
Semantic-based Publish/Subscribe for M2M

Mário Antunes
Instituto de Telecomunicações

Universidade de Aveiro

Aveiro, Portugal

Email: mario.antunes@av.it.pt

Diogo Gomes
Instituto de Telecomunicações

Universidade de Aveiro

Aveiro, Portugal

Email: dgomes@av.it.pt

Rui Aguiar
Instituto de Telecomunicações

Universidade de Aveiro

Aveiro, Portugal

Email: ruilaa@av.it.pt

Abstract—The number of connected devices is expected to soar
in the coming years, each one of them collects and distributes
real-world information though various systems. As the number
of such connected devices grows, it becomes increasingly difficult
to store and share all these new sources of information. Several
context representation schemes try to standardize this informa-
tion, however none of them have been widely adopted. Publish/
subscribe paradigm has proven to be an adequate abstraction
for large scale information dissemination, but none of current
variations is well suited for context information. In a previous
publication we addressed these challenges, however our solution
has some drawbacks: poor scalability and semantic extraction.
The aim of this paper is twofold. First, we discuss an efficient
way to deal with representation schemes diversity and propose a
d-dimensional context organization model. Second, we propose
a semantic-based publish/subscribe system that is well suited
for M2M scenarios. Our evaluation shows that d-dimensional
organization model outperforms our previous solution in both
speed and space requirements.
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I. INTRODUCTION

When we think about the Internet we mostly consider
servers, laptops, routers and fixed broadband that have reached
almost every household. But in fact the Internet is growing as
we speak. Everyday new kinds of devices (from mobile phones
to environmental sensors networks) connect to the Internet,
and share massive amounts of information. According to the
ICT Knowledge Transfer Network (ICT KTN), the number of
mobile devices is expected to increase worldwide from 4.5
billion in 2011 to 50 billions by 2020 [1].

The data generated by these devices are an untapped
source of context information. This information can be used
to provide added value: improve efficiency, detect abnormal
conditions or advertise information. As microcosms of the
Internet of Everything (IoE), cities stand to benefit the most
from the untapped information shared by all these devices.
Smart cities means many things to numerous people. Yet,
one thing remains constant: part of being “smart” is utilizing
information and communications technology and the Internet
to address urban challenges. Fusing information from several
sensors makes it possible to predict a driver’s ideal parking
spot [2], [3]. Projects such as Pothole Patrol[4] and Nericell
[5] use vehicular accelerations to monitor road conditions
and detect potholes. TIME (Transport Information Monitoring
Environment) project [6] combines data from mobile and fixed
sensors in order to evaluate road congestion in real time.

For scenarios like the previous ones to become reality,
it is necessary to develop a way to manage such diverse
machine made context information. One of the challenges is
to store massive amounts of context information and provide
a discriminative retrieval process.

Without loss of generality let us only consider pothole
detection (a task of utmost importance for city officials). In
an ideal context storage system, information related with road
conditions should be automatically tagged with an appropriate
tag. The information published by various sensors (on board
of multiple vehicles from several brands) does not explicit
mention road condition’s, it only contains measurements re-
lated with the vehicle. It is therefore necessary to allow search
with concepts instead of simple words. It is quite difficult to
add these functionalities to standard full-text search engines
(present in several databases).

Common definitions of context information [7], [8] does
not provide any insight about its structure. In fact, each device
can share context information with a different structure. Over
time several representation schemes have been proposed (e.g.
ContextML[9], SensorML[10] COBRA-Ont[11]). All of these
representations try to standardize the process of sharing context
information through several services. However, none have been
widely accepted either by the academia or the industry. Usually
each context-aware platform defines a context representation
that suits their specific needs. This breaks compatibility be-
tween platforms and limits the quantity of context information
that can be used in M2M applications. It is possible (but
unlikely) that in the future a context representation standard
will be widely adopted. Until then, context-aware platforms
have to deal with multiple context representations.

