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Abstract

Ternary complexes of iron(III)-glycine( Gly)-nitrilotriacetate (NTA) system determined by
electrochemical measurements of the dissolved iron(III)-Gly-NTA mixed ligand system in
the 0.1 mol�dm–3NaClO4 aqueous solution at pH¼ 8.0� 0.1and 25� 1�C. The coordination
number of Fe in Fe(EDTA)-L is seven in coordinate complex, where L can be a DNA
constituent like uracil, uridine, thymine, thymidine, and inosine. The nonlinear least-squares
program MINIQUAD-75 is used to deduce the hydrolysis constants of [Fe(EDTA)(H2O)]�

and its formation constant in solution. The antimicrobial activity of Fe(III) complexes of
salicylhydroxamic acid (SHAM) and 1,10-phenanthroline (PHEN) studied against represen-
tative pathogenic bacteria and fungi.

Keywords: iron(III), MINIQUAD-75, speciation, stability constant, glycine, sulfameth-
oxazole, salicylhydroxamic acid

1. Introduction

Iron is consider as an essential element; its chemical and biological functions evolved from its

oxidation and reduction processes and interactions with oxygen [1]. These are very important

biogeochemical in natural aquatic systems [2, 3]. It is one of the most abundant metals in the

Earth’s crust [4]. However, very low concentrations (<10–9 mol�dm–3) of dissolved, mostly iron

(III) organic complexes are present in natural waters due to the low solubility of its thermody-

namically stable 3þ ionic form [5, 6]. Iron is used to treat chlorosis (green disease), which often

resulting from deficiency of the iron concentration [7]. However, 80 years ago, we did not have

any information about the importance of inorganic iron in synthesis of hemoglobin [8]. Many

years ago, the nutritional experts became interested in the role of iron in oxygen transport and

hemoglobin formation [9]. Most anemia diseases in industrialized countries result from low
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iron intake and bioavailability. On the other side, they are responsible for only about half of the

anemia in developing countries [10]. There are other important causes [11] like infectious and

inflammatory diseases (especially malaria), blood loss from parasitic infections, and other

nutrient deficiencies (vitamin A, riboflavin, folic acid, and vitamin B12).

2. Analysis of aqueous solution complexes by different methods

1. The first and most common method is ion-selective electrode. It defines the position of

dynamic equilibrium. The most important electrode is the glass one. There is also hydro-

gen gas electrode that can be used in hydrogen ion calculations.

2. Metal amalgam electrodes are a second choice. It can be used for some metal ions, but

they are not as precise as the hydrogen ion electrode. We prefer the ion-selective electrode

in-calculation because the results are collected from series of data taken through a titration

procedure. A good method to check for this prerequisite is to make repeated high-resolu-

tion electrode readings at predetermined time intervals, since this will make sluggish

attainments of equilibrium clearly visible.

3. Spectrophotometry can be used if the metal ion or the ligand is colored, so that the color

will change (in intensity and/or frequency) upon complexation.

There are other experimental techniques that we are going to give some examples for them in

the following lines. The specific method for diamagnetic metal ion is the nuclear magnetic

resonance (NMR). It gives one separated signal for each unique chemical surrounding. In other

words, it can inform us about concentration of the ligand, the free metal ion, the number of

species, and their concentration for a given chemical composition. The important feature of

this technique is that the positions of these selective signals are responsible for the protonation

and deprotonation ones. In the case of fast reactions, we can use a stopped-flow technique.

2.1. The addition of water to iron(III)

It is observed that Fe3þ hydrolyses in water goes as follows:

Fe3þ þH2O⇋ FeOH2þ þHþ ð1Þ

The addition of water to Fe3þ is carried out through a series of deprotonation reactions, resulting

in formation of ferric hydroxides and oxyhydroxides [12, 13] as in Eq. (1), the equilibrium constant

for this reaction was calculated to be 6.78 � 10�3 at 298 K (total iron(III) concentration of 0.5

mol�dm�3 and an ionic strength of 0.1 mol�dm�3). Figure 1 shows the speciation of the two iron-

containing species of Eq. (1) as a function of pH, calculated at T ¼ 298 K. It seen that FeOH2þ will

become the common species above pH ¼ 2.17. At lower pH, there are small amount of it; at pH

value 1.2, more than 9% of all iron (III) is present as the hydroxide. As a result of that, the

calculations for the spectroscopic measurements were carried out at pH values up to 1. The

equilibrium constant for the reaction shown in Eq. (1) has been studied at temperature range from
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T ¼ 298 to 353 K and ionic strength range from I ¼ 0.1 until 2.67 mol�dm�3 in perchlorate

media [14].

For Eq. (1) to be done we must prevent the formation of hydrolyzed iron(III). This can be

accomplished under the conditions of T ¼ 293–323 K, and I ~ 0.1 mol�dm�3.

2.2. How can you determine the stability constants of mixed ligand complexes

For inorganic chemistry, it is very important to determine the stability constant, or the equilib-

ria constant or we can refer to it as the formation constant, for the reaction [15]. It is not easy to

get the solution equilibria constants between the ligands and the metal ions. Proton ions and a

range of metal ions fight for a range of donor sites. There are many factors that decide who will

be the winner whether the proton ions or the metal ions. These factors are the concentration

and pH. Potentiometry and spectrophotometry are used to determine the stability constants of

metal complexes. Legget [16] and Meloum et al. [17] calculated the equilibrium constants from

experimental data for the first time. Nowadays, many programs were published for these

calculations using microcomputers. Table 1 presents some of these programs [15, 19–30].

These programs are very helpful as they quickly present the best fit. They use the least-square

method to reduce the differences between calculated and experimental data. The sum of

square of residuals between calculated and experimental values is very small; it is nearly

between 10�6 and 10�9. Potentiometry is used to determine the stability constants of metal

complexes. It is based on pH-metric titration of the ligand, and the availability of metal ions.

Data obtained from potentiometry are analyzed by the least-square method to derive the

formation constant. This later can describe the solution equilibria. For the measurements, there

must be two conditions: the first one is a constant ionic strength of the solution and the second

condition concerns the ionic strength that have to be higher than the concentration of metal

ion. The reaction of all mixed complex:

L Mð Þ þ p L1ð Þ þ q L2ð Þ þ r Hð Þ $ Mð Þ1 L1ð Þp L2ð Þq Hð Þr

h i

ð2Þ
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Figure 1. The speciation of the two species of iron as in Eq. (1) as a function of pH at T ¼ 298 K for all the iron (III)

concentration of 0.5 mol�dm�3 and an ionic strength of 0.1 mol�dm�3.
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The total stability constant, βlpqr, can be calculated from the equation by:

β1pqr ¼ ½ MÞlðL1ÞpðL2ÞqðHÞr�=½M�1½L1�p½L2�q½H�rðfor simplicity charges are omittedÞ
�

ð3Þ

where M, L1, L2, and H stand for metal ion, ligand (1), ligand (2), and proton, respectively. For

OH�, the coefficient (r) for H ¼ �1.

2.3. Calculation of speciation

Pettit program computes speciation based on the concentrations of metal ions and the

complexing species. This program specifies a certain pH range. Then the former calculates the

species distribution of a certain series of complexes and plots it. We enter some data such as the

total concentrations of metal and ligand ions and pH range. After that the best-fit set of β

values will be used later to compute the equilibrium concentrations of those complex species

over the pH range which we have specified before. We can use this program for all types of

complexes: mixed complexes, protonated, hydroxo, and polynuclear species. The program

produces a graphical recording of the most predominant complex species at any pH and the

physiological pH range. In this chapter, we reviewed several iron complexes.

3. Different complexes between Fe(III) and biological active ligands

3.1. Studies of binary and ternary complexes of sulfamethoxazole (SMZ) and glycine

with metal ions

Sulfamethoxazole (4-amino-N-(5-methyl-3-isoxazolyl)-benzenesulfonamide (SMZ)) is the most

predominant sulfonamide in human medicine. Sulfonamides are synthetic antimicrobial agents

System Data typea Reference

MINIQUAD V [19]

MINIQUAD75 V [20]

TITAN V [25]

SCOGS2a V [21]

D SCOGS2ba V [26]

MINIQUAD V, A [22]

PSEQUAD V, A [23]

SPECFIT A(E) [18]

PKAS V [15]

HYDROUAD V [24]

STAR A [29]

HYPNMR N [30]

V, potentiometric experiments; A, spectrophotometric experiments; E, ESR; N, NMR.
aAdditional data used in calculations are taken from different sources.

Table 1. The programs commonly used for calculating formation equilibrium constants.
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derived from sulfanilamide, whose antibacterial activity was discovered in the early 1930s by

Domagk and Tréfouel [31–33].

3.1.1. Stability constants of ternary complexes (metal-SMZ-Gly)

Different metal ions Ti(II), Zr(IV), Sr(II), Al(III), Cr(III), Fe(III), Th(IV), Pb(II), La(III), and

Co(II) were selected to make further investigation to elucidate the interaction of these

metal ions with solution of SMZ and Gly (mixed ligand complexes). The potentiometric

equilibrium measurements were made, at constant ionic strength I ¼ 0.1 M NaClO4 at 25

� 0.1�C, for the interaction of SMZ and the selected 10 metal ions, with biologically

important secondary ligand glycine (Gly) in a (1:1:1) molar ratio (1 � 10–3 M for each).

The solutions were titrated pH-metrically against standard carbonate-free NaOH solution,

as illustrated in Figure 2.

Figure 2 represents the titration curves for the metal-SMZ-Gly system studied. It is observed

that the metal ion-SMZ titration curve (c) diverges from the SMZ curve (b) at variable pH

values (pH ≈ 2.8 for Fe(III), pH ≈ 3.5 for La(III), pH ≈ 4.2 for Th(IV), pH ≈ 5.5 for Zr(IV), pH ≈ 4.5

for Al(III), and pH ≈ 6.06 for Co(II)) denoting the formation of metal ions-SMZ binary com-

plexes. For the titration curves of the ternary systems studied, it can be observed that the

curves (c) and (f), however, overlap with each other at lower pH values in the case of Fe(III)

and La (III), whereas that for Sr(II), Pb(II), Cr(III), and Ti(II) are well separated. This indicates

the formation of metal ions-SMZ-Gly ternary complexes at lower pH values, which can be

considered as an evidence for the formation of protonated SMZ mixed ligand complex. The

stability constants of the ternary metal ion complexes containing SMZ and Gly were calculated

from Eqs. (4) and (5),

Mþ SMZ $ M SMZð Þ ð4Þ

K
M SMZð Þ
M SMZð ÞðGlyÞ

¼
M SMZð Þ Gly

� �� �

M SMZð Þ Gly
� �� � ð5Þ

using the data obtained from potentiometric titrations (I ¼ 0.1M NaClO4 at 25 � 0.1�C).

Figure 2. Potentiometric curves of SMZ in 0.1 M NaClO4 at 25 � 0.1�C: (a) 0.01 M HClO4, (b) a þ 0.001 M SMZ, (c) b þ 0.001

M Sr (II), (d) b þ 0.001 M Pb(II), (e) bþ 0.001 M Co(II), (f) b þ 0.001 M Fe(III), and (g) b þ 0.001 M Al (III).
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3.2. Ternary complexes of iron(III)-glycine( Gly)-nitrilotriacetate (NTA) system

Electrochemical measurements of the dissolved iron(III)-Gly-NTAmixed ligand system in the 0.1

mol�dm–3 NaClO4 aqueous solution were performed at pH ¼ 8.0 � 0.1and 25 � 1�C, using

differential pulse cathodic voltammetry (DPCV), cyclic voltammetry (CV), and direct current (d.

c.) polarography. Iron(III) concentrations were varied from 2.5� 10–5 to 6 � 10–4 mol�dm–3, NTA

total concentrations varied from 2 � 10–5 to 1 � 10–3 mol�dm–3 and glycine total concentrations

were 0.2, 0.02, and 0.002 mol�dm–3. Figure 3 shows the differential pulse voltammograms of iron

(III) in a mixture of glycine (0.2 mol�dm–3) and NTA (5 � 10–4 mol�dm–3). Reduction peak

currents of mixed ligand complex depend on iron(III) concentrations, as shown in Figure 3.

Basic line (voltammogram) represents the solution with both ligands present, without iron(III).

It does not contain any reduction peak. This later implies electrochemical inactivity of these

two ligands under the applied experimental conditions. When iron(III) is added, the reduction

peak potentials remain constant at –0.112 V, indicating stability of the formed species. These

peaks are the response to iron(III) reduction in mixed ligand complexes.

3.3. Determination of formation equilibria of seven-coordinate Fe(EDTA) complexes with

DNA and related biorelevant ligands

Fe(EDTA)-L is a seven-coordinate complex as the coordination number of Fe is seven. L can be

a DNA constituent like uracil, uridine, thymine, thymidine, and inosine. To understand the

chemistry of this seven-coordinate complex, we did some investigations using methylamine,

ammonium chloride, or imidazole. The complexes produced are 1:1 with DNA constituents

and other ligands. This complex indicates that the total coordination number of Fe(III) ion is

seven. Potentiometric titration is carried out at 25�C and ionic strength 0.1 mol�L�1 using

NaNO3 to measure the stability constant. Besides, the nonlinear least-squares program

MINIQUAD-75 is used to deduce the hydrolysis constants of [Fe(EDTA)(H2O)]� and its for-

mation constant in solution. The concentration distributions of the different species formed in

solution were evaluated as a pH dependent.

