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Abstract

We have aimed at distinguishing obligatory prerequisites for mesenchymal stem cell 
transplantation in spinal cord injury from those prerequisites which are unnecessary or 
are prerequisites that have to be further investigated. Obligatory prerequisites include 
the following. First, the site of injury is extensively gliotic, constituting an unsuitable 
medium for stem cell transplantation. It has to be dissolved by neurolyzing agents, chon-
droitinase ABC as an example. Second, stem cells need a suitable biomaterial scaffold for 
their proper integration. Third, the biomaterial scaffold necessitates a tissue filler harbor-
ing stem cells, other cells and neurotrophic factors in a combinatorial approach. Fourth, 
the efficiency of mesenchymal stem cells themselves has to be increased (by reducing 
oxidative stress-induced apoptosis, by hypoxic preconditioning, by modulating the 
extracellular matrix and by other measures). Prerequisites that have to be further inves-
tigated include the ideal source, mode, quantity, time point and number of injections of 
mesenchymal stem cells; which growth factors and cells to be used in the combinatorial 
approach; transforming mesenchymal stem cells into motor neuron-like cells or Schwann 
cells; increasing the homing effect of stem cells and how to establish a continuous drug 
and cell delivery system.

Keywords: spinal cord injury, mesenchymal stem cells, scaffolds, nerve grafting,  
neurotrophic factors, chondroitinase ABC, continuous drug delivery systems

1. Introduction

Traumatic spinal cord injury results usually from cervical and lumbar fractures; it may be 

associated with complete paraplegia. Regeneration after such an injury is fairly limited mainly 

due to the inhibitory milieu (the gliosis) within the spinal cord. Cellular therapeutic strate-

gies may overcome this milieu by neuroprotection, immunomodulation, axon  regeneration, 
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neuronal relay formation and myelin regeneration [1]. Clinically, in a meta-analysis on cel-

lular therapy in traumatic spinal cord injury in humans published in 2012 [2], the authors 

reviewed eight bone marrow mesenchymal and hematopoietic stem cell studies, two olfactory 

ensheathing cell studies, one Schwann cell study and one fetal neurogenic tissue study. Three 

of these were Grade III and nine Grade IV level of evidence. It was concluded that improved 

preclinical studies and prospective, controlled clinical trials were needed. Nevertheless, ever 

since, the number of clinical trials have been increased. Mesenchymal stem cells, in particular, 

are easy to isolate, can be rapidly expanded in culture and can be cryopreserved without loss 

of potency [3, 4]. Clinical reports on their use have varied, starting from documenting their 

safety [5, 6] up to limited clinical efficacy [7], even partial or complete efficacy [8–11].

The aim of this review is to distinguish necessary prerequisites for effective mesenchymal stem 
cell transplantation in spinal cord injuries from those prerequisites which are unnecessary or 

are prerequisites that have to be further investigated.

2. Establishing a suitable niche

2.1. Dissolving the gliosis

Axonal regeneration following spinal cord injury is limited not only because central ner-

vous system neurons have a poor intrinsic capacity for growth but also because injured 

axons encounter a series of inhibitory factors that are non-permissive for growth. These 

include myelin inhibitors [Nogo-A, MAG108 (myelin-associated glycoprotein) and 
OMgp109 (oligodendrocyte myelin glycoprotein)]; chondroitin sulfate proteoglycans 
(neurocan, versican, aggrecan, brevican, phosphacan and NG2); semaphorins and ephrins. 
In the central nervous system, laminin is replaced by netrins [12–15].

2.1.1. Chondroitinase ABC

Chondroitinase ABC [16–18] has improved recovery of function in synergy with mesenchy-

mal stromal cells without [19] or with the addition of an acellular nerve allograft [20] or in 

synergy with brain-derived neurotrophic factor (BDNF) secreting mesenchymal stem cells 
[21]. Chondroitinase ABC should be thermostabilized with the sugar trehalose to reduce its 

temperature-dependent loss of activity [22]; it should be injected in high doses (50 or 100 
IUs) [23–25], at multiple times [26–29] and be combined with cell transplantation and growth 

factor infusion [30, 31].