Another important challenge is the distribution of context
information. The Internet has considerably changed the scale
of distributed systems. Nowadays, these systems involve thou-
sands of entities, potentially distributed all over the world.
Whose locations and behaviour may greatly vary through-
out the lifetime of the system. Individual point-to-point and
synchronous communications lead to rigid and static appli-
cations. As a consequence the development of dynamic large
scale applications becomes cumbersome. Recently the publish/
subscribe paradigm has proven to be an adequate abstraction
for large scale information dissemination. In this paradigm,
subscribers specify their interest in certain event candidates.
The receivers are notified every time a publisher fires and
event that matches their registered interests. The strength of
this event-based interaction style lies in the full decoupling
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of time, space, and synchronization between publishers and
subscribers.

In a previous publication [12] we proposed a context
storage system. Our previous solution provides a generalized
storing process and discriminative retrieval. Nonetheless, our
previous solution has some drawbacks: the context organiza-
tion model is not optimize for M2M scenarios, and does not
support the publish/subscribe paradigm. The aim of this paper
is twofold. First, we discuss the drawbacks of our previous
context organization model and proposed a new one that is
optimized for M2M scenarios. Second, we develop an efficient
publish/subscribe mechanism based on our new organization
model.

The remainder of the paper is organized as follows. In Sec-
tion II we analyse how context information can be organized
and define the basic requirements for context storage solutions.
We discuss our previous solution’s drawbacks and propose a
new context organization model in Section III. Semantic-based
publish/subscribe is defined and analysed in Section IV. The
spatial requirements of both models is estimated in Section
V. Implementation details are described in Section VI. We
evaluated both approaches with a real M2M simulation. The
results are discussed in Section VII. Finally, the discussion and
conclusions are presented in Section VIII.

II. CONTEXT ORGANIZATION

Context information is an enabler for deeper and further
data analysis, requiring the integration of an increasing number
of information sources. As previously mentioned, nowadays no
widely accepted context representation scheme exists; instead
there are several approaches to deal with context information.

These approaches can be divided into three categories:
adopt/create a new context representation, normalize the stor-
ing process through ontologies and accept the diversity of
context representations. Previous works have adopted existing
representations [9], [13], [14]. Each project defined a new opti-
mized context representation. However, this approach imposes
limits to the quantity of information that can be shared with
other context-aware platforms. Later on the authors recognized
that the usage of a single context representation limits the
information expressiveness [14].

Another possibility would be employing ontologies to
normalize the storage process. Each context representation
scheme is mapped into the internal data model through an
ontology [15]. This type of platform supports several context
representations, yet it is necessary to define a new ontology for
each representation. Defining a new ontology is a tedious task
that requires human intervention. The scale of M2M scenarios
make this task very difficult.

Finally, we can accept the diversity of context representa-
tion as a consequence of economic pressures, and prepare for
this inevitability [12].

According to the authors [16]–[18], the best solution to
characterize context information is through bottom-up char-
acterization. Bottom-up characterization is massively dimen-
sional, and there is no global consistency imposed by current
practice. Although sensor information is not tagged by users,

we can model the tagging process as keyword extraction [19]–
[21]. A keyword is a sequence of one or more characteristic
terms that provide a compact representation of a document’s
content. Ideally, keywords represent in condensed form the
essential content of a document.

A context storage solution must fulfil 3 requirements:
generalize storing process, discriminative retrieval and ability
to scale. The first two requirements complement each other.
In other words, the ideal context storage must store and
accurately pinpoint any piece of context information associated
with any type of sensor. The most common methods to
implement discriminative retrieval are through semantic web
or information retrieval system. Since semantic web methods
require ontologies (which in this scenario is a disadvantage) a
context database must provide a discriminative retrieval based
on information retrieval systems.

The number of devices connected to the Internet is rapidly
increasing, as a consequence the quantity of context informa-
tion available is also increasing. A context storage solution
must be robust to this increase. A database system can be
distributed through several nodes in order to improve per-
formance. Each node contains a set of the whole database
(horizontal partitioning/sharding [22]).

III. CONTEXT ORGANIZATION MODEL

The common definitions of context information [7], [8] are
so broad that any type of information related to an entity can be
considered context information. These definitions also do not
provide any insight about the structure of context information.
From now on we will refer to a unique piece of context
information as a document.

The simplest way to model context information is through
a single dimensional model (see Fig. 1). Each document is
characterized with a unique key, stored in a key-value structure
and indexed by an information retrieval system [12].

Fig. 1: Representation of a single dimensional model. The only
dimension is the document identification.

This model does not take full advantage of the information
retrieval system. As a consequence the single dimensional
model has some disadvantages: poor scalability and semantic
extraction. It is not trivial to distribute the information re-
trieval system through several nodes without loss of precision.
As a consequence, the performance of the context storage
is bounded by the information retrieval size. Consider the

257



following scenario where some devices published several times
faster than the others. The information retrieval system is
flooded with documents from the devices that publish at higher
rates. As a consequence, the terms present in these messages
become too common in the information retrieval system. The
descriptive potential of these terms is heavily penalized.

In order to minimize these disadvantages we propose a d-
dimensional model. The first dimension is always the sensor
identification. Instead of storing documents independently, they
are organized by sensor. The platform stores all the documents,
but only needs to index the sources/sensors. The remaining
d−1 dimensions are used to filter data from a specific source.

A d-dimensional model is as expressive as a single dimen-
sional model within certain circumstances:

1) Each source (device/sensor) produces a continuous
data stream.

2) The semantic value of the source can be extracted
from a single document.

After carefully analysing several M2M scenarios, we can
state that a common M2M scenario verifies these circum-
stances. With a single dimensional model each document is
treated independently. But in reality, the majority of sensors
send information periodically or when a specific event is
detected. This process is better modelled as continuous data
streams than a set of independent documents (circumstance
1). As such context information is better modelled with a d-
dimensional model (see Fig. 2).

Fig. 2: Representation of a 2-dimensional model. The first
and second dimensions are sensor identification and time
respectively.

Data sent by the sensors is commonly represented in
semi-structured format (e.g. XML, YAML, JSON, BSON).
Most common semi-structured representations can be mapped
into an entity-attribute-value (EAV) model [23]. The sensor
is the Entity, what it measures are the Attributes and the
measurements itself are the Values. The semantic value of
a document is in the Attributes, the Values are physical
measures that change over time. The Attributes are constant
within stream, as consequence, most of the semantic value of
the stream can be taken from a single document (assumption
2). Conventional information retrieval systems decomposes a
document into terms without taking into account their semi-
structured representation. We developed a document analyser

that maps a semi-structured representation into a EAV model
and only extracts the Attributes as characteristic terms.

In short a d-dimensional model is as expressive as a
single dimensional model for M2M scenarios. At the same
time a d-dimensional model improves semantic extraction and
scalability. Mapping documents into a conceptual EAV model
allow us to only extract terms with semantic value improving
the extraction of characteristic terms. Taking into account that
each source produces a continuous data stream, we only need
to analyse some documents to semantically characterize the
source. We have to store all the documents but only need
to index information related to the sources and not all the
individual documents (millions of documents but only some
hundreds of sources).

Our proposed organization model analyses some docu-
ments per source and only indexes the sources, not all in-
dividual documents. There are millions of documents, but
only hundreds of sources, as such the performance of the
information retrieval system is only affected with the addition
of new sources.

For the remaining of this paper we will only consider a
2-dimensional model (sensor identification and time). Higher
dimension models only improve the selection process, do
not minimize the number of sources in the information re-
trieval system. Without loss of generality let us consider a 3-
dimensional model, composed by: sensor identification, time
and location. A document is uniquely identified by a sensor id,
a time stamp and a geographic location. It becomes possible to
select documents based from a specific sensor, time and place.
However, the sources are indexed in the information retrieval
system do not change. In summary, a higher dimensional
model can improve the selection in the storage component, but
adds little semantic value to the information retrieval system.

IV. SEMANTIC-BASED PUBLISH/SUBSCRIBE

In this section we define semantic publish/subscribe and
analyse the performance impact of a single dimension and
a d-dimensional model in this component. Publish/Subscribe
[24] is an important message pattern for asynchronous com-
munications between entities. It allows for strictly decoupled
communication between publishers (content producers) and
subscribers (content consumers). In this paradigm, subscribers
express interest in certain events. They will be notified after-
wards of any events that match their registered interests. This
loosely coupled approach to communication enables publish/
subscribe systems to adapt to changing environments where
publishers and subscribers join and leave the system without
disrupting the general flow of messages.

Publish/Subscriber systems can be divided into three cat-
egories: topic-based [25], content-based [26] and type-based
[27]. In topic-based systems the events are structured into flat
or hierarchical taxonomies. Each message is characterized into
a topic by the publisher. The subscriber expresses interest in
one or more topics and receives all the messages published to
those topics. Contrarily, in content-based, the messages are
only delivered to a subscriber if the message content matches
the constraints defined by the subscriber. Finally, type-based
is a high level variant of the publish/subscribe paradigm which
aims precisely at providing guarantees such as type safety
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and encapsulation. In short, events are instances (objects) of
“arbitrary” application defined types.

None of the previous publish/subscribe systems are opti-
mized for context information. Topic-based requires predefined
topics (top-down characterization/taxonomy). As discussed in
Section II the best solution to characterize context information
is through bottom-up characterization. At the extreme, each
sensor can be a topic (only possible with a d-dimensional
model). This solution implies that a user knowns the iden-
tification of each sensor he uses. In several M2M scenarios
this is not feasible.

Consumers, in conventional content-based systems, sub-
scribe events by specifying filters using a subscription lan-
guage. The filters define constraints, usually in the form of
name-value pairs of properties and basic comparison operators.
Constraints can be logically combined to form complex sub-
scription patterns. This strategy implies that the messages have
a known representation. Context information does not have a
standard representation, as such is quite difficult to evaluate
content-based constraints.

Events, in type-based publish/subscribe, are objects which
are instances of “arbitrary” application-defined types. This
enables a closer integration of the programming language
with the system. Context information is typically represented
in textual format without a standard representation. As such
converting context information into data types is not feasible
in many M2M scenarios.

As a counterpart to these approaches, we propose a
semantic-based publish/subscribe system. It is a specialization
of a content-based solution, that allows users to subscribe
semantic queries. Similar to a content-based solution, a user
subscribes messages based on their content. However, neither
the user nor the system have to known the message’s structure,
fields or values to write a semantic query. Alternatively, our
solution can be understood as a topic-based system where the
topics are dynamical created based on the user queries and the
existing sources. In short, a user expresses interest in concepts
(characteristic terms) instead of filters (name-value pairs of
properties).

The architecture of the semantic-based solution depends
greatly on the context organization model. Let us consider
the models discussed in Section III: single dimensional model
and d-dimensional model. Both solutions require a table to
hold the subscriptions, in the form of query-user pairs. A d-
dimensional model organizes documents into streams based
on the source/sensor. We take advantage of this property and
transform each semantic query in a set of sources/sensors. This
information is stored in another table, in the form of source-
user pairs. Considering that each source is a topic, a semantic-
based solution can be reduced to a topic-based one.

Fig. 3 shows the steps necessaries to complete a subscrip-
tion in a solution based on a single-dimensional model and a
d-dimensional model respectively. The first solution receives
a subscription (1) and stores it in the table (2). On the other
hand, a solution based on a d-dimensional model, resolves the
semantic query into a set of sources (Fig. 3b). The system
receives a subscription (1), queries the information retrieval
system to resolve the semantic query into a set of sources

(2). Finally, it stores the subscription and the sources into the
respectively tables.

(a) Single-dimensional model

(b) N -dimensional model

Fig. 3: Steps necessary to complete a subscription in a
semantic-based solution.

Fig. 4 shows the necessary steps to complete a publish
operation in a solution based on a single-dimensional model
and a d-dimensional model respectively. The first solution can
not resolve semantic queries during subscriptions. As a conse-
quence, it has to communicate with the information retrieval
system during each publish (see Fig. 4a). The publish/subscribe
system receives a publish message (1) and retrieves all the
semantic queries from the table (2). After this it communicates
with the information retrieval system to match the queries
against the message (3), and finally forwards the message to
the respective receivers. However, the second solution (see Fig.
4b) only requires a table lookup (2) in order to forward the
message to the receivers (3).

(a) Single-dimensional model

(b) D-dimensional model

Fig. 4: Steps necessary to complete a publish in a semantic-
based solution.

Both approaches rely on the information retrieval system
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to resolve semantic queries. The performance of these ap-
proaches depends greatly on the information retrieval system.
As previously discussed a d-dimensional model improves the
scalability and the semantic extraction of the system. In short,
the publish/subscribe solution based on a d-dimensional model
has all the advantages associated with this model. Furthermore,
during a subscription the semantic query is transformed into
a set of relevant sources. As such, a publish operation only
requires the source table. Commonly, in a M2M scenario
there is a greater number of publish operations than subscribe
operations. In other words, the pre-processing step improves
the performance for real world applications.

