
Towards behaviour inference in smart environments

Mário Antunes Diogo Gomes

Instituto de Telecomunicações, Universidade de Aveiro, Aveiro, Portugal
{mario.antunes, dgomes, ruilaa}@av.it.pt

Rui Aguiar

Abstract—Smart environments are physical places that are
richly and invisibly populated with sensors, actuators and com-
putational elements. The objective of such environments is to
adapt themselves to its users in order to increase their comfort
and usefulness. This paper proposes a platform, named APOLLO,
capable of inferring behaviour rules from a smart environment
and apply them to provide an intelligent space. The APOLLO
platform is built upon a Service Oriented Architecture (SOA),
in which collected context information is used to infer behaviour
rules though statistical and machine learning techniques. The
proposed platform is to be deployed in a home automation
scenario.

Keywords—Smart environments, knowledge extraction, machine
learning, SOA

I. INTRODUCTION

Smart houses, smart environments and ambient intelligence
have been important research topics since 1940. In that year
Chevrolet produced a commercial video named “Leave it to
Roll-Oh”, where a robot served as the family butler. The
video ended pointing out that a robotic butler was still a
dream while presenting several small machines that helped in
daily activities, e.g. electric coffee machine, luminosity sensor,
automatic water sprinkler. This video shows how important the
concept of smart environments became to the industry.

Nigel Shadbolt [1] identifies three computational areas that
must converge in order to develop a truly smart environment.
The first computational area is ubiquitous or pervasive comput-
ing, responsible for providing a seamless interface between the
environment and its users. The system must be integrated with
everyday use objects, allowing a natural and simple interaction
between it and the users. The second computational area is
intelligent systems, responsible for inferring the context of
the environment and learn useful patterns based on the users
behaviour. This can be achieved through several techniques
e.g. data mining, statistical analysis, machine learning and
optimization methods. The third and final computational area is
context awareness: in order for the system to adapt to the user’s
habits, it needs to perceive the context of the environment
(sensors) and how to change it (actuators).

This paper presents a platform, part of the APOLLO
project, that is capable of inferring behaviour rules from
a smart environment. The platform collects raw data from
sensors that are scattered through the environment, processes
the data and infers behaviour rules from it. These rules depends
on the type of data collected and on the type of environment.
The platform is able to detect what patterns are relevant and
how to enforce them through actuators.

The APOLLO project’s main objective is the develop-
ment of a platform that supports new services in the area
of machine-to-machine (M2M) communications. The project
aims to develop a transversal technological platform that sup-
ports management, control and monitoring of an heterogeneous
network of sensors and actuators. APOLLO exports a service
layer to third parties willing to develop next generation M2M
applications in various areas including Utilities, Transports,
Health, Agriculture, Distribution and Consumer Electronics.
The project platform will support from its start a vast set of
M2M Smart Services & Applications such as Smart Metering,
Smart Grids, m-Health (remote monitoring of patients), Smart
Cities, Smart Home and Smart Buildings according to a
Portuguese Government policy for the deployment of next
generation networks. This paper will focus on the aspects
and services related to inference of rules based on the data
collected by the platform, and on the supply of rules to the
same platform.

The remainder of the paper is organized as follows. Section
II presents and discusses the proposed platform. Section III
discusses and details how the platform can be used to optimize
the comfort of inhabitants in a smart home. Section IV
discusses the related work. Finally the conclusions and the
future work are presented in Section V.

II. APOLLO: CONTEXT-AWARE RULE INFERENCE

In this paper we propose a novel platform that infers
behaviour rules from a smart environment. The inferred rules
details relevant knowledge about the environment. As an ex-
ample, in a home automation scenario, the proposed platform
is capable of automatically adapting to the inhabitants habits.

Our solution intends to be a platform capable of correctly
inferring behaviour rules from an open scenario. Currently
similar systems rely in a controlled environment (close sce-
nario), a environment where all the sensors and actuators are
completely detailed. We intend to develop a platform that is
independent from the underlying scenario. Independence from
the underlying scenario can be achieved if it becomes possible
to add or remove any type of sensor or actuator without the
need of manually reconfiguring the platform reasoning engines.
This is an important advantage since these types of equipments
are highly heterogeneous and tend to evolve rapidly.

The APOLLO platform is divided into several independent
services, following a Service Oriented Architecture (SOA).
This type of architecture has three important advantages. First
it is trivial to update any service in the architecture, since each

978-1-4799-0059-6/13/$31.00 ©2013 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/32243189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

service is independent of each other. Second the communica-
tion of the various services is based on message passing pat-
terns, and because of this the complete system becomes highly
parallelizable. This means that the system takes advantage of
all the processing resources available, such as those found in
modern multi-core processors or cloud computing offerings.
Third, this approach provides a competitive ecosystem where
optimum products can de independently developed.

Fig. 1. Architecture and information flow between the several services of
the proposed platform.

Fig.1 shows the architecture and the information flow
between the several services of the platform. As previously
referred, one of the objectives of the platform is to be in-
dependent from the underlying environment. The first step
to achieve this objective is to be as independent as possible
from the sensors scattered through the smart environment. It is
possible to achieve this through two different services: Context
Storage and Context Inference. The Context Storage service
uses a unstructured storage system in order to accept any
type of document, and therefore is not limited to previously
provisioned data types. The Context Inference service, is
connected to the context storage service, receives raw data
from the sensors inferring the context information from it and
creating a logical structured element. These elements allow
the remaining services to perceive an uniform structure of in-
formation regardless of the smart environment and underlying
sensors.

The Rule Inference service is composed by two distinct
components. The first component, designated Rule Inference
Component, receives the context, inferred by the previous
service (Context Inference service), and through several data
mining, statistics and machine learning techniques, detects rel-
evant patterns and infers behaviour rules that can be observed
in the environment.

The second component, designated Reasoning System,

receives the behaviour rules inferred by the rule inference
component and verifies for logic correction and usefulness.
The logic correction is automatically verified by the service
while, at this point in the development, the usefulness of the
rule may be verified by a human user. This service offers a
graphical user interface, through which a human can decide
what rules are useful or not. After some time (training period)
the system learns the users preference as a consequence manual
corrections will less frequent.

The rules that are considered correct and useful are sent to
the decision service. Based on the context of the environment
and on the current set of rules, this service performs several
tasks, activating or de-activating actuators present in the envi-
ronment.

In the rest of the paper the Context Inference and Rule
Inference services will be designated as the Inference Pipeline.
In the following subsections each service that composes the
platform is discussed in greater detail.

A. Context Storage service

One objective of the APOLLO platform is to be as indepen-
dent as possible from the underlying environment. To achieve
independence from the underlying environment it is necessary
to develop a context storage service that accepts any type of
information. Relational databases are not suited for this task.
As the name implies, a relational database relies on relations
defined in advance by a human. Due to the heterogeneity of
potential relevant information it is not possible to define in
advance all the possible relations. Depending on the smart
environment it might not even be possible to establish all the
relations between the sources of information. The relations are
also likely to evolve through time with the evolution of the
smart environment and the addition or removal of some of its
sensors and actuators.

To tackle this problem it was adopted a solution based
on a NoSQL (Not only SQL) database [2], as proposed by
Nuno Santos et al. [3]. NoSQL databases do not required
the definition of relations between the structure of the stored
information, hence this type of databases are able to store any
document.

How the devices connect to the context storage is another
important issue, it is necessary a uniform interface that any
device can use in order to publish/retrieve context information.
Currently there are two major types of context storage archi-
tectures. The first architectures are purely based in middleware,
e.g. EU-funded Music project[4]. These have the disadvantage
of not being able to address the heterogeneity of the underlying
devices. Other architectures are web base, e.g. EU-funded
Mobilife project [5]. These architectures, on the other hand, are
unable to cope with the real-time and reactiveness that many
context aware services require. The architecture of the context
storage service adopted was proposed by Diogo Gomes et al.
[6]. It is based in XMPP (Extensible Messaging and Presence
Protocol) protocol and supports the publish-subscribe model.

B. Context inference service

The main function of this service is to gather information
from the sensors and organize it into logic datasets that can

Fig. 2. Information flow of the context inference service.

be analysed by the other components of the platform. Fig.2
shows the information flow of the context inference service.

The context inference service queries the context storage
service for documents containing raw data from the sensors
scattered through the environment. To access information the
service only needs to subscribe the nodes correspondent to the
relevant sensors.

The data collected from the sensors is chronologically
organized and stored into a dataset. Due to the continuous
increase of information (added by the sensors) the dataset is
perceived as a continuous stream. The context inference service
divides the stream into independent and tractable datasets
through a sliding window. The service is able to cope with
the variability of the data and automatically adjusts the sliding
window (for example using an adaptive window [7]).

C. Rule inference service

The Rule Inference service is divided into two different
components:

1) Rule inference component: The rule inference compo-
nent analyses the dataset received from the context inference
service. Each dataset is independent from the others, hence it
is possible to process several datasets in parallel. The first step
of the rule inference component is to analyse the dataset using
statistical and machine learning methods. Through this process
it is possible to detect relevant patterns. From the relevant
patterns, simple behaviour rules for the environment are them
inferred.

The second step of the rule inference process is the
optimization of the rule previously inferred. Using the dataset,
the service trains a predictive model. This model allows the
service to predict the behaviour of the smart environment with
a different combination of inputs. The regression model is
then used in the optimization step as it allows to predict the
environment behaviour. Currently, a genetic algorithm [8] has
been implemented as the optimization algorithm. Depending
on the scenario, a defined objective function will be used by
the optimization algorithm. It is important to notice that at
this point it is not required a highly precise model, since the
platform can verify the results of the rules it infers.

2) Reasoning component: This component has two main
functionalities. First, and since the rules are automatically
optimized, it verifies if the inferred behaviour rules are useful
to the users of the environment. In order to validate the
usefulness of the rules there is often the need of validation by
a human user. This is achieved with an interface that allows
the inhabitants to monitor and decide which rules are useful
to them.

Second, and based on the validation from the users, it
verifies the quality of the inferred rules. Using this information
the service sends messages to the context inference service in
order to adapt the context inference process. As an example,
the service can control the size of the sliding windows through
the stream of data.

D. Decision service

The decision service receives the behaviour rules from
the inference service and stores it into a database. Based on
the context of the environment and the current set of be-
haviour rules, the decision service actives or deactivates several
underlying actuators. The addition or removal of behaviour
rules, depending in the environment, can be very dynamic. As
an example in a home automation system the evaluation of
behaviour rules can be associated with seasonality. However
for other scenarios, such as critical systems, the behaviour rules
can change more rapidly.

This service is also responsible for abstracting the underly-
ing actuators in the system, similar to the abstraction of sensors
achieved by the context storage and context inference services.

III. HOME COMFORT/ENERGY OPTIMIZATION

We instantiated the proposed platform in a home automa-
tion scenario. There are already several commercial smart
home solutions [9]–[11], which cover the first and the third
computational areas described in Section I (ubiquitous comput-
ing and context awareness). Usually the second computational
area, intelligent system, is oversimplified by manufacturers
using a fixed set of rules and parameters specified by the
inhabitants of the environment. This simple approach hinders
these home solutions, as most users are either not skilled

enough to configure the system or uninterested due to the
inflexibility of the system.

Current commercial systems reacts based on a specified
set of rules, performing several quotidian tasks individually
without flexibility to cope with variations of the inhabitants
behaviours (e.g. vacations, family events, etc). The most com-
mon ones are opening/closing the window curtains, manage
temperatures and monitor the exterior of the environment for
security reasons. These systems are not able to learn the
inhabitants habits and adapt to it. Current home automation
systems cannot be considered smart environments, since they
lack the ability to automatically adapt to the inhabitants needs.
In commercial systems the adaptation is only achieved if the
inhabitants define a new set of rules each time their behaviour
evolves. For example, current commercial solutions cannot be
utilized to monitor and help the elderly persons. It is unrealistic
to expect that an elder person will define new rules, behaviours
or patterns as necessities evolve. On the other hand a truly
smart environment can be used by these persons in order to
achieve greater independence and quality of lifetime.

The following Subsection III-A presents the designed sce-
nario. Subsection III-B details the implementation of the plat-
form for the devised scenario, and Subsection III-C presents
the results of the evaluation.

A. Scenario

For the purpose of evaluating the platform, we have con-
sidered a reference scenario in which the platform receives
temperature and energy consumption data, and define the
temperature of the air conditioning system, as depicted in
Fig.3. The objective is to learn the temperature preferences
of the inhabitants, while optimizing the energy consumption.

