR2A/B‐specific phosphorylation 
sites were predicted to be significantly enriched in the ‘serum (−)’ subset (adjusted p‐value < 0.05). (B) Upstream regulator 
analysis by IPA. The top 10 upstream regulators relevant to the regulated phosphoproteome are shown with the 
corresponding score (−log [p‐value]). (C) IPA‐based description of TGF‐β1 and the target molecules in the phosphoproteome 
data. Dashed lines represent indirect interactions caused by TGF‐β1, adapted from Ref. [30].
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Figure 6. Construction of phosphorylation‐oriented PPI networks via PTMapper. (A) Workflow for the visualization 
of kinase‐phosphorylation site relationships in PPI networks via PTMapper. Phosphorylation sites are connected 
with the parental protein nodes in PPI networks and the upstream kinases are then added to the phosphorylation 
sites. (B) Phosphorylation site‐oriented networks constructed from the phosphoproteome data on EGF‐stimulated 
glioblastoma stem cells. The solid arrows represent functionally directed protein‐protein interactions or kinase‐
substrate interactions, whereas the dotted lines show the linkages of proteins and their phosphorylation sites, adapted 
from Ref. [12].
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Figure 7. Comparison of the sub‐networks extracted from EGF‐dependent phosphorylation dynamics of glioblastoma stem 
cells. (A) Schematic procedure for the evaluation of PTMapper‐based network construction. (B) The most significantly 
regulated sub‐networks extracted from the conventional protein interaction network. (C) The phosphorylation site‐
oriented network generated via PTMapper. The nodes surrounded by the border with the upper‐right numbers indicate 
the common molecules in the two types of the sub‐networks. The solid arrows represent functionally directed protein‐
protein interactions or kinase‐substrate interactions, whereas the dotted lines show the linkages of proteins and their 
phosphorylation sites. The dashed circles indicate p70S6K and Lyn, adapted from  Ref. [12].
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4. Development of advanced bioinformatical platforms for complicated 

kinase‐substrate interaction networks

Although shotgun proteomics strategy based on advanced nanoLC‐MS/MS system can pro-

vide us with large‐scale information on various kinds of PTMs, there are only a few PTM‐
based network analysis tools available compared to conventional protein‐protein interaction 
(PPI). Recently, CEASAR: connecting enzymes and substrates at amino acid resolution [39] 

and PhosphoPath [40] were developed to visualize kinase‐substrate interactions in a phos-

phorylation site‐oriented manner. CEASAR was designed to provide a high‐resolution map 
of kinase‐phosphorylation networks based on functional protein microarrays and bioinfor-

matics analysis. On the other hand, PhosphoPath was developed as a Cytoscape app [41] 

to visualize both quantitative proteome and phosphoproteome data using PPI information 
extracted from BioGRID [42] and PhosphoSitePlus [17]. Recently, we also have developed 
a Cytoscape‐based bioinformatical platform named ‘post‐translational modification mapper 
(PTMapper)’ to visualize kinase‐substrate interactions regarding multiple phosphorylation 
sites on signalling molecules (Figure 6) [12]. The kinase‐phosphorylation site interaction data-

set for this platform was integratively generated from PhosphoSitePlus [17], Phospho.ELM 
[43], PhosphoNetworks [44] and Uniprot KB [45], leading to construction of phosphoryla-

tion site‐oriented PPI networks using Pathway Commons [46]. We applied this platform to 
extract crucial kinase‐substrate interactions from the quantitative phosphoproteome data on 
EGF‐stimulated GSCs [29]. As a result, p70S6K and Lyn were significantly extracted as key 
regulators (Figure 7).

5. Perspectives and conclusions

The bioinformatical description of GSC signalling dynamics based on the global quantitative 
phosphoproteome data led to network‐wide extraction of critical molecules and their related 
pathways for defining stemness characteristics. Further integrative description of multiple 
PTM dynamics in GSCs will deepen our understanding of the nature of their cell signal-
ling complexity at the network level. We believe that shotgun proteomics‐based quantitative 
analyses of cancer stem cell signalling networks in combination with various statistical and 
mathematical platforms will pave the way to establish new directions towards systematic 
evaluation of drug targets in a cell‐type specific manner.
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