V. CONTEXT STORAGE SPACE REQUIREMENTS

Within this section we compared the space requirements of
a context storage solution based on a single-dimensional and a
d-dimensional model. The size of the storage solution can be
roughly estimated as the sum of the sizes of the information
retrieval (IR), the storage (S) and the publish/subscribe system
(PS):

Size(CS) = Size(S) + Size(IR) + Size(PS) (1)

We do not take into account the publish/subscribe’ size, since
it only makes for a small fraction of the context storage space
requirements. As such, equation 1 can be reduced to:

Size(CS) = Size(S) + Size(IR) (2)

The information retrieval system, in a single-dimensional
model, contains all the documents. But the storage system, in
a d-dimensional model, contains additional fields (one field for
each dimension). We want to identify when a d-dimensional
model is more spatially efficient than a single-dimensional one.
This can be achieve by solving the following relation:

Size(CSSingle) ≥ Size(CSD) (3)

Based on equation 2 we can derive the size of a solution
based on a single and a d-dimensional model:

Size(CSSingle) =
N∑
i=1

(size(uidi) + size(doci))+

N∑
i=1

T∑
j=1

size(termij)

(4)

Where N and T represent the number of documents and
characteristic terms respectively. The storage system uses is a
tabular database that uses a table to store context information.
The table holds pairs of unique identifier and documents. As
such the size of this component is the area of the table. The
majority of information retrieval use a term-document matrix
to compute the similarity between documents and queries. In
a term-document matrix specific type of co-occurrence matrix,
each row represents a unique term and each column represents
a document. The size of the co-occurrence matrix can be used
as a rough estimate for the size of the index.

The size of a d-dimensional based solution is estimated
with the following equation:

Size(CSD) =
N∑
i=1

(
size(uidi) + size(doci)+

D−1∑
j=1

size(fieldj)

)
+

K∑
i=1

T∑
j=1

size(termij)

(5)

Where N , T , K, D represent the number of documents, char-
acteristic terms, sources/sensors and dimensions respectively.
This equation differs from the previous only in two aspects.
It accounts for additional dimensions in the storage system,
and the information retrieval system only index the sensors/
sources.

After applying equations 4 and 5 into inequality 3 and
reducing, we obtain the following result:

N−K∑
i=1

T∑
j=1

size(termij) ≥
N∑
i=1

D−1∑
j=1

size(fieldj) (6)

In short, a d-dimensional model is more spatially efficient
when the size of the additional fields is smaller than the
size of all the indexed documents. Commonly the additional
are timestamps, geohash, latitudes, longitudes, etc. In other
words, these fields can be store in a integer/float. The termij
represents the weight of the term j in the document i. This
element can also be stored as float. We can continue to solve
the inequality replacing size(termij) and size(fieldj) with
a constant C:

N−K∑
i=1

T∑
j=1

C ≥
N∑
i=1

D−1∑
j=1

C (7)

(N −K)× T × C ≥ N × (D − 1)× C (8)

NC +NTC −NDC ≥ KTC (9)

N ≥ K × T

1 + T −D
(10)

A d-dimensional model has a finite number of dimensions,
usually 2 or 3. The number of characteristic terms is potentially
unbounded. As the number of characteristic terms grows,
the term T

1+T−D tends to 1: limT→∞ T
1+T−D = 1 Thus,

a d-dimensional model is more spatially efficient when the
documents’ number is greater than the sources/sensors. In a
common M2M scenario the documents’ number far exceeds
the sources. Hence, a d-dimensional model is commonly more
spatially efficient than a single-dimension one for M2M sce-
narios. It’s worth pointing out that we did not take into account
compression mechanisms. However, these mechanisms should
have an equal effect in both models, thus they have little impact
in our comparison.

VI. IMPLEMENTATION

In this section we discuss important details about our
solution. The software architecture of the solution is almost

260



the same for the single-dimensional and 2-dimensional model.
Our context storage solution can be divided into four differ-
ent components as depict in Fig. 5. The storage and index
components store and index context information respectively.
Furthermore, the pub/sub component implements the semantic-
based publish/subscribe system described in this paper. Finally,
the router communicates with the remaining components in
order to fulfil each operation. All of them communicate with
each other through message passing.

Fig. 5: Propose context storage architecture.

The components communicate with each other using the
ZeroMQ1 socket library. This library supports several trans-
portation methods: TCP sockets, inter-process and inter-thread
communication. Messaging passing allows the application to
be distributed through several machines and each component
can be written in any programming language, without being
restricted by the router component. This strategy is then
specially suitable for the diversity of environments in M2M
applications.

The index component is mainly an information retrieval
system. It was prototyped in Java, using Apache Lucene2 at
its core. This component was developed with special attention
to parallelism. The IndexWriter class was expanded to support
periodical commits (safe store in the disk) with a background
thread. The component also uses near-real-time search3. For
the 2-dimensional model we also developed a custom docu-
ment analyser that maps JSON documents into a EAV model
and extract the semantic value of the attributes.

The storage component is mainly a tabular database respon-
sible for storing all the documents. It was prototyped in Java,
using Apache Cassandra4 as its core. Apache Cassandra is one
of the fastest tabular databases currently available, initially
developed by Facebook and inspired by Amazon’s Dynamo
[28]. Cassandra is designed to handle big data workloads
across multiple nodes with no single point of failure. The
context information is stored in a single table. The single-

1http://www.zeromq.org/
2lucene.apache.org/core/
3blog.mikemccandless.com/2011/06/lucenes-near-real-time-search-is-

fast.html
4cassandra.apache.org

dimensional model uses a table with two columns: the first
column holds a unique identifier, and the last column holds
the document. The 2-dimensional model uses the same table
with an additional column to hold the timestamp.

The pub/sub component was prototyped in Java, using
Apache Cassandra to store the subscriptions and ZeroMQ
library for communication. Both context organization mod-
els require a table with two columns to hold the semantic
subscription: the first column holds the query, and the last
column holds the user unique identification. The 2-dimensional
model requires an additional table to hold the resolution of
the semantic queries into a set of sources. This table has two
columns: the first and the second column holds the source and
user unique identification.

VII. PERFORMANCE EVALUATION

In this section we evaluate the performance of two context
storage solutions. These solutions are based on a single-
dimensional and a 2-dimensional models respectively.

We developed a simulation based on the APOLLO project5.
The APOLLO project’s main objective is the development
of a platform that supports new scenarios in the area of
M2M communications. This platform uses the storage solution
described in this paper and was instantiated in two different
scenarios: greenhouse monitoring and pothole detection. The
first scenario was composed of 7 sensor nodes that collected
environmental data regarding a green house. The pothole
detection scenario consists of identifying potholes on the road
based on the vibrations of the vehicle (use-case similar to the
Pothole Patrol project [4]). In this scenario motorized vehicles
have a sensor node that measures the acceleration, geographic
location and the speed. Reports containing detected potholes
are generated periodically. The sensor sends information only
when the vehicle has a speed greater than 2.5 m/s.

Our simulation consists of a pothole detection service,
and two classes of sensor node: vehicular and greenhouse
sensor nodes. The simulation lasts for 3 months (90 days).
During this period the sensors nodes generate almost 2 million
documents, which corresponds to 3 gigabytes of information.
The pothole detection service communicates with the storage
solution through two distinct interaction paradigms: publish/
subscribe and request/reply. Every 3 days a new report is
generated.

TABLE I summarizes the parameters that where used in
our simulation. The publish rates were computed based on
the APOLLO project information. For efficiency reasons we
accelerated the simulation 720 times (it took 3 hours instead
of 90 days). This increase in speed can be interpreted as a load
effect of 720 times more sensor nodes (it has a similar effect)
and thus also illustrates the system’s scalability.

The simulation ran in a desktop computer with the follow-
ing specifications: 8 GB of memory RAM and 8 CPUs with
a 1.6 GHz clock speed. The machine had a Linux operating
system (kernel version 3.14.3), Apacha Cassandra (2.0.7),
ZeroMQ socket library (4.0.4) and Apache Lucene (4.8).