Figure 3. DPC voltammograms; iron(III)-Gly-NTA peak currents on added iron(III). 0.2 molċdm–3 glycine, 5� 10–4molċdm–3

NTA, 0.1 molċdm–3 NaClO4; pH ¼ 8.0� 0.1, Einc ¼ 2 mV, a ¼ 25 mV, tp ¼ 0.05 s, tint ¼ 0.2 s.
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3.3.1. Calculated equilibria of the [Fe(EDTA)(H2O)]� ion

Different equilibrium models were tested [34] to fit the experimental potentiometric data for

the hydrolysis of [Fe(EDTA)(H2O)]� ion. The best-selected model consists of the formation of

the 10–1 species, as given in Eq. (6). This supports the presence of one water molecule coordi-

nated in the [Fe(EDTA)(H2O)]� ion:

½FeðEDTAÞðH2OÞ��

ð100Þ

⇌

Kal

½FeðEDTAÞðOHÞ�2�

ð10�1Þ

þHþ ð6Þ

The pH-meter readings (B) recorded in dioxane-water mixtures were converted to hydrogen ion

concentrations [Hþ] with the widely used relation given by the Van Uitert and Haas equation [35]:

�log10 H
þ½ � ¼ Bþ log10UH ð7Þ

where log10 UH is the correction factor for the solvent composition and ionic strength at which β

was determined. Values of pKw in dioxane-water mixtures were determined as described previ-

ously [36, 37]. Different amounts from NaOH of the known concentration were added to a

solution of ionic strength 0.1. The amount of base added determines the [OH�], unlike [Hþ],

which is calculated from the pH value. The product of ([OH�]. [Hþ]) is used to calculate the mean

values (pKw) which is �log10 [H
þ][OH�]. The mean values at 25�C are 14.17, 14.37, 14.50, and

15.44 for 12.5, 25, 37.5, and 50% dioxane, respectively. These percentages are the mass percentage

of dioxane in water solution. The equilibrium constants obtained from the titration data (summa-

rized in Table 2) are defined by Eqs. (8) and (9), where M, L, and H stand for [Fe(EDTA)(H2O)]�,

ligand, and proton, respectively

pMþ qLþ rH MpLqHr ð8Þ

βpqr ¼ MpLqHr

� �

= M½ �p L½ �q H½ �r ð9Þ

The speciation distribution diagram for the hydrolysis of [Fe(EDTA)(H2O)]�is given in

Figure 4. The fraction of the monohydroxo species increases with increasing pH, attaining a

maximum of 99.9% at a pH ¼ 10.6.

3.3.2. Complex formation equilibria of the [Fe(EDTA)(H2O)]�ion

The potentiometric titration curve, given in Figure 5, illustrates the result where imidazole is

taken as an example. This curve has two plots one for the [Fe(EDTA)(H2O)]�-imidazole system

and the other for imidazole. The complex formation curve for the [Fe(EDTA)(H2O)]�-
-imidazole

system is lower than the imidazole’s one. This is because of the hydrogen ion evolved during the

formation of a complex species. This potentiometric data are products for an experiment com-

posed of the species 110.

There are many examples for the pyrimidinic species like uridine, uracil, thymine, and thymi-

dine. The dissociable proton of the pyrimidinic species lies in the N3–C4O group. The acid

dissociation constants for pyrimidinic species and the N1 proton of inosine are compared. The
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latter is slightly more acidic. The anionic form of purinic derivatives is the reason for that as it

occurred in a large number of resonance forms. These resonance forms are created by the two

condensed rings in the inosine ligand, as shown in Scheme 1. We can conclude that uracil,

System p Q ra log10 β
b Sc

[Fe(EDTA)(H2O)]� 1 0 �1 �7.60(0.008) 4.7E–8

Uracil 0 1 1 9.35(0,002) 4.5E–7

1 1 0 5.12(0.1) 8.8E–6

Thymine 0 1 1 9.50(0.01) 8.1E–8

1 1 0 5.98(0.1) 2.5E–6

Thymidine 0 1 1 9.06(0.01) 8.7E–8

1 1 0 5.89(0.1) 3.0E–5

Uridine 0 1 1 9.01(0.02) 1.1E–7

1 1 0 4.93(0.05) 2.0E–5

Methylamine�HCL 0 1 1 10.03 (0.04) 4.4E–7

1 1 0 6.13(0.1) 2.2E–5

Ammonium chloride 0 1 1 9.32(0.01) 7.2E–5

1 1 0 3.91(0.03) 1.2E–6

Imidazole 0 1 1 7.04(0.01) 2.6E–9

1 1 0 2.23(0.04) 5.6E–7

Inosine 0 1 1 8.43(0.01) 5.0E–9

1 1 0 5.96(0.02) 2.9E–5

1 1 1 13.14(0.06)

ap, q, and r are the stoichiometric coefficients corresponding to [Fe(EDTA)(H2O)]�, L, and Hþ, respectively.
bStandard deviations are given in parentheses.
cSum of the squares of residuals.

Table 2. Stability constant of mixed complexes in water at 25 � 0.1 �C and 0.1 ionic strength.

Figure 4. Speciation distribution of different species as pH dependence in the Fe(EDTA)-OH system at 1.25 mmol�L�1

[Fe(EDTA)(H2O)]�, in aqueous solution at 25�C and ionic strength I ¼ 0.1.
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uridine, thymine, and thymidine do not form protonated complexes. They coordinates through

N3 in their deprotonated form; the monoanion one.

Thymine and thymidine have a methyl group that donates an extra electron of an inductive effect.

This increases the basicity of the N3 site of thymine and thymidine complexes and stabilizes them

more than uracil and uridine ones. Pyrimidines are monodentate ligands of pKa ≈ 9, so their

complexes are absent below pH ¼ 6. This indicates that in the neutral or nearly basic pH media,

the negatively charged nitrogen donors of pyrimidines bases are vital binding sites.

Inosine complex chelates as a monodentate has two sites of chelation N(1) and N(7). In the

acidic medium, N1 is protonated and N7 is attached to the metal ion. When pH increases, the

Figure 5. Titration curves of the Fe(EDTA)-imidazole system in aqueous medium.

Scheme 1. Structural formulae of the DNA used.
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metal ion moves from N7 to N1. This motion was recorded by nuclear magnetic resonance

(NMR) spectroscopy [38, 39]. Chelation depends on the pH range; in basic medium N(1) is a

coordination site in the complex formation [40]. The data show the formation of the ternary

complexes with stoichiometric coefficients 110 and 111. To know the main features observed in

the species distribution in these systems, the speciation diagram obtained for the Fe(EDTA)-uracil

and Fe(EDTA)-inosine complexes, as shown in Figure 6, as examples of DNA constituents. The

pKa value of the N1H group of the protonated complex (log10 β111 � log10 β110) amounts to

7.18. This indicates the acidification of the N1H site by 1.25 log units through coordination

with the [Fe(EDTA)(H2O)]� complex, which is in agreement with previous results for similar

systems [41]. Detection of the concentration distribution of the various species in solution

provides a useful picture of metal ion binding. At pH 4.0, the mixed complex of Fe(EDTA)

with uracil, species 110, occurs. This occurrence increases with increasing the pH of the

medium, up to it reaches 84% at pH 8.5. After 8.5 the concentration of Fe(EDTA)-uracil system

Figure 6. Speciation distribution curve of different species as pH dependence in the Fe(EDTA)-inosine and Fe(EDTA)-uracil

systems (at 1.25 mmol�L�1 for Fe(EDTA) and 6.25 mmol�L�1 for inosine and uracil), in water at room temperature and 0.1

ionic strength.
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drops and [Fe(EDTA)(OH)]2� develop. This result concludes that the Fe(EDTA) complex can

interact with bioligands as DNA units. Not only does the pH affects the appearance of Fe

(EDTA)-uracil system, it also affects the Fe(EDTA)-inosine system. At low pH mediums,

species 111 is present; N7 coordinates to the complex and the N1 nitrogen is protonated.

Whereas at high pH like 8.8, species 110 occurs where the concentration of N1 coordinated is

98%. This is the maximum concentration obtained for N1 coordinated. As the pH plays an

important role before in the absence and presence of some systems, it has its role with cytosine

and cytidine chelates. At low pH, they have their N3 protonated. It was recorded by the NMR

spectroscopy in its solution state and with X-ray crystallography in its solid state.

3.3.3. The influence of thermodynamic parameters

Thermodynamic parameters are useful tools for studying the interactions with DNA constitu-

ents and understanding the relative stability of the complexes formed. The thermodynamic

parameters ΔG0, ΔH0, and ΔS0 were easily determined using Van’t Hoff relation (Eq. (10)). If

we take the protonation of uracil and its complex formation with [Fe(EDTA)], as representative

example. Since, we have a known value for protonation constant, the stability formation

constant (K) and gas constant (R) in this reaction. So, we can apply the Van’t Hoff equation to

obtain the value of those parameters at the required temperature (T) in Kelvin. Then we can

use the results to draw a graph of ln K versus 1/T and the intercept will be ΔS0/R.

lnK ¼ �ΔH0=RT þ ΔS0=R ð10Þ

and a slope parameters ΔH0. The formation constants and the thermodynamic parameters

values are presented in Tables 3 and 4 and can be interpreted as follows:

1. The protonation reaction of uracil can be represented as:

Lþ þHþ LH ð11Þ

The thermodynamic processes accompanying the protonation reactions are as follows:

i. The neutralization reaction is considered as an exothermic equation

ii. Desolvation of ions is considered as an endothermic process; and

iii. Changes in the configurations and arrangements of the hydrogen bonds around the

free and protonated ligands.

2. The log10 KH values decrease with increasing temperature, revealing that their acidity

increases with increasing temperature, as shown in Figure 7.

3. The protonation reaction of uracil has a positive entropy change, which may be due to

increased disorder as a result of desolvation processes and the breaking of hydrogen

bonds.

4. The negative value of ΔH0 for the protonation process of uracil ligand indicates that its

association process is accompanied by a release of energy and the process is exothermic.

Formation of Fe(III) Ternary Complexes with Related Bio-relevant Ligands
http://dx.doi.org/10.5772/intechopen.69158

37



The values of formation constants of the complexes are plotted in Figure 8 at different temper-

atures. The plotted line shows that the formation constants of the complexes are inversely

proportion to increasing temperature. Therefore, the complexation process requires low tem-

peratures. At the end, we can say that

Equilibrium ΔH0 (kJ�mol�1) ΔS0 (J�k1�1
�mol�1) ΔG0 (kJ�mol�1)

Fe-EDTA hydrolysis

(1) [Fe(EDTA)(H2O)] ( [Fe(EDTA)(OH)]� þ Hþ
�54.40 � 0.75 27.20 � 2.5 43.4 � 1.5

Uracil

(2) L�
þ Hþ ( LH �34.29 � 0.75 63.91 � 2.5 �53.39 � 1.5

Fe-EDTA-uracil

(3) [Fe(EDTA)(H2O)] þ L ( [Fe-EDTA-L] þ H2O �43.84 � 0.68 �52.64 � 2.3 �28.15 � 1.4

L denotes uracil.

Table 4. Thermodynamic parameters (ΔH0, ΔS0 and ΔG0) for the interaction n of Fe–EDTA with uracil in aqueous

solution.

System T (�C) p q ra log10β
b Sc

Uracil 15 0 1 1 9.55(0.002) 1.6E–8

[Fe(EDTA)] 1 0 �1 �7.78(0.009) 1.6E–7

[Fe(EDTA)-uracil] 1 1 0 5.20(0.08) 1.3E–5

Uracil 20 0 1 1 9.46(0.002) 1.1E–8

[Fe(EDTA)] 1 0 �1 �7.69 (007) 1.0E–7

[Fe(EDTA)-uracil] 1 1 0 5.07(0.06) 9.7E–6

Uracil 25 0 1 1 9.35(0.002) 4.5E–7

[Fe(EDTA)] 1 0 �1 �7.60(0.008) 3.7E–8

[Fe(EDTA)-uracil] 1 1 0 4.93(0.05) 8.8E–6

Uracil 30 0 1 1 9.25(0.003) 8.6E–9

[Fe(EDTA)] 1 0 �1 �7.53(0.008) 1.2E–7

[Fe(EDTA)-uracil] 1 1 0 4.80(0.09) 1.0E–5

Uracil 35 0 1 1 9.15(0.003) 3.1E–7

[Fe(EDTA)] 1 0 �1 �7.46(0.008) 1.4E–7

[Fe(EDTA)-uracil] 1 1 0 4.69(0.14) 1.0E–5

ap, q, and r are the stoichiometric coefficient corresponding to [Fe(EDTA)(H2O)]�, uracil, and Hþ, respectively.
bStandard deviations are given in parentheses.
cSum of the squares of residuals.

Table 3. Protonation constants of uracil and the formation constants of the Fe(EDTA)-uracil complex in aqueous solution

and different temperatures and 0.1 ionic strength.
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1. The values of ΔG0 for the coordination process are negative, which indicates that the

reaction is spontaneous.

2. The positive value of ΔS0 upon complexation is because of the increase in entropy. Within

complexation a bounded solvent molecule was released. The release of the molecule pro-

duces increased the entropy, however, the complexation process causes a small decreased

in the entropy. Because the solvent molecules are arranged around the ligand in a certain

way. Unlike, the metal ions are configured randomly upon complexation.

3. The negative values of ΔH0 indicate that the coordination processes are exothermic, so

that the complexation reactions are favored at low temperatures.

Figure 7. Effect of temperature on the protonation constant of uracil.

Figure 8. Effect of temperature on the stability constant of [Fe(EDTA)(uracil)]2�.
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3.3.4. How can you expect the effect of solvent composition

It is well known that the “effective” or “equivalent solution” dielectric constants in a pro-

tein [42, 43], or active site cavities of enzymes [44] are small compared to that in bulk water.

The dielectric constants detecting in such locations range from 30 to 70 [43, 44]. Therefore, by

using aqueous solutions containing ~10–50% dioxane, one may expect to simulate to some

degree the situation in active site cavities [45], and hence to extrapolate the data to physiolog-

ical conditions. We asked what the relation between the solvent occurs in media and formation

constant of complexes on the equilibrium constants (Table 4) reveals the following points:

1. The value of pKa of uracil (N3-site) increases directly with increasing dioxane in the

medium as shown in Figure 9. Dioxane has a low-dielectric constant, which increased

the electrostatic forces between the proton and the ligand. Finally, the pKa increases.

2. The stability constant (log10 K1) of the Fe(EDTA)-uracil complex increases with increase of

the dioxane concentration (Figure 10). This is due to that lowering the dielectric constant of

Figure 9. Effect of dioxane on the protonation constant of uracil.

Figure 10. Effect of dioxane on the stability constant of the [Fe(EDTA)uracil)]2� species.
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the medium (by increasing the dioxane content) favors the interaction between Fe(EDTA)

and uracil, and consequently the stability constant of the complex increases. These finding,

shown in Table 5, is in agreement with literature data [46].

4. Biological activity of mixed ligand Fe(III) complexes with

bioactive ligands

4.1. The study of antibacterial activity of Fe Complex

4.1.1. The effect of microorganisms and media

Salicylhydroxamic acid (SHAM) and its binary and ternary complexes (I–VI) were

screened [47] to do an experiment to test its antibacterial activity on six bacterial strains:

Escherichia coli (E.c.), Staphylococcus aureus (S. a.), Enterobacter cloacae (E. c.), Salmonella

gallinarum (S. g.), Bacillus subtilis (B. s.), and Pseudomonas aeruginosa (P. a.). This experiment is

illustrated in Table 6. These strains were obtained from the Microbial Centre of Ain Shams

University, Egypt. Some other microorganisms like (Aspergillus fumigatus (A. f.), Candida

albicans (C. a.), Alternaria alternata (A. a.), Penicillium italicum (P. i.), Saccharomyces cerevisiae

(S. c.), and Microsporum canis (M. c.) were used for the fungistatic evaluation. These were later

provided by the National Research Centre and the Microbial Centre of A in Shams University,

Egypt. The media used were Mueller Hinton agar medium, tryptic soy broth (TSB), (ICN,

biochemical Co., USA).

System % dioxane p q ra log10β
b Sc

[Fe(EDTA)] 12.5% 1 0 �1 �7.68(0.002) 2.5E–9

Uracil 0 1 1 9.56(0.004) 2.3E–8

[Fe(EDTA)-uracil] 1 1 0 5.23(0.16) 1.0E–5

[Fe(EDTA)] 25% 1 0 �1 �7.83(0.002) 4.1E–9

Uracil 0 1 1 9.66(0.009) 2.3E–7

[Fe(EDTA)-uracil] 1 1 0 5.30(0.06) 3.1E–6

[Fe(EDTA)] 35% 1 0 �1 �7.98(0.003) 6.9E–9

Uracil 0 1 1 9.74(0.01) 2.6E–7

[Fe(EDTA)-uracil] 1 1 0 5.35(0.19) 1.2E–5

[Fe(EDTA)] 50% 1 0 �1 �8.14(0.006) 2.0E–8

Uracil 0 1 1 9.84(0.01) 3.0E–7

[Fe(EDTA)-uracil] 1 1 0 5.39(0.13) 1.2E–5

ap, q, and r are the stoichiometric coefficient corresponding to [Fe(EDTA)(H2O)]�, uracil, and Hþ, respectively.
bStandard deviations are given in parentheses.
cSum of the squares of residuals.

Table 5. Effect of solvent (dioxane) on the stability constant of [Fe(EDTA)(uracil)] at 25�C.
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4.1.2. The calculation of minimum inhibitory concentration (MIC)

The apparatus used for the experiments are 0.5 mL volume 96-well microplates (ICN

Biochem. Co., USA). Fill the first row of wells in each of 96-well microdilution plates with

100 μL of double strength TSB and fill the others with single strength TSB. Dilute the

test compound and pour 100 μL in the first row. Every well filled must have its content

mixed. The mixing technique based on suctioning and dispensing its content back five

times. Take 100 μL from the first row and fill the second one. Then take from the second

and fill the third. Repeat this procedure until the 23 rows. Each organism was experimented

twice and the experiment as a whole was repeated three times. Before inoculating the 96-

well plates with 96-prong inoculator, this later was in the inoculums. The microdilution

plates were sealed with tape to prevent the drying of samples. At the end, plates were

incubated at suitable temperatures to allow the growth to start. The growth was observed

after 1 day.

Metal complexes of salicylhydroxamic acid (SHAM) and 1,10-phenanthroline (PHEN)

Antibacterial bioassay Antifungal bioassay

Bacterial strain Fungi strain

Compd. S.a. S.g. B.s. P.a. E.c. E.c. A.f. C.a. A.a. P.i. S.c. M.c.

SHAM þþþþ þþþþ þþþþ þþþþ þþþ þþþþ þþþþ þþþ þþþþ þþþþ þþþþ þþþþ

I þþþ þþþ þþþ þþþ þþ þþ þþþþ þþþ þþþ þþþ þþþþ þþþ

II þþ þþ þþ þþ þ þ þþ þþþ þþ þþ þ þ

III þþþ þþþ þþþ þþþ þþ þþ þþþ þþ þþþ þþþ þþ þþþ

IV þþþþ þþþþ þþþþ þþþþ þþþ þþþþ þþþþ þþþþ þþþ þþ þþþþ þþþ

V þþþ þþþ þþþ þþþ þþ þþþ þþþþ þþ þþþ þþþþ þþ þþ

VI þþþþ þþþ þþþþ þþþþ þþþþ þþþ þþþþ þþþ þþþ þþþ þþ þþþ

A þþþ þþþ þþ þþ þþþ þþþþ þþþ þþ þþþþ þþ þþ þþ

I, II, III, IV, V, VI are complexes of SHAM (I-VI) Cu(SHAM)2�2H2O (I), Ni(SHAM)2�2H2O (II), Fe(SHAM)2�2H2O (III),

[Cu(Phen)(SHAM)] (IV), [Ni(Phen)(SHAM)] (V), [Fe(Phen)(SHAM)] (VI), and the reference drug (A) against six

bacterial species and six fungi species in the agar disc diffusion method measured by diameter of inhibition zones

(DIZ, mm).

Table 6. Antimicrobial activities of SHAM and its complexes.
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This stable can be summarized in the following points:

• DIZ 7–9 mm get þ sign which indicates a weak activity.

• DIZ 10–14 mm get þþ sign which indicates a moderate activity.

• DIZ 15–18 mm get þþþ sign which indicates a good activity.

• DIZ >18 mm get þþþ sign which indicates a significant activity.

The bacteria used were (S.a.), (S.g.), (B.s.), (P.a.), (E.c.), and (E.c.). While the fungi used were (A.f.),

(C.a.), (A.a.), (P.i.), (S.c.), and (M.c.). The reference drugs: (A) Ampicillin (H2O).

5. Conclusion

In this chapter, a detailed survey of the formation equilibria of Fe3þ with ligands of biological

significance is presented. The main conclusions may be summarized as follows:

• Stability constant of the ternary complexes formed between glycine combines with the

binary complex (metal:SMZ) (1:1) in similar manner was calculated with respect to the

binary complexes.

• Mixed ligand complex formed between iron(III) and glycine(Gly) as the first ligand and

nitroacetic acid as the second one have been characterized using differential pulse

cathodic voltammetry (DPCV), cyclic voltammetry (CV), and direct current (d.c.) polar-

ography, where iron(III) concentrations varied from 5 � 10–6 to 6 � 10–4 mol�dm–3,

(nitroacetic acid), its concentrations varied from 2 � 10–5 to 1 � 10–3 mol�dm–3 and

glycine’s concentrations were 0.2, 0.02, and 0.002 mol�dm–3, in a 0.1 mol�dm–3 NaClO4 at

pH ¼ 8.0 � 0.1 and 289 K.

• The concentration distribution curves of the complexes are plotted against the pH. The

concentration of [Fe(EDTA)(uracil)]2� complex starts to increase from pH ¼ 4.0 and con-

tinues up to pH 8.5, where it reaches 84% which represents its highest value. After that the

concentration decreases and the concentration of the hydrolyzed species [Fe(EDTA)

(OH)]2� develops.

• The antimicrobial activities of SHAM and PHEN as bioligands and their synthesized

metal complexes (I–VI) against representative pathogenic bacteria and fungi. The mini-

mum inhibitory concentration (MIC) value was defined as the lowest concentration of the

antibacterial, antifungal agents at which there showed optically clear. Quality control was

performed using ampicillin as a standard antibiotic.
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