2.1.2. Other measures to overcome the gliosis

In a rat model of spinal cord contusion injury [32], infused sialidase has acted robustly 

throughout the spinal cord gray and white matter, whereas chondroitinase ABC activity 
has been more intense superficially, thus raising the possible consideration that it might be 
superior to chondroitinase ABC. Blocking myelin-associated inhibitors with Nogo-A mono-

clonal antibodies or with Nogoreceptor competitive agonist peptide (NEP1-40) has been shown 

to increase axonal regeneration [33]. Bone marrow mesenchymal stem cells with Nogo-66 
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receptor gene silencing have been used for repair of spinal cord injury [34]. Blocking Rho-A 

with Rho inhibitor ‘cethrin’ might overcome its effect; a synthetic membrane-permeable 
peptide mimetic of the protein tyrosine phosphatase σ, wedge domain can bind to tyro-

sine phosphatase σ and relieve chondroitin sulfate proteoglycan-mediated inhibition [35]. 

Chondroitin sulfate proteoglycans inhibition of phosphoinositide 3-kinase (PI3K) signaling 
is reversed by cell permeable phosphopeptide (PI3Kpep) [36]; rolipram, a phosphodiesterase4 

inhibitor, can increase intracellular cAMP levels [33]; taxol, a microtubule-stabilizing agent, 

increases neurite outgrowth [37, 38].

2.1.3. Emerging role of heparin in lysing the gliosis

There is an emerging role of heparin in lysing of the gliosis, as reviewed elsewhere [39]. Both 

unfractionated and low molecular weight heparins have a fibrolytic (gliolytic) effect, can 
modulate astrocyte function and are used as lumen fillers. Astrocytes release a variety of 
trophic factors. These trophic factors include nerve growth factor, basic fibroblast growth fac-

tor, transforming growth factor-β, platelet-derived growth factor, brain-derived neurotrophic 
factor, ciliary neurotrophic factor and others. Astrocyte stress response and trophic effects 
are mediated by the fibroblastic growth factor family member, on which heparin exerts a 
profound influence [40–42].

2.2. Providing a suitable scaffold, both to bridge the gap and to harbor the cells

2.2.1. Biomaterial scaffolds in spinal cord injury

Biomaterial scaffolds in spinal cord injury have been reviewed elsewhere [43, 44]. Mesenchymal 

stromal cells have been grown onto fibrin scaffolds [45, 46]. The survival and neural differenti-
ation of human bone marrow stromal cells have been tested on fibrin versus fibrin platelet-rich 
plasma scaffolds. The results have shown a clear superiority of platelet-rich plasma scaffolds, 
mainly after BDNF administration [47]. Mesenchymal stem cells have also been grown onto col-

lagen scaffolds [48]. Rat adipose-derived stem cells have differentiated into olfactory ensheath-

ing cell-like cells on collagen scaffolds by co-culturing with olfactory ensheathing cells [49]. 

Acellular spinal cord scaffolds [50, 51] and acellular muscle bioscaffolds [52] seeded with bone 

marrow stromal cells have promoted functional recovery in spinal cord-injured rats. Electro-

acupuncture has been found to promote the survival and differentiation of transplanted bone 
marrow mesenchymal stem cells pre-induced with neurotrophin-3 and retinoic acid in gelatin 

sponge scaffold after rat spinal cord transaction [53]. Human bone marrow mesenchymal stem 

cells and endometrial stem cells have been found to differentiate better into motor neurons on 
electrospun poly(ε-caprolactone) scaffolds [54]. Nogo-66 receptor gene-silenced cells have been 

transplanted in a poly(D,L-lactic-co-glycolic acid) scaffold for the treatment of spinal cord 
injury [55]. Bone marrow mesenchymal stem cells seeded in chitosan-alginate scaffolds [56] 

and biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem 

cell transplantation have reduced glial scar and cavity formation in spinal cord injury [57]. In a 

comparative study investigating the efficacy of allogeneic mesenchymal stem cell transplanta-

tion via simple intralesional injection versus the use of a poly (lactic-co-glycolic acid) scaffold 
or a chitosan scaffold, higher mesenchymal stem cell engraftment rates have been reported in 
the scaffold groups, particularly, in the chitosan scaffold group [58].
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Injectable extracellular matrix hydrogels have been used as scaffolds for spinal cord injury repair 
[59]. Matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffolds 
containing brain-derived neurotrophic factor have been implanted [60]. Cell-seeded alginate 

hydrogel scaffolds have promoted directed linear axonal regeneration in the injured rat spinal 
cord [61]. Multichannel polymer scaffolds fabricated from positively charged oligo[poly(ethylene 
glycol)fumarate] hydrogel and loaded with either syngeneic Schwann cells or mesenchymal 

stem cells derived from enhanced green fluorescent protein transgenic rats have been success-

fully implanted into rat spinal cords following T9 complete transection [62]. Highly superporous 

poly(2-hydroxyethyl methacrylate) scaffolds with oriented pores [63] and highly superporous 

cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds have been developed for 
spinal cord injury repair [64].

Three-dimensional culture can mimic the stem cell niche compared to conventional two-

dimensional culture. Bone marrow-derived mesenchymal stem cells cultured in three-

dimensional collagen scaffold have exhibited distinctive features including significantly 
enhancing neurotrophic factor secretions and reducing macrophage activations challenged 

by lipopolysaccharide [65]. A polyhydroxybutaryl-hydroxyvinyl-based three-dimensional 

scaffold for a tissue engineering and cell-therapy combinatorial approach for spinal cord 
injury regeneration has been developed [66]. A three-dimensional biomimetic hydrogel has 

been implemented to deliver factors secreted by human mesenchymal stem cells in spinal 

cord injury [67]. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge 

scaffold have attenuated inflammation, have promoted angiogenesis and have reduced cav-

ity formation in experimental spinal cord injury [68].

2.2.2. Prerequisites for the use of biomaterial scaffolds in spinal cord injury

Biomaterial scaffolds should be biocompatible, non-toxic, chemically stable, of known absorp-

tion and degradation kinetics matching the degree of in vivo cell/tissue growth and should 

have adequate surface for cell access, proliferation and cell differentiation [69, 70]. They should 

meet macroengineering requirements being of proper form [71, 72], design (shape) [73] and size 

(diameter) [74]. They should be supplied with macrogrooves [43, 75, 76] and have a wall 

thickness of 0.6 mm, a porosity of 80% and a pore size range of 10–40 μm [77–79]. They should 

meet microengineering requirements, microgrooves directing axonal growth [80–87]. Prestretch-

induced surface anisotropy has been beneficial in enhancing axon alignment, growth and 
myelination [88]. Also, filament inclusion has been more effective for bridging long nerve 
defect gaps [43, 89, 90]; Schwann cell migration over gaps exceeding 18 mm is superior in the 

presence of filaments. Yoshii et al. [91, 92] have tested collagen microfilaments with diameters 
of 20 μm to repair long gaps (20 or 30 mm) in the rat sciatic nerve. Increasing fiber number 
(4000 versus 2000 filaments) has enhanced nerve regeneration. Thus, increasing the whole 
filament surface area by increasing their number and reducing their diameter (increased sur-

face area-to-volume ratio) is also critical [89, 93, 94].

Scaffolds should fulfill nearly the same mechanical conditions of the recipient spinal cord, exerting 
incremental tensile forces on intact cord segments to promote axonal regeneration while unloading gli-

otic segments to reduce gliosis and harbor cellular transplants (Figure 1a and b). A scaffold should 
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possess sufficient toughness to resist compression or collapse, yet still be flexible and sutur-

able [95]. A brittle scaffold that sustains little or no plastic deformation before fracture might 
break hampering axonal progression.

A scaffold should have an elastic modulus comparable with that of the recipient spinal cord. 
To approach appropriate mechanical properties, one strategy has been to form polymer com-

posites with biopolymers such as chitosan [96], a polymer which has been established as being 

“softer” and biocompatible. The role of mechanical compliance in directing cell fate and func-

tion is a critical issue in material design [97–99]. A low elasticity and hierarchically aligned 

fibrillar fibrin hydrogel fabricated through electrospinning and concurrent molecular self-
assembly process has been tested. Matrix stiffness and aligned topography have instructed 
stem cell neurogenic differentiation and rapid neurite outgrowth [100].

Scaffolds should provide adequate space for the interplay and manipulation of the different molecular 
pathways for axonal regeneration [80, 81, 101–103].

To provide adequate space and adherence for cells and molecules, biomaterial polymer nerve 

scaffolds should be porous [43]. Currently, ideal scaffolding should have 80–90% porosity 

Figure 1. (a) How a spinal cord lesion looks like; (1) cranial spinal cord; (2) rostral spinal cord and (3) the gliotic segment. 
(b) A biomaterial scaffold (4) should fulfill nearly the same mechanical conditions of the recipient spinal cord, exerting 
incremental tensile forces (5—arrows) on intact cord segments to promote axonal regeneration while unloading 
gliotic segments (6—arrows) to reduce gliosis and harbor cellular transplants. In addition, it should meet macro- and 
microengineering requirements; it should provide adequate space for the interplay and manipulation of the different 
molecular pathways for axonal regeneration through lumen filling technology and it should meet requirements based on 
spatial distribution of neurotrophic factor gradients. Lumen filling technology allows for the incorporation and gradual 
local release of stem cells (7), accessory cells (8), molecular growth factors (e.g. BDNF, neurotrophin-3, etc.) (9) and 
neurolyzing agents (e.g. chondroitinase ABC) (10), either by combining them with a growth-supporting matrix in the 
lumen (11), by crosslinking (12) them to nerve conduit walls or by using microspheres (13) to deliver them. Growth-
supporting matrices (11) in the lumen include hydrogel-forming collagen, fibrin, laminin, alginate, heparin and heparin 
sulfate. A natural and low-toxicity crosslinking agent (12), genipin, is commonly used.
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with a pore size of 50–250 μm. Its pores should be interconnected so as to provide physical 

support to cells and guide their proliferation and differentiation, also facilitating neovascu-

larization [69, 104]. The porous structure can be stabilized by adding glutaraldehyde, poly-

ethylene glycol, heparin or collagen, allowing the structure to become more resistant and to 

maintain elasticity. A natural and low-toxicity cross-linking agent, genipin, has been used to 

immobilize nerve growth factor, a neurotrophic factor, onto chitosan-based neural scaffolds 
to generate a novel nerve graft, which has been beneficial for peripheral nerve repair [105]. 

A novel method has been introduced for standardized microcomputed tomography-guided 

evaluation of scaffold properties in bone and tissue research [106].

Scaffolds should provide adequate space for lumen fillers Methods of lumen filling allow for incor-

poration of cells and molecular factors either by combining them with a growth-supporting 

matrix in the lumen, by crosslinking them to nerve conduit walls or by using microspheres to 

deliver them [107]. Growth-supporting matrices in the lumen include hydrogel-forming collagen, 

fibrin, laminin, alginate, heparin, and heparin sulfate.

Scaffolds should meet requirements based on spatial distribution of neurotrophic factor gradients.

Spatial molecular concentration gradients of nerve growth factor [108] and laminin [43, 109, 110] 

promote axonal sprouting. Thus, axonal growth can be hypothetically made to bridge the whole 

length of the neural gap by seeding the scaffolds with multiple nerve growth factor/laminin 
spatial concentration gradients [111].

3. Optimizing the therapeutic effect of mesenchymal stem cell 
transplantation

3.1. The ideal source for mesenchymal stem cells

Mesenchymal stem cells reside not only in various tissues of mesenchymal origin (e.g. bone 
marrow, adipose tissue, skin and peripheral blood) but also in perinatal sources (e.g. umbili-
cal cord blood, umbilical cord matrix or Wharton’s jelly, amniotic fluid and placenta) [112].

In a comparative study using mesenchymal stem cells extracted from both bone marrow and 

adipose tissue for spinal cord injury, animals receiving adipose tissue cells have presented 

higher levels of tissue brain-derived neurotrophic factor, increased angiogenesis, higher 

number of preserved axons and a decrease in the number of macrophages, suggesting the 

superiority of mesenchymal stem cells extracted from adipose tissue [113]. In another study, 

however, no difference has been found between animals receiving mesenchymal stem cells 
derived from bone marrow or adipose tissue, whether in terms of axonal regeneration, neuro-

protection or functional recovery [114].

Mesenchymal stem cells obtained from perinatal sources can proliferate more rapidly and 

extensively than adult mesenchymal stem cells and are easily obtained after normal and 

cesarean births, with low risk of viral contamination. They may be used for allogenic trans-

plantation because they act by suppressing immune response and are, therefore, considered 

non-immunogenic cells [112].
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In a study comparing mesenchymal stem cells derived from fat, bone marrow, Wharton’s 

jelly and umbilical cord blood for treating spinal cord injuries, dogs have been treated with 

only matrigel or matrigel mixed with each type of mesenchymal stem cells. Although there 

have been no significant differences in functional recovery among the mesenchymal stem cell 
groups, application of umbilical cord stem cells has led to more nerve regeneration, neuropro-

tection and less inflammation compared to other mesenchymal stem cells [115].

Central nervous system pericytes (perivascular stromal cells) have recently gained significant 
attention. These cells not only display a mesenchymal stem cell phenotype in vitro but also 
have similar in vivo immunomodulatory effects after spinal cord injury that are more potent 
than those of non-central nervous system tissue-derived cells [116].

3.2. Increasing the efficiency of mesenchymal stem cells and their influence on spinal cord 
regeneration

3.2.1. Influence of mesenchymal stem cells on spinal cord regeneration in general

Present around blood vessels, mesenchymal stem cells  respond more readily to tissue 

damage [3]. The transdifferentiation capacity of mesenchymal stem cells into neuronal and 
glial lineages has been debated; transplanted mesenchymal stem cells do not differentiate 
into a neuronal fate, even if they display weak expression of NeuN (a neuronal marker) [3]. 

Mesenchymal stem cell-based cell therapy, even when applied during the chronic phase of 

spinal cord injury, leads to changes in a number of structural and functional parameters, all 

of which indicate improved recovery [117]. Mesenchymal stem cells promote repair in the 

injured cord by secreting growth factors that overcome the inhibitory environment of the 

lesion. These cells have anti-inflammatory, immunomodulatory, vascular promoting oxida-

tive stress reducing and neuroprotective effects. They can secrete trophic factors thus exerting 
a paracrine effect that can stimulate axon regeneration contributing to functional recovery 
enhancement [112, 118]. Human mesenchymal stem/stromal cells suppress spinal inflamma-

tion in mice with contribution of pituitary adenylate cyclase-activating polypeptide [119]. 

Intrathecal transplantation of mesenchymal stem cells activates extracellular adjusting pro-

tein kinase1 and 2 in the spinal cord following ischemia reperfusion injury, partially improv-

ing spinal cord function and inhibiting apoptosis in rats [120].

Measures to increase the efficiency of mesenchymal stem cells include the following. Replacing 

fetal bovine serum has been proposed as a gold standard for human cell propagation [121]. 

Mechanical fibrinogen-depletion has been found to support heparin-free mesenchymal stem cell 

propagation in human platelet lysate [122]. A combination of electroacupuncture and grafted 

mesenchymal stem cells overexpressing tyrosine kinase C has been found to improve remy-

elination and function in demyelinated spinal cord of rats [123]. Arginine decarboxylase is a 

rate-limiting enzyme of agmatine synthesis and is known to exist in the central nervous sys-

tem of mammals. Arginine decarboxylase-secreting human mesenchymal stem cells have been 

found to be more suitable candidates than human mesenchymal stem cell for stem cell therapy 

after spinal cord injury [124]. Heme oxygenase-1 is a stress-responsive enzyme that modulates 

immune response and oxidative stress associated with spinal cord injury. Functional recov-

ery after spinal cord injury has been promoted by transplantation of mesenchymal stem cells 
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overexpressing heme oxygenase-1 [125]. Hypothermia is known to improve the microenviron-

ment of the injured spinal cord in a number of ways. Neural cell transplantation has promoted 

the recovery of hind limb function in rats, and a combination treatment with hypothermia has 

produced synergistic effects [126]. Extracorporeal shock wave can introduce alteration of micro-

environment in cell therapy for chronic spinal cord injury [127].

3.2.2. Peculiarities of bone marrow stromal cells in spinal cord regeneration

Bone marrow stromal cell transplantation has been shown to overcome the gliosis [3]. They 

have been reported to enhance neuronal protection and cellular preservation via reduction 

in injury-induced sensitivity to mechanical trauma. They can attenuate astrocyte reactivity 
and chronic microglia/macrophage activation. They have been found to infiltrate primarily 
into the ventrolateral white matter tracts, spreading to adjacent segments rostrocaudal to the 
injury epicenter. However, bone marrow stromal cell transplantation present certain issues. 

Migration beyond the injection site after intraspinal delivery is limited and inter-donor vari-

ability in efficacy and immunomodulatory potency might affect clinical outcome [4].

Measures to increase the efficiency of bone marrow mesenchymal stem cells include mainly mea-

sures to reduce oxidative stress-induced apoptosis, hypoxic preconditioning, measures to 

modulate the extracellular matrix and other measures.

Studies have demonstrated that the inhibition of the Notch1 pathway in bone marrow mes-

enchymal stem cells contributes to the differentiation of these cells. Research findings that 
certain antioxidants induce bone marrow mesenchymal stem cells to differentiate into neu-

ronal cells suggest that bone marrow mesenchymal stem cell differentiation is related to the 
level of reactive oxygen species in cells. After bone marrow mesenchymal stem cell induc-

tion with the antioxidant β-mercaptoethanol, Western blotting and immunofluorescence have 
revealed gradual increases in the expression of Nestin (a neural stem cell-specific protein) 
and neuron-specific enolase but decreases in Notch1 expression. The decreased expression 
levels of Notch1 have correlated positively with changes in reactive oxygen species [128]. 

The effects of a calpain inhibitor (MDL28170) on increasing survival of bone marrow mesen-

chymal stem cells transplanted into the injured rat spinal cord have been investigated. The 

protective effects of MDL28170 on survival of bone marrow mesenchymal stem cells have 
inhibited the activation of calpain and stress-induced apoptosis [129]. Treatment with bone 

marrow mesenchymal stem cells combined with plumbagin may alleviate spinal cord injury 

by affecting oxidative stress, inflammation, apoptosis and the activation of the Nrf2 pathway 
[130]. Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative 

effects and can used in combination with bone marrow mesenchymal stem cell for the treat-
ment of spinal cord injury. Polydatin significantly protects bone marrow mesenchymal stem 
cell against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway 
[131]. Carvedilol, a nonselective β-adrenergic receptor blocker, has been reported to exert 
potent anti-oxidative activities. It has been shown that carvedilol protects cell death of H2O2-

induced bone marrow mesenchymal stem cells partly through PI3K-Akt pathway, suggesting 
its use in combination with bone marrow mesenchymal stem cells to improve cell survival in 

oxidative stress microenvironments [132].
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Hypoxic preconditioning effectively increases the survival rate of bone marrow mesenchymal 
stem cells following transplantation and increases their protective effect on injured tissues. 
Hypoxic preconditioning has upregulated the expression of hypoxia-inducible factor 1α in 
spinal cord tissues [133].

Cytokines and extracellular matrix can trigger various types of neural differentiation. To 
highlight the current understanding of their effects on neural differentiation of human bone 
marrow-derived multipotent progenitor cells, extracellular matrix proteins, tenascin-cytotac-

tin, tenascin-restrictin and chondroitin sulfate, with the cytokines, nerve growth factor/brain-

derived neurotrophic factor/retinoic acid, have been incorporated to induce transdifferentiation 
of human bone marrow-derived multipotent progenitor cells. Greater amounts of neuronal mor-

phology have appeared in cultures incorporated with tenascin-cytotactin and tenascin-restrictin 

than those with chondroitin sulfate. It has been suggested that the combined use of tenascin-

cytotactin, nerve growth factor /brain-derived neurotrophic factor/retinoic acid and human 

bone marrow-derived multipotent progenitor cells offers a new feasible method for nerve repair 
[134]. Fibronectin secreted by mesenchymal stem cells in the early stage has been found to accu-

mulate on gelatin sponge scaffolds and promote neurite elongation of neuronal differentiating 
mesenchymal stem cells as well as nerve fiber regeneration after spinal cord injury [135].

Transplanted bone mesenchymal stem cells can be mobilized by erythropoietin toward 

lesion sites following spinal cord injury [136]. Propofol injection combined with bone mar-

row mesenchymal stem cell transplantation has improved electrophysiological function in 

the hindlimb of rats with spinal cord injury than monotherapy [137]. Combining bone mar-

row stromal cells with green tea polyphenols has attenuated the blood-spinal cord barrier 
permeability in rats with compression spinal cord injury [138]. Bone marrow stromal cells 

transplantation combined with ultrashortwave therapy has promoted functional recovery in 

spinal cord injury in rats [139].

Microtubule-associated protein 1B plays an important role in axon guidance and neuronal 

migration. Phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2 in 

bone marrow mesenchymal stem cells have been found to modulate the phosphorylation of 

microtubule-associated protein 1B via a cross-signaling network and have affected the migra-

tory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord [140]. 

Administration of valproic acid potentiates the therapeutic effect of mesenchymal stem cell 
therapy [141]. Interleukin-8 enhances the angiogenic potential of human bone marrow mes-

enchymal stem cells by increasing vascular endothelial growth factor production [142].

3.2.3. Peculiarities of adipose-derived stem cells in spinal cord regeneration

Human mesenchymal cells from adipose tissue have deposited laminin and have promoted 

regeneration of injured spinal cord in rats [143–146]. Transplanted during the acute and sub-

acute phases after spinal cord injury, they have enabled the remodulation and regeneration of 

the lesion site, decreasing the importance of transplantation time in the treatment of spinal cord 

injury [145]. Chondroitinase ABC-adipose-derived stem cells constructed using lentiviral vec-

tor transfection have stably expressed chondroitinase ABC, and chondroitinase ABC expression 
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has significantly enhanced their migratory capacity [146]. Cytoplasmic extracts prepared from 

adipose tissue stromal cells have inhibited H
2
O

2
-mediated apoptosis of cultured spinal cord-derived 

neural progenitor cells and have improved cell survival. Predifferentiation of adipose tissue-

derived stromal cells has promoted the protection of denuded axons and cellular repair. Such 

predifferentiated cells and hematopoietic stem cells have been successfully infused intrathecally 
[143]. Nevertheless, no evidence points to the superiority of neural differentiated adipose tissue-
derived stromal over undifferentiated ones. Allogenic adipose-derived stem cells have improved 

neurological function in a canine model. All of the former evidence, however, is contradicted by 

a study in a rat C3–C4 hemisection in which adipose tissue-derived stromal cell transplantation 

has significantly reduced sprouting of the descending serotonergic fibers at the injured site [147].

Hypoxic preconditioning of adipose tissue-derived mesenchymal stem cells has increased their 

survival. Cotransplantation of such cells with engineered neural stem cells has improved both 

cell survival and gene expression of the engineered neural stem cells [4].

3.2.4. Peculiarities of human umbilical cord blood-derived mesenchymal stem cells in spinal cord 

regeneration

Human umbilical cord blood-derived mesenchymal stem cells (whether Wharton’s jelly mes-

enchymal stem cells or human umbilical cord perivascular cells) may reverse spinal cord 

injury pathophysiology by downregulating apoptotic genes and secreting neurotrophic factors in 

few days; they may transdifferentiate toward neuronal and oligodendroglