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Abstract

The increasing of emerging micropollutants presence in drinking water sources has 
brought new challenges to existing water treatment systems (WTS), highlighting the need 
of innovative and low-cost technological solutions. Recent advances in nanotechnology 
enable highly efficient and multifunctional processes, providing sustainable alternatives 
to current water treatment practices. This chapter presents the results of several pilot-scale 
studies developed to assess the effects of TiO

2
 nanoparticles on antibiotic removal effi-

ciency, using different low-cost photocatalytic reactors. The characterization of its photo-
oxidation kinetics also performed considering different test scenarios in order to assess the 
effects of the major abiotic parameters on oxytetracycline (OTC) removal efficiency, which 
achieved the maximum values of 96% and 98% using the photocatalysis with TiO

2
 and the 

photocatalytic filtration, respectively. It must be highlighted the surprising regeneration 
ability showed by the photocatalytic porous medium, developed at a lab-scale, which can 
completely recover its oxidative properties after few hours of simple sun exposure.

Keywords: heterogeneous photocatalysis, photo-oxidation kinetics, TiO
2
 nanoparticles, 

photocatalytic filtration, antibiotic removal, safe drinking water

1. Introduction

Reliable access to clean and safe water remains a major worldwide challenge for the  twenty-first  
century, in a global climate change context. In recent years, the classic problems associated 
with the presence in the ecosystems of priority pollutants have been extended to the  detection 

of increasing amounts of micropollutants commonly called emerging. These, due to their 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



 toxicity and persistence in the environment (water column and sediments), have brought 

new challenges to existing water treatment systems (WTS) aiming to protect public health 

and the preservation of drinking water sources.

The Directive 2008/105/EC (PSD) lays down environmental quality standards (EQS) and pres-

ents the List of Priority Substances as afforded on the Article 16 and Annex X of the Water 
Framework Directive 2000/60/EC (WFD). However, the pharmaceuticals are not yet included 

among those compounds to be monitored, despite the increase in its occurrence reported in 

many European countries [1]. For urban water monitoring, possible priority pharmaceutical 

compounds (PhCs) should be the mainly analgesics, antidepressants, antibiotics, antineoplas-

tics [2], synthetic estrogens, and hormones [3]. The inclusion of target PhCs in the EU List of 
Priority Substances implies the definition of their corresponding EQSs and the necessity to 
subject to monitoring EU aquatic ecosystems.

Recent advances in nanotechnology offer opportunities to develop next generation of WTS, as 
sustainable and safe alternative to current water treatment practices relied on centralized sys-

tems. The highly efficient and multifunctional processes, enabled by nanotechnological solu-

tions, can also provide new capabilities allowing economic utilization of unconventional water 
sources on water-stressed regions [4]. Future water treatment systems in developing countries 

will most likely opt for nanotechnology-based water monitoring, treatment and reuse systems 

that can efficiently immobilize a wide variety of water emergent pollutants (for which existing 
technologies are inefficient or ineffective) coupled with affordability and ease of operation [5].

Advanced oxidation processes (AOPs) have been widelly studied because of their potential as a 
complementary or alternative process to conventional wastewater treatment. These AOPs have 
proven to be particularly efective in the degradation of many toxic pollutants [6–8] when nano-

materials are applied as photocatalyst. Photocatalytic oxidation with TiO
2
 has been used in the 

removal of micropollutants (like antibiotics) and microbial pathogens from waters, as a useful 

pre-treatment and/or a polishing step to oxidize hazardous and recalcitrant organic compounds.

This chapter presents the development and results of several pilot-scale studies aiming to assess 

the effects of TiO
2
 nanoparticles on antibiotic removal efficiency and to define its photo-oxidation 

kinetics, using different low-cost photocatalytic water treatment systems.

The antibiotic tested in this work was oxytetracycline (OTC) is a widely used broad spectrum 
antibiotic, especially employed in veterinary medicine [9, 10] and for human therapy [11]. It 
can be found not only in raw and treated wastewaters but also in surface water sources [12]. 

The catalyst used is Degussa (Evonik) P25 TiO
2
, which was applied as suspended and immo-

bilized nanoparticles exposed to UV and solar radiation in two photocatalytic reactors: water 
columns and columns filters with a granular porous medium coated by immobilized TiO

2
 

nanoparticles using a sol-gel method.

For both photo-oxidation reactors, different test scenarios are defined in order to assess the 
effect on OTC removal efficiency of the major abiotic parameters, such as hydraulic  conditions, 
OTC initial concentration, pH, cumulate solar energy, and media granulometry.

The experimental results were very promising, because removal efficiencies in both reactors 
achieved the maximum value of 96% for water columns with suspended TiO

2
 nanoparticles 
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[13] and 98% for the photocatalytic filtration performed by the porous medium coated with 
TiO

2
 [14].

It must be also highlighted that the surprising regeneration ability showed by the developed 
photocatalytic porous media can completely recover its oxidative properties after a simple 

sun exposure [15], allowing a truly sustainable use of the developed photocatalytic filter.

2. Urban water cycle sustainability: new challenges to ensure safe water

Urban water cycle management involves the fields of water supply, urban drainage,  wastewater 
treatment, reutilization, and sludge handling with a river basin scale approach.

Conventional approaches to urban water management for providing water supply and sanita-

tion services are often costly, inefficient, and not integrated. Hence, there is a need for finding 
new ways for improving and assess the urban water systems to enable better sustainability of 
these systems [16] to face new challenges in a climate change context.

In an urban water systems context, life cycle assessment (LCA) can provide a pertinent holis-

tic approach supporting the critical processes identification and the potential improvements of 
these systems, including the water and wastewater treatment facilities, as well as, its interactions 

with source or receiving waters. Several researchers used LCA approach for comparing water 
treatment technologies sustainability [17, 18], as well as the major environmental impact changes 
resulting from centralized wastewater treatment  systems commutation to decentralized ones [19].

This kind of approaches allowed to identify new threats for the urban water cycle  sustainability, 

concerning with the obligation to ensure safe drinking water in order to safeguard public 

health and urban aquatic ecosystems.

2.1. Occurrence of emerging micropollutants in urban water systems

Aquatic ecosystem pollution is particularly problematic due to the cumulative effect of pol-
lutants on aquatic organisms during its life cycle. This cumulative effect can occur so slowly 
that major impacts may remain undetectable until the hatching of irreversible ecosystem 
changes [20]. The hydrodynamics and the longitudinal dispersion patterns presented by 
receiving water systems have a decisive role in its ability to self-regenerate [21] and to wash-

out inflow pollutants like nutrients and xenobiotics [22].

During the last decades, the impact of chemical pollution has focused almost exclusively on 

the conventional priority pollutants, especially those acutely toxic/carcinogenic pesticides 

displaying persistence in the environment.

At the same time (but receiving much less attention), the anthropogenic activities increased 
the diversity and load discharge of another groups of bioactive hazardous chemicals into 
urban water systems (Figure 1), namely:

• Contaminants of emerging concern (CECs), such as pharmaceutical compounds (PhCs), 
diagnostic agents, steroids, phthalates, and disinfectants.
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• Endocrine disrupting compounds (EDCs), like natural and synthetic estrogenic or andro-

genic chemicals.

• Personal care products (PCPs), such as fragrances, sun-screen agents, and cosmetics.

The widespread use of antibiotics as a therapy for bacterial infections in humans and animals 

(even for promoting it growth) has led to the concentration increase of antibiotic-resistant 

bacteria (ARB) in surface waters and urban waterways [23–25], used for domestic sewage, 

hospital wastewater, and livestock feeding operations drainage. As opposed to the conven-

tional persistent priority pollutants, PhCs need not be (necessarily) “persistent” if they are 
continually introduced to surface waters, even at very low concentrations.

The use of conventional water treatment technologies against these emerging contaminants is 

limited due to their ineffectiveness and incomplete biodegradation of the waste products as 
outlined in the applicable EU directives.

The presence of PhCs, PCPs, and EDCs in drinking water indicates that conventional and most 
commonly used water treatment technologies may not be enough to completely eliminate 

these compounds from source waters [26], which can be polluted because existing Wastewater 

Treatment Plants (WWTPs) were usually not designed to remove antibiotics present at trace 

levels, implying the need for its urgent improvement. Indeed, if urban WWTPs play a vital 
role in minimizing the discharge of many water pollutants, including antibiotics [27] and 

pathogenic microorganisms [28] to the aquatic ecosystems, they are also potential breeding 
grounds and point sources for environmental dissemination of antibiotic resistance [29].

Indeed, the very high bacterial density into biological reactors (e.g., activated sludge) pro-

motes selective elimination and/or changes in the proportions of phenotypes within efflu-

ent bacterial populations turning WWTPs into important reservoirs of enteric bacteria which 

Figure 1. Threats to urban water cycle sustainability due to xenobiotic load increase.

Application of Titanium Dioxide128



carry potentially transferable resistance genes. For these reasons, higher frequency of multiple 
resistant coliform bacteria in treated sewage than in raw sewage [30, 31] for most  antibiotics, 

especially for ciprofloxacin and tetracycline, have been found.

Human health risk characterization related to the pharmaceutical water ingestion exposure 
can be performed by the assessment of risk quotients (RQs). This risk index can be estimated 
dividing the maximum concentration of a pharmaceutical (MPC) found in the water matrix 
by the respective Drinking Water Equivalent Level (DWEL), which can be obtained as an 
exposure criteria based on other related parameters, such as acceptable daily intake; body 

weight, hazard quotient, and drinking water daily ingestion; gastrointestinal absorption rate; 
and frequency of exposure. So, a RQ value higher than 1 leads to a risk concern related to 
inadvertent exposure through drinking water, and measures must be considered in order to 

prevent public health.

A recent monitoring program performed along Lisbon’s drinking water supply system [32] 

showed that appreciable risks to the consumer's health arising from exposure to trace levels 

of pharmaceuticals in drinking water were yet extremely unlikely, because all risk quotient 
(RQ) values were less than 0.001. Therefore, a high environmental risk was detected for 
Erythromycin (RQ = 1.55), the urgency of the study and development of new low-cost tech-

nologies for an effective removal of the most prevalent antibiotics in WTP raw waters.

2.2. Advanced oxidation processes: the role of photocatalysis as a low-cost alternative 

technology

Nanotechnology offers significant opportunities to revolutionize approaches toward drink-

ing water treatment by enhancing the multifunctionality and versatility of treatment systems, 

while reducing reliance on stoichiometric chemical addition, shrinking large facilities with 

relatively long hydraulic contact times, and minimizing energy intensive processes [33]. So, 

it can provide low-cost, safe, and efficient water treatment systems with minimal energy 
requirements contributing for a more sustainable urban water cycle.

Nanomaterials properties have been explored for applications in water and wastewater treat-

ment, due to its advantages related to the high specific surface area, fast dissolution, high 
reactivity, and strong sorption. Micropollutants’ removal ability of new materials, such as car-

bon nanotubes, nanofibers, nanoscale metal oxide, nano-zeolites, and magnetic nanoparticles, 
is being tested and assessed when used in selected treatment unit processes, like adsorption, 

photocatalysis, membrane filtration, and disinfection.

Different advanced water treatment techniques for antibiotic removal have been studied, 
especially focus on membrane filtration, activated carbon adsorption, and advanced oxida-

tion processes (AOPs). AOPs are recommended when water pollutants (such pharmaceu-

ticals) have a high chemical stability and/or low degradability, allowing a more useful and 

cost-efficient combination with biological processes, namely in wastewater treatment [34].

The efficacy of AOPs depends on the generation of very reactive and nonselective free  radicals—
such as hydroxyl radicals (•OH), superoxide radical (O2−), hydroperoxyl radical (HO

2
•), and 
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alkoxy radical (RO•)—involving chemical (e.g., O
3
, O

3
/H

2
O

2
), photochemical (UV/O

3
, UV/

H
2
O

2
), or photocatalytic (TiO

2
/UV, ZnO/UV) oxidation processes. In recent years, semiconduc-

tor photocatalytic process has shown a great potential as a low-cost, environmental friendly, 

and sustainable treatment technology to align with the “zero” waste scheme in the water/
wastewater industry. The ability of this advanced oxidation technology has been widely dem-

onstrated to remove persistent organic compounds and microorganisms in water [35] and 

some hazardous inorganic micropollutants (e.g., arsenic, heavy metals, uranium).

Recent research works were mainly focused on AOPs assisted by solar radiation (a clean and 
renewable energy source), such as heterogeneous photocatalysis, in order to develop more 

sustainable and low-cost processes. The photocatalytic reactors can be divided into two main 

groups: with suspended nanoparticles (e.g., TiO
2
, ZnO) in the reaction mixture (water and 

wastewater) and with immobilized nanoparticles on a carrier material (e.g., glass, quartz, 
stainless steel, zeolites).

When the catalyst is in suspension, the active surface is greater. However, its particles have 
to be removed from the treated water after the detoxification, and the manipulation of pow-

dered semiconductors are difficult. To ensure complete rejection of TiO
2
 nanoparticles, an 

extensive and relatively costly installation technology is necessary, including pumps. Very 
promising techniques for solving problems concerning separation of the photocatalyst as well 
as products and by-products of photo-degradation from the reaction mixture are the use of 

photocatalytic membrane reactors (PMRs) and the introduction of a magnetic into the nano-

composite [36]. However, the energy costs evolved in membrane processes can compromise 
the economic sustainability of the water treatment utilities, namely in medium and small 

water supply systems.

A solution for avoiding the contamination with the photocatalytic nanoparticles is their 
immobilization on the surface of specified materials by use of suitable coating techniques, as 
a wet chemical process. Quartz has been found to be the best support for titanium dioxide, 
because it is the most neutral and stable one at high temperatures. As a consequence, it has 
been chosen as the ideal support for new experiments with TiO

2
 in the photodegradation of 

organic micropollutants in water [37].

3. Experimental methodology

During this research work, a set of experiments under different test scenarios were performed 
in order to assess the antibiotic removal efficiency and to characterize its photo-oxidation 
kinetics, using two different lab-scale photoreactors. In the first one (PR1), the heterogeneous 
photocatalysis was performed using suspended TiO

2
 nanoparticles as catalyst to remove the 

antibiotic from water. In the second (PR2) one, a photocatalytic filtration was performed using 
a granular porous medium coated by immobilized TiO

2
 nanoparticles.

In these experiments, the antibiotic used to prepare all synthetic solutions was the oxytet-
racycline hydrochloride (MW = 496.89, CAS# 2058-46-0), supplied by Sigma-Aldrich with 
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a purity higher than 95%. The OTC concentrations were always measured using a UV-VIS 
spectrophotometer, Shimadzu UV-1800, at 354-nm wavelength. Titanium dioxide (TiO

2
) used 

was Degussa (Aeroxide®) P-25 (80% anatase and 20% rutile).

The intensity of solar radiation is measured by a global UV radiometer (OHM – HD 9021), 
which was placed next to the solar reactors, in order to provide data in terms of incident solar 

radiation intensity (W/m2). A reagent kit for rapid analysis of the amount of iron (Aquaquant®, 

E. Merck Darmstadt Germany) was also used.

Test scenarios were defined aiming to assess the effect on OTC removal efficiency of some 
abiotic parameters (e.g., OTC initial concentration, pH, hydraulic conditions, UV radiation 
source, and water matrices).

3.1. Photo-oxidation experiments using suspended TiO
2

In reactor PR1, photo-oxidation experiments were performed, with and without suspended 
TiO

2
 nanoparticles, using two different UV radiation sources: solar radiation and UV lamp 

reactor (Figure 2).

For the OTC photo-degradation under solar radiation, bottles of colorless polyester with 
a capacity of 1.5 L were used as reactor. These water bottles were placed vertically, being 
shaken manually every 10 minutes to prevent the deposition of TiO

2
 at the bottom. The sun 

exposure time was 210 minutes for all photodegradation tests.

The UV reactor (Heraeus Noblelight, System 2) used in photodegradation assays consists of an 

UV immersion lamp TQ 150, an immersion tube, a cooling tube, and a reactor vessel. The UV 

Figure 2. UV radiation sources used in OTC degradation experiments: solar (polyester bottles); UV reactor Heraeus 

Noblelight.
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immersion lamp is a medium-pressure mercury vapor lamp with a broad emission spectrum 

in the UV range above 190 nm and lamp output of 150 W. The reactor vessel has a capacity of 
0.8 L and three openings (one central and two sideways). In the central opening, the UV lamp 
tube is inserted, and only a side opening is used to carry out the extraction of the samples dur-

ing the tests. The container is placed on a magnetic stirrer that was in operation throughout 

the test. The UV lamp exposure time was 60 minutes for all tests.

Equation (1) allows the calculation of the amount of accumulated UV energy (Q
450-950n

) received 

on any surface in the same position with regard to the sun, per unit of volume of water inside 

the reactor, in the time interval Δt.

   Q  
 450–950  

n
  
   =  Q  

 450–950  
n-1

  
   + ∆  t  

n
   ×   ̄ ¯ 450–950  ×   

 A  
r
  
 __ 

 V  
t
  
   ; ∆  t  

n
   =  t  

n
   -  t  

n-1
    (1)

Where t
n
 is the experimental time of each sample (s); V

t
 is the total reactor volume (L); A

r
 is 

the exposed surface area (m2) of the reactor; and     ̄ ¯ 450–950  is the average solar radiation  (  W /  m2 )    
measured during the period ∆  t  

n
     (s).

Photolytic and photocatalytic experiments were carried out under static hydraulic conditions 
using 20 mg/L of OTC, as initial pollutant concentration, in all tests. For photocatalysis, the 
chosen initial suspended catalyst concentrations were 50 and 25 mg/L of TiO

2
, in order to 

assess the effect of doubling the value of this parameter on OTC removal efficiency.

In order to assess the photocatalysis ability as post-treatment unit in WTPs for antibiotic 
removal, OTC solutions were prepared using two different water matrices (distilled and tap 
water) in order to assess the potential influence of other water supply constituents on OTC 
removal efficiency. The pH values measured in all experiments ranged between 4.3–4.9, for 
distilled water, and 6.6–7.3, for tap water.

To evaluate the influence of radiation in OTC degradation, at any given irradiation time 
interval, the dispersion was sampled (5 mL), filtered through a Millipore filter (pore size of 
0.22 μm) to separate the TiO

2
 particles, and the absorption was monitored to obtain OTC 

concentration.

Table 1 summarizes the different assay conditions (scenarios) under which the OTC photo-

degradation tests, using suspended TiO
2
, were performed (reactor PR1).

Most of the studies carried out on heterogeneous photocatalysis with TiO
2
 have shown that the 

kinetics underlying the photo-oxidation of emerging pollutants can be represented by Eq. (2), 
according to the Langmuir-Hinshelwood model [38, 39].

   r  
0
   = −   dC ___ 

dt
   =   

k × K ×  C  
0
  
 ________ 

1 + K ×  C  
0
  
    (2)

Where r
0
 is the initial rate of photo-oxidation (ppm minutes−1); C

0
 is the initial pollutant 

concentration (ppm); k is the reaction rate constant (ppm minutes−1); and K is the pollutant 

adsorption coefficient (L/mg) measured during the period ∆t
n
 (s).
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Considering that “K×C
0
” product can be a value quite low for photo-oxidation processes, 

which can be described by a pseudo-first order decay kinetics [35], the final pollutant concen-

tration (C
t
) is given by Eq. (3).

   C  
t
   =  C  

0
   ×  e   - K  

aap
  ×t   (3)

Where K
aap

 is the apparent velocity reaction constant (minutes−1).

So, the initial rate of photo-oxidation can be obtained by Eq. (4) when the pollutants present 
vestigial concentrations.

   r  
0
   =  K  

aap
   ×  C  

0
    (4)

3.2. Photocatalytic filtration experiments using immobilized TiO
2

The lab-scale reactive filter applied on photocatalytic oxidation of OTC consists of two boro-

silicate glass cylinder (DURAN®) with 750 mm length, 70 mm external diameter, and 62 mm 

inner diameter. The filtration columns, with this quartz porous medium coated with TiO
2,
 are 

assembly as showed in Figure 3, and the OTC solution was feed to the columns by a peristaltic 
pump (Watson-Marlow 503U).

The porous bed consists of a quartz extracted from a quarry located in Ponte da Barca 
(Portugal), which was characterized by X-ray diffraction (XRD) (Figure 4).

The quartz was crushed and sieved in order to reduce its grains size till the desired granu-

lometry, as well as, to facilitate the removal of the usual impurities. After sieving out, a grain 

Scenario UV radiation Water matrix [TiO
2
]

0
 (ppm)

S1 Solar Distilled 50

S2 25

S3 Tap 50

S4 25

S5 Distilled –

S6 Tap –

S7 UV lamp Distilled 50

S8 25

S9 Tap 50

S10 25

S11 Distilled –

S12 Tap –

Table 1. Scenario analysis for OTC photo-oxidation in reactor PR1.
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size distribution between 2.36 and 4.75 mm was dipped coated with TiO
2
, also from Degussa 

(Aeroxide®), using the method described by Jeong et al. [40].

Prior to the start of the photocatalytic filtration tests, a study was carried out to optimize the 
hydraulic operation of the filter (e.g., flow rates ranges, head losses, hydraulic retention times) 

Figure 4. Characterization of a quartz sample by X-ray diffraction.

Figure 3. Filtration columns with a quartz porous media for OTC photo-oxidation.
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in order to select the most suitable flow rates: for photocatalysis, experiments were defined 4, 
6 and 12 L/h; for adsorption, tests were defined 2, 4 and 6 L/h.

The selected range of flow rates for photocatalysis allows to simulate filtration (loading) 
rates similar to those occurring in WTP rapid and high rate filters (real scale hydraulic 
conditions) and also leads to OTC contact times with the TiO

2
 that can provide an efficient 

photodegradation.

The hydraulic tests were performed both in open and closed (looped) circuit. An open circuit 
operation (without filtered water recycling) allows to maintain the initial OTC concentration 
constant and thus to evaluate the maximum capacity of retaining pollutant mass correspond-

ing to the occurrence of porous medium saturation. A closed circuit operation allows to per-

form the number of loops (cycles) necessary to obtain the desired OTC contact time with the 
porous medium coated with TiO

2
 nanoparticles.

The photocatalytic filtration tests of OTC solutions were performed in looped circuit during 
270 minutes, considering different flow rates, initial OTC concentration (20 and 40 ppm), 
and aeration conditions. Final OTC concentrations were obtained by absorbance measure-

ment using an UV-VIS spectrophotometer (Shimadzu UV—1800) at 354 nm wavelength. 
The effect of the aeration on the photo-degradation efficiency of OTC feed solution was also 
evaluated.

Table 2 summarizes the different test conditions (scenarios) under which the photocatalytic 
filtration was performed (reactor PR2)

Adsorption test was carried out under similar hydraulic conditions and the same duration 
of photodegradation tests, passing the OTC solution through the filter, first with quartz and 
after with quartz coated with TiO

2
, in darkness to avoid any photodegradation contribute on 

final OTC removal.

3.3. Acute toxicity test

In order to assess the toxicity of OTC and oxidation by-products, it was used a simple toxicity 
test, not normalized but standardized by the international organization WaterTox Network 
[41]. In this toxicity assay, lettuce seeds (Lactuca sativa) are used.

Scenario [OTC]
0
 (ppm) Flow rate (L/h) Filter aeration

F1 20 4 No

F2 40 6

F3 20

F4 12

F5 Yes

Table 2. Scenario analysis for OTC photocatalysis in reactor PR2.
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Each of the lettuce seed root growth inhibition test was performed with 20 seeds in a Petri 
dish, containing a filter paper embedded in 2 mL of each sample dilution (100, 75, 50, and 
25%). Root lengths were measured after 72 hours of incubation (Figure 5), and the average 

lethal concentration (LC50) was calculated as stated by Dutkka [42].

The samples used consisted of the oxytetracycline before and after photocatalytic treatment 

and, as negative control, distilled water. The tests were always carried out in triplicate.

4. Results and discussion

4.1. Photo-oxidation experiments (reactor PR1)

Figure 6 shows the degradation kinetics of OTC photocatalysis (scenarios S1–S4) and pho-

tolysis (scenarios S5 and S6) performed in two different aqueous matrices (distilled and tap 
water), always with an initial concentration of 20 mg/L and exposed to solar radiation (a free 

and renewable energy source) during 210 minutes (experimental).

For OTC degradation using solar radiation exposure, the maximum average value of 88% was 
reached for the scenarios S1 and S3 (different water matrix), which correspond to the highest 
TiO

2
 concentration.

The constituents present in the tap water, namely the iron, showed to have a significant effect 
on the OTC degradation efficiency, with special emphasis in photolysis experiments (almost 
quintupled), while in photocatalysis, this increase was only about 20%, under similar condi-
tions of accumulated UV energy. Indeed, auxiliary control testing of tap water quality param-

eters detected the presence of iron concentrations in the range of 0.08–0.1 mg/L.

In order to assess a potential efficiency increase in OTC removal, due to an alternative UV 
radiation source (although with energy costs), those two photo-oxidative processes were 

also performed for the same aqueous matrices and OTC initial concentration but using 
the described UV lamp reactor with an exposure time of 60 minutes (scenarios S7–S12). The 
obtained results are depicted in Figure 7.

Figure 5. Preparation and final result of the acute toxicity bioassay using L. sativa.
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For OTC degradation using UV reactor exposure, the same behavior was observed. The maxi-
mum efficiency (near 96%) was reached for the scenarios S7 and S9 (different water matrix), 
which correspond to the highest TiO

2
 concentration. As depicted in Figure 7, the use of those 

two different aqueous matrices had a negligible effect on final OTC removal efficiency.

In this case (UV lamp reactor), the efficiency gains on OTC removal, related to the  catalyst 
action, are much less significant than in the case of the solar radiation tests. Due to this find-

ing the benefit of the use of photocatalysis would not be sufficiently attractive given the costs 
inherent to the necessary removal process of suspended TiO

2
 nanoparticles.

Figure 6. OTC photo-oxidation efficiency with solar radiation.

Figure 7. OTC photo-oxidation efficiency with UV lamp reactor.
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Parameter S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

C
0
 (ppm) 19.25 20.59 18.69 20.83 15.39 20.69 19.57 20.62 12.13 18.13 20.69 21.04

C
f
 (ppm) 2.48 4.80 2.48 7.60 13.67 10.06 0.86 2.16 0.48 1.43 4.02 3.22

K
aap

 (minutes−1) 0.013 0.009 0.011 0.006 0.001 0.004 0.061 0.047 0.078 0.052 0.030 0.040

R2 0.844 0.909 0.974 0.987 0.931 0.982 0.899 0.866 0.816 0.807 0.992 0.321

r
0
 (ppm∙minutes−1) 0.25 0.19 0.21 0.12 0.01 0.08 1.19 0.97 0.95 0.94 0.62 0.84

OTC removal (%) 87 77 87 64 11 51 96 90 96 92 81 85

Table 3. Results synthesis of OTC photo-oxidation experiments in reactor PR1.

Table 3 summarizes the major experimental results obtained for OTC removal using sus-

pended TiO
2
, namely the maximum average efficiencies, some photo-oxidation kinetic 

parameters, and the coefficient of determination (R2) observed in the adjustment of the 
Langmuir-Hinshelwood model to the experimental data set obtained for each assay.

The obtained R2 values (Table 3) allow to conclude that the Langmuir-Hinshelwood model 

adapts adequately to the kinetic behavior observed in the OTC photo-oxidation for any of 
those experimental scenarios tested and analyzed in this study.

For both water matrices solutions and in the scenarios using 50 mg/L of TiO
2
, OTC removal 

efficiencies may achieve values higher than 88% if the accumulated solar energy quantity is 
higher than 113 kJ/L.

Comparing the results obtained using these two different UV radiation sources, the photo-

catalysis using TiO
2
 with solar radiation seems to be a sustainable alternative for antibiotic 

removal in WTPs due to its minor energy costs and high efficiency removal, even requiring 
more exposure/retention time and achieving lower efficiencies, when compared with the ones 
observed in UV reactor tests.

4.2. Photocatalytic filtration experiments (reactor PR2)

The results of OTC removal efficiency by photocatalytic filtration performed in the reactor 
PR2 are depicted in Figure 8, considering the experimental scenarios F1–F5, which were 

defined aiming to assess the influence of different filtration fluxes, OTC initial concentration, 
and the OTC solution aeration in the feed tank.

The results showed that slower flux resulted in better OTC removal efficiency at the beginning 
of the experiment, due to longer retention times in the filter (curves F1, F3 and F4). Aeration is 
important for the oxidation reaction in photocatalytic processes. This process requires dissolved 
oxygen to act as an oxidant and to slow down the electron-hole recombination reaction. The curve 

F5 for the experiment with aeration shows the highest value for the initial photo-degradation rate.

In Figure 8, it can be seen that the experiments F1, F4, and F5 with 4 and 12 L/h had higher ini-

tial degradation rates, and these tests removed more than 96% of OCT by 270 minutes of solar 
irradiation time. The highest OTC removal efficiency obtained for photocatalytic filtration, 
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using a quartz porous medium coated with TiO
2
, was 98% achieved for scenarios F4 and F5, 

which correspond to the higher flow rates tested (without and with filter aeration).

Table 4 summarizes the major experimental results of OTC removal experiments using pho-

tocatalytic filtration with a porous medium coated with TiO
2
, namely the maximum average 

efficiencies, some photo-oxidation kinetic parameters, and the coefficient of determination (R2) 

observed in the adjustment of the Langmuir-Hinshelwood model to the experimental data sets.

The results presented were obtained on different days with variations in the amount of accu-

mulated energy from solar radiation received on the surface of the porous medium.

The calculated R2 values (Table 4) allow to verify that the Langmuir-Hinshelwood model also 

adapts adequately to the kinetic behavior observed in the OTC photocatalytic filtration 
 performed in this study for any of the analyzed experimental scenarios.

The effect of the flow rate variation on OTC adsorption was assessed using the reactor PR2 
in darkness conditions and filtration with two different porous media (quartz without and 
with TiO

2
 functionalization). The results of the OTC adsorption tests are depicted in Figure 9, 

Parameter F1 F2 F3 F4 F5

C
0
 (ppm) 20.01 40.59 19.38 18.62 18.48

C
f
 (ppm) 0.74 3.94 0.95 0.33 0.47

K
aap

 (minutes−1) 0.011 0.009 0.007 0.010 0.013

R2 0.941 0.956 0.999 0.999 0.958

r
0
 (ppm∙minutes−1) 0.44 0.36 0.14 0.38 0.51

OTC removal (%) 96.3 90.3 95.1 98.2 97.5

Table 4. Results synthesis of OTC photo-oxidation experiments in reactor PR2.

Figure 8. OTC removal efficiency using photocatalytic filtration with TiO
2
 (PR2).
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as well as the final look (color changes) of the porous medium in the following four distinct 
situations:

a. Quartz without TiO
2

b. Quartz coated with TiO
2

c. Quartz coated with TiO
2
 after saturation (OTC adsorption)

d. Quartz without TiO
2
 after OTC adoption test.

In darkness and after 120 minutes, the quartz (without TiO
2
) has a negligible OTC adsorption, 

but in the column filter with the coated quartz, the adsorption is function of the feed flow rate. 
With a flow rate of 6 L/h, the equilibrium concentration was reached within 90 minutes, and 
for 4L/h, the equilibrium concentration was only reached after 120 minutes.

Moreover, it was also observed a high regeneration ability by the photocatalytic porous 

medium, which can completely recover its oxidative properties after a simple solar radiation 

exposure of about 4 hours [15]. Figure 10 presents the time evolution of saturation and regen-

eration processes observed in this photocatalytic filter.

As reported on item 3.3, the toxicity of the oxytetracycline both before and after the photocata-

lytic degradation (performed in each reactor – PR1 and PR2) was evaluated by using L. sativa 

seeds germination as a bioindicator.

The results of these toxicity tests toward lettuce seed growth showed a toxicity decrease after 
the photocatalytic OTC degradation, enabling the adoption of this emerging water treatment 
technique as an apparently safe alternative for the antibiotics removal challenge.

Figure 9. Results of the OTC adsorption tests and final look (color changes) of the porous medium.
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5. Conclusions

The chemical structure of OTC was effectively degraded by in both lab-scale photo-oxidation 
reactors, achieving very high OTC removal efficiencies for photocatalytic experiments 
(96–98%), even with small amounts of suspended and coated TiO

2
 nanoparticles.

The results obtained in the photo-oxidation experiments using suspended TiO
2
 indicate that:

• The photocatalytic tests were more effective than testing photolysis, which proves the high 
catalyzing power of TiO

2
 particles described in the literature.

• OTC solutions exposed to UV-lamp radiation reached higher OTC removal efficiency 
(maximum about 96%) than those exposed to solar radiation (maximum about 88%). Nev-

ertheless, the last one UV radiation source seems to be a more sustainable alternative for 
antibiotic removal in WTPs due to its minor energy costs and high efficiency removal.

• The overall efficiencies of the OTC degradation in distilled and tap waters are very close, 
namely when the iron concentration in water is low.

• The kinetics of OTC photo-oxidation reveals a faster degradation during the first 10–20 
minutes.

The results obtained in the photocatalytic filtration experiments performed by a porous media 
coated with TiO

2
 nanoparticles indicate that:

• The best OTC removal efficiency was 98%, achieved for an antibiotic initial concentration of 
20 mg/L, a flow rate of 12 L/h in a looped hydraulic circuit, and for a cumulate solar energy 
near 805 kJ/L.

• Slower flux seems increase OTC removal efficiency at the beginning of the experiment, due 
to longer retention/contact time into the column filter.

• The experiment performed with aeration shows the highest value for the initial photo-

oxidation rate, and one of the best final OTC removal efficiency.

Figure 10. Saturation and regeneration processes evolution observed in the photocatalytic filter (PR2).

Photocatalytic Treatment Techniques using Titanium Dioxide Nanoparticles for Antibiotic...
http://dx.doi.org/10.5772/intechopen.69140

141



• In darkness, the quartz (without TiO
2
) has a negligible OTC adsorption, but in the column 

filter with the coated quartz the adsorption is relevant, and function of the feed flow rate 
increase.

• It must be highlighted the surprising regeneration ability showed by the developed pho-

tocatalytic porous media, which can completely recover its oxidative properties after a 

simple sun exposure for 4 hours, allowing sustainable use of the photocatalytic filter.

The Langmuir-Hinshelwood model was adequately adapted to the kinetic behavior observed in 
the OTC photo-oxidation processes in all of the analyzed scenarios, and for both used photo-

catalytic reactors.

The toxicity tests carried out showed that the use of heterogeneous photocatalysis with sus-

pended TiO
2
 does not induce the appearance of toxic by-products in the water, since the seeds 

of lettuce L. sativa always showed inhibition percentages lower than 22% after treatment.
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