At turns we evaluate both storage solutions and both
interaction paradigms. We measure the duration of two distinct

5http://atnog.av.it.pt/projects/apollo
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TABLE I: Simulation’s parameters

Simulation

parameters

Vehicles publish rate 137 seconds

Greenhouse publish rate 120 seconds

Pothole reports every 3 days

Duration 3 month (90 days)

Warm up 1 day

operations: publish context information (write operation) and
gather a dataset (read operation) from the storage solution.
The duration of a read operation through the publish/subscribe
paradigm consists only in the time a messages takes to reach
the receiver.

On the other hand, a read operation through the request/
reply is decomposed in two different operations: a search and
a select operation. A read operation consists in finding the
correct sensor nodes (search) and retrieving the corresponding
documents from a specific time period (select). As such the
duration of a read operation is the sum of the search and select
operations.

The average operation’s time for request/reply and publish/
subscribe interactions are summarized in TABLE II and III
respectively. Our solution based on a 2-dimensional model
outperforms a storage system based on a single-dimensional
model. A 2-dimensional model yields a slight performance
improvement for write operations (a speedup of 1.26 and 59.88
for request/reply and publish/subscribe respectively). Yet the
greatest performance increase is seen on the read operations (a
speedup of 534.47 and 1015550.20 request/reply and publish/
subscribe respectively).

TABLE II: Request/Reply performance evaluation

Organization Write Read

Model Operation Operation

Single-Dimension 2.06 ± 15.00 1519043.57 ± 1021511.72
Two-Dimension 1.64 ± 1.09 2842.13 ± 439.96
SpeedUp 1.26 534.47

TABLE III: Publish/Subscribe performance evaluation

Organization Write Read

Model Operation Operation

Single-Dimension 70.06 ± 48.21 2528719.99 ± 1358701.8
Two-Dimension 1.17 ± 0.96 2.49 ± 1.21
SpeedUp 59.88 1015550.20

We computed partials read and write averages 10 times
during the simulation Fig. 6 shows the partial read averages

for both models and interaction paradigms. The performance
of the 2-dimensional model is stable during all the simulation.
However, the performance of the single-dimensional model
degrades as the simulation progresses. This model does not
provide any mechanism to group or filter documents. Thus,
an entity has to iterate though all the matches of a semantic
search in order to find the relevant documents. Since the
information retrieval system contains all the documents a read
operation becomes quite inefficient. It’s worth pointing out that
the solution based on a single-dimensional took more than 90
days to generate the reports. Therefore, Fig. 6 only contains
the partial reads that took place inside the 90 days window.
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Fig. 6 shows the partial write averages for both models
and interaction paradigms. There is no clear performance
degradation in both models, the partial write averages are
stable during the simulation. Yet, the variance of the single-
dimension model increases as the simulation advances. This
indicates that the write performance becomes unstable over
time. On the other hand, the variance of the 2-dimensional
model is stable during the simulation. In fact the variation is
so small that is almost imperceptible in the graph.

Let us consider a single dimensional model. Read op-
erations depend greatly in the information retrieval system.
Therefore, each read operation stresses this component. As
a consequence the information retrieval systems takes longer
to reply which in turn affects the performance of the write
operations.
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VIII. DISCUSSION AND CONCLUSIONS

Within this paper, we discuss the drawbacks of our previous
context organization model and proposed a new one that is
optimized for M2M scenarios. We also develop an efficient
publish/subscribe mechanism based on our new organization
model.

We analytically evaluated the spatial efficient of both
approaches. Based on our analysis, a d-dimensional model is
more spatially efficient when the documents’ number is greater
than the sources/sensors. In short, a d-dimensional model is
commonly more spatially efficient than a single-dimension
one for M2M scenarios. We also used a simulation of a real
M2M scenario to evaluate the performance of both solutions.
The d-dimensional model outperforms a solution based on a
single-dimensional model. In short, our d-dimensional model
performs better overall for M2M scenarios.

The d-dimensional model takes full advantage of the infor-
mation retrieval system. It improves the solution’s scalability
and semantic extraction, by carefully grouping documents into
sources. However, it is not trivial to distribute this system
through several nodes without loss of precision. As a con-
sequence, the performance of the context storage is bounded
by the information retrieval system. In future publications we
will address this issue.
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