Fig. 3. Designed test scenario for this project. The scenario is composed of
two sensors (temperature and energy sensor) and one actuator (air conditioning
system).

At this point in the project the physical smart environment
is still being built. The test alternative was to use a dataset from
another smart house research project that has similar sensors.
The platform was tested using a dataset publicly available at
[12]. The data was collected from sensors in a smart house
test-bed from Washington State University (WSU), during the
Summer of 2009. In this scenario, with minimal intervention
from the users, the system should detect the preferred temper-
ature and optimize the energy consumption required to achieve
it.

B. Implementation

In order to adapt our platform to this practical scenario it
was required the customization of two services, the context
inference and the rule inference system. The customizations
are discussed as follows.

1) Context inference: As previously referred, the context
storage service accepts any document from the sensors. The
context inference service analyses each document, extracts the
relevant information and organizes it into a stream of data.

For this implementation it was used a database of ontolo-
gies that expresses what variable depends on each other. The
dataset extracted from the stream was organized in columns
as follows:

• Energy spent by the air conditioning system

• Temperature measured in the environment

• Time at which the previous values were read

A method to automatically organize variables collected
from sensors without a ontology database is currently being
defined, and will be addressed in future publications. Several
sizes of sliding windows were used, with results presented in
Section III-C.

2) Rule Inference: The analysis of the dataset is performed
as follows. The dataset is statistically analysed in order to
discover the most frequent temperature and what time of the
day that temperature was measured. A histogram of tempera-
tures is built, and the most frequent temperature is selected
as the target temperature of the behaviour rule. It is also
built an histogram that contains the time periods when the
most frequent temperature was read by the sensor in the
environment. The most frequent time period is selected as the
target period of the behaviour rule. At this point the platform
generates a simple behaviour rule based on the most frequent
behaviour of the users.

A Support Vector Machine (SVM) [13] regression model
was trained. The model allows the system to estimate the
energy consumption based on the temperature and time period.
A genetic algorithm [8] was then used to optimize the detected
pattern with the objective of lowering the power consumption.
The optimization algorithm tries to achieve the target tem-
perature in the target time period consuming the least energy
possible. The regression model, computed through the dataset
using a SVM, is then used in the optimization as it allows to
compute the energy spent.

This optimization tries to verify if a slight decrease of
temperature or a smaller amount of time that is unperceived by
the users produces a meaningful result and savings in terms of
energy. Is is assumed that the platform is able to automatically
generate objective functions from the inferred rules.

All optimization algorithms need an objective function in
order to compare how good the optimizations are compared
to the initial solution. In a genetic algorithm this objective
function is designated as fitness function. Based on target
temperature, target time and average energy spent to maintain
that temperature within that time period, a fitness function is
defined.

Fig. 4. Architecture of the behaviour rule inference model.

Equation 1 presents the fitness function used. The func-
tion is divided into three components: energy fitness (EF),
temperature fitness (TF) and time period fitness (PF). The
time period and temperature fitness formulas tend to 1 when
the optimized values tend to the target values. On the other
hand, the energy fitness formula tend to 1 when the optimized
value tend to 0. We wanted to obtained the target temperature
at the target period consuming the least amount of energy.
Each component has a weight associated (wE , wT and wP

respectively), that controls the effect of the respective com-
ponent in the result of the optimization. For example, a high
weight in the energy fitness and the optimized rules will allow
to consume less energy at the expense of not reaching the
desired temperature at the desired time period.

Fitness =
wE × E. F. + wT × T. F. + wP × P. F.

wE + wT + wP
(1)

E. F. =
average Energy− Energy

average Energy
(2)

T. F. =
1.0

(target Temperature− Temperature) + 1.0
(3)

P. F. =
1.0

(target Period− Period) + 1.0
(4)

Finally all rules inferred are sent to the reasoning compo-
nent, since the datasets are extracted from a possible continu-
ous stream of data, it is inferred one rule from each dataset.
The reasoning component generates a histogram and stores the
rules inferred by the rule inference component. The rule with
higher count in the histogram is the rule with higher probability
of being the correct rule. Again since the stream is possibly
infinite the system should converge to the rules that model
the environment. The database of the decision point service is
updated each time the most probable rule changes.

Fig.4 shows the architecture of the behaviour rule inference
model.

C. Performance Evaluation

The APOLLO platform was evaluated taking into account
the scenario described previously (Section III-A). It is relevant

to mention two important aspects. First, there are no physical
sensors sending data for the context storage service, as they
are still being built. Future publications will evaluate the
performance of the platform using data gathered from physical
sensors. Second, since the stream of data is static and there
are no actuators to activate, it is not possible to verify with
user interactions the effect of the inferred behaviour rules.
Nevertheless the throughput of the system and the ability to
detect relevant patterns were numerically evaluated.

The stream of data was manually stored in the context
storage. The context inference service subscribes the context
storage for documents and receives the complete stream con-
taining three months of data. The rules inferred were analysed
by some human users but it is not possible to verify if the
rules correspond to the actual needs of the original human
inhabitants.

We performed two different evaluations in the platform:
first we analysed the throughput of the platform, second we
analyse the ability to infer behaviour rules. The platform
was deployed into a two separate servers, the context storage
service was deploy in one server, with a 2.6 GHz CPU and
1 GB of memory RAM. While the reaming services were
deployed into a more powerful server, with 24 CPUs and 200
GB of memory RAM.

The first performance evaluation was to measure the
throughput of the system. For this evaluation it was simulated
75, 125, 250 and 500 simultaneous streams of data. Conceptu-
ally each stream represents a individual home. The generation
and sending of a new dataset followed an exponential distribu-
tion with mean equal to 10 seconds. Each stream was divided
into datasets containing data from 7, 15 and 30 days, which
correspond to a week, two weeks and a month, respectively.
For the three dataset sizes the sliding window always slides
one day for each created dataset. We assume, for this practical
scenario, that one day slide is a good compromise between
reactiveness and new information for the system to infer new
rules.

We measured the average time required by a dataset to be
processed by the Inference Pipeline. The dataset processing
time is measured from the moment the dataset is extracted

 0

 10

 20

 30

 40

 50

 60

 70

 100 150 200 250 300 350 400 450 500

A
v
e

ra
g

e
 p

ro
c
e

s
s
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

Number of simultaneous streams

7 days
15 days
30 days

Fig. 5. Dataset average processing time. The x axis contains the number of simultaneous streams, the y axis contains the processing time in seconds.

until the the moment the rules are inserted in the rules database.
Fig.5 shows the dataset average processing time for different
dataset sizes and different number of simultaneous streams.

Even in the worst-case scenario (500 simultaneous streams
and dataset with 30 days) it only takes 70 seconds in average
to completely process a dataset. This processing time is
completely satisfactory for the considered home automation
scenario and to almost all home automation scenarios. If a
specific scenario requires a higher throughput is possible to
instantiate multiple context inference and reasoning inference
services and divide the workload through them. This is possible
because the platform follows a SOA and each service is as
independent as possible from each other.

The second performance evaluation was the ability to detect
relevant patterns. Image 6 shows a graphical representation
of the final histogram obtained after analysing the complete
stream with a sliding window of 7 days. The rule with the
higher number of votes has almost double the votes than the
second one. Another important aspect is that the most probable
rules agree that the most relevant temperature is 25°C only
differing in the time period. So it is possible to state that the
system is capturing a relevant pattern, at least from a statistic
point of view.

IV. STATE OF THE ART

Over the years, there have been several attempts to create
fully autonomous and pervasive home environments.

Mozer [14], [15] applied neural networks [16] in home
automation. The author developed a system that was able to
control air, heating, lighting, ventilation and water heating.
The main goal of the project was to anticipate inhabitants
needs and conserve energy at the same time. For that, it
applied reinforcement learning [16]. During a learning period,

inhabitants indicated their preferences whenever predictions
were incorrect by selecting themselves what they would expect
the system to do (for instance, if they want the lights on,
and the system did not turn them, users simply turned them
on). This way, the system would adjust itself to its inhabitants
preferences.

Vainio et al [17] proposed home-control system that uses
fuzzy logic rules [18]. Initial rules were given manually and,
through reinforcement learning, the home adapted by replacing
old rules with new ones. This method was applied to control a
lightning system in a smart-home laboratory environment. The
author concluded that users did not care if the rules generated
by the system didn’t match exactly what they wanted. It also
concluded that, after a certain amount of time, if a rule had a
big weight, it was likely to keep its importance, and new rules,
that correspond to sporadic actions, were quickly eliminated.

The architecture proposed by Mozer [14], [15] depends
on the type of environment, not being able to cope with the
addition of new sensors nor actuators. The proposed platform
adapts automatically, without making assumptions about the
environment, and starts building environment rules from the
raw data. A priori knowledge of the environment is not
required, since the proposed platform is independent from the
underlying environment. Another issue with the architecture
proposed by Mozer is that the system does not infer the
inhabitants preferences, requires a training phase where the
inhabitant needs to specify his preferences over the preferences
assumed by the system. Vainio et al [17] also proposed a
proactive architecture, that requires a initial set of rules defined
by the inhabitants. One advantage of the APOLLO platform
is the fact that it does not need a training dataset in order
to adapt to the environment. At first the inferred rules might
not be that useful but with the increase of processed data the
system converges to the set of rules that defines the expected

 0

 2

 4

 6

 8

 10

[17h30,
19h00]

25

[03h30,
10h30]

21

[03h00,
12h00]

26

[18h00,
19h30]

27

[20h30,
22h00]

26

[13h00,
14h30]

23

[19h30,
21h30]

25

[14h30,
16h00]

25

[16h30,
18h00]

25

[09h00,
15h00]

25

Fig. 6. Histogram of the rules inferred by the rule inference component. The x axis contains the inferred rules, the time period is between square brackets
followed by the inferred temperature.

behaviour of the environment.

The smart thermostat [19] is an approach that detects occu-
pancy and sleep patterns in a house in order to save energy. To
save energy, it automatically turns off the heating, ventilation
and cooling systems whenever inhabitants are sleeping or are
not at home. The system uses historical data and on-line sensor
data to decide if it should preheat the house or heat it only
after it is occupied.

AIM project [20] aims to profile and reduce home energy
consumption. It intends to predict user preferences through
the monitoring of its behaviour and environmental parameters,
such as user presence, temperature and light. Daily profiles
are clustered trough a cross-correlation between each couple of
daily data. Also, the system uses real time data to dynamically
update its predictions.

Ubiquitous Smart Energy Management (USEM) [21] is
also a system to manage power usage. This system allows real-
time monitoring of electricity consumption. Users can interact
with the system in order to set their own rules and monitor
appliances usage. The main improvement of this system is that
it considers energy availability and price.

Much of smart environment research [19]–[21] is mainly
focused in saving energy. These types of systems are not
suitable for elder persons or persons with dementia.

V. CONCLUSIONS

This paper presents a new platform that is capable of
automatically inferring behaviour rules from a smart envi-
ronment. The APOLLO platform presents a new architecture
that is as independent as possible from the underlying smart
environment.

The most important part of the platform is the Inference
Pipeline. The first service, designated context inference, pro-
cesses the raw data from the sensors and infers the context

of the environment. The smart environment context is the
necessary information to describe the environment state.

The second service, composed by two components: rule
inference component and reasoning component. The rule
inference component receives the environment context and
through data mining, statistical analyses and machine learning
techniques detects relevant behaviour patterns. Based on the
detected patterns it infers behaviour rules. The reasoning com-
ponent is responsible for verifying the quality of the inferred
behaviour rules. Based on that, this component reconfigures the
rule inference component and the context inference service. It
is also responsible to verify the logic correction and usefulness
of the inferred behaviour rules.

As previously stated, the APOLLO platform presented in
this paper is an ongoing project. For this paper the implemen-
tation of the platform has adapted for the available dataset on
home automation.

Areas of interest that will be analysed in the future with
more detail are devising a technique that allows the system
to automatically select weights in the fitness functions which
will allow the platform to better adapt to the inhabitants needs
and habits. Rule execution service and rule storage services
are also areas of interest since the platform needs the ability
to execute the rules inferred.

VI. ACKNOWLEDGEMENT

This work has been partially funded by the Portuguese
Innovation Agency/National Strategic Reference Frame-
work (AdI/QREN) under grant agreement No. 2011/021580
(APOLLO project).

REFERENCES

[1] N. Shadbolt, “Ambient intelligence,” IEEE Intelligent Systems,
vol. 18, no. 4, pp. 2–3, Jul. 2003. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=939826.939889

[2] N. Leavitt, “Will nosql databases live up to their promise?” Computer,
vol. 43, no. 2, pp. 12 –14, February 2010.

[3] N. Santos, O. Pereira, and D. Gomes, “Context storage using nosql,” in
Conferência sobre Redes de Computadores, 2011. [Online]. Available:
http://atnog.av.it.pt/publications/context-storage-using-nosql

[4] N. Paspallis, R. Rouvoy, P. Barone, G. A. Papadopoulos, F. Eliassen, and
A. Mamelli, “A pluggable and reconfigurable architecture for a context-
aware enabling middleware system,” in Proceedings of the OTM 2008
Confederated International Conferences, CoopIS, DOA, GADA, IS, and
ODBASE 2008. Part I on On the Move to Meaningful Internet Systems:,
ser. OTM ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 553–570.

[5] P. Floren, M. Przybilski, P. Nurmi, J. Koolwaaij, A. Tarlano, M. Wagner,
M. Luther, F. Bataille, M. Boussard, B. Mrohs, and S. Lau, “Towards
a context management framework for mobilife,” in In IST Mobile &
Wireless Communications Summit, 2005.

[6] D. Gomes, J. M. Goncalves, R. O. Santos, and R. Aguiar,
“Xmpp based context management architecture,” in 2010 IEEE
Globecom Workshops. Miami, Florida, USA: IEEE, December 2010,
pp. 1372–1377. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5700163

[7] A. Bifet and R. Gavald, “Learning from time-changing data with
adaptive windowing,” in In SIAM International Conference on Data
Mining, 2007.

[8] W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin, Genetic
programming: an introduction, M. K. P. Inc., Ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1998.

[9] L. Green, “Smart home systems,” 2012. [Online]. Available:
http://www.limegreen.tv/residential/smart-home-systems/

[10] T. B. Group, “Your smart home,” 2012. [Online]. Available:
http://www.thebelmontgroup.co.uk/home-automation

[11] Atlas, “Make the most of your future with a smart home,” 2012.
[Online]. Available: http://www.atlassmarthomes.com/

[12] S. o. E. E. CASAS Project and C. Science, “Daily life, summer 2009,”
2009. [Online]. Available: http://ailab.wsu.edu/casas/datasets.html

[13] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
July 2011, ch. Classification: Advanced Methods, p. 703.

[14] M. Mozer, “The neural network house: An environment that adapts to its
inhabitants,” in Proceedings of the American Association for Artificial
Intelligence, A. Press, Ed., 1998, pp. 110–114.

[15] M. C. Mozer, “Lessons from an adaptive home,” in Smart Environments:
Technology, Protocols and Applications, D. J. Cook and S. K. Das, Eds.
John Wiley & Sons, Inc., 2005, pp. 271–294.

[16] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[17] A.-M. Vainio, M. Valtonen, and J. Vanhala, “Proactive fuzzy control

and adaptation methods for smart homes,” IEEE Intelligent Systems,
vol. 23, pp. 42–49, 2008.

[18] J. Mendel, “Fuzzy logic systems for engineering: a tutorial,” Proceed-
ings of the IEEE, vol. 83, no. 3, pp. 345 –377, mar 1995.

[19] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic,
E. Field, and K. Whitehouse, “The smart thermostat: using occupancy
sensors to save energy in homes,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems, ser. SenSys ’10.
New York, NY, USA: ACM, 2010, pp. 211–224.

[20] A. Barbato, L. Borsani, and A. Capone, “A wireless sensor
network based system for reducing home energy consumption.”
in SECON. IEEE, 2010, pp. 1–3. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/secon/secon2010.html\#BarbatoBC10

[21] M. Kugler, F. Reinhart, K. Schlieper, M. Masoodian, B. Rogers,
E. André, and T. Rist, “Architecture of a ubiquitous smart energy
management system for residential homes,” in Proceedings of the 12th
Annual Conference of the New Zealand Chapter of the ACM Special
Interest Group on Computer-Human Interaction, ser. CHINZ ’11. New
York, NY, USA: ACM, 2011, pp. 101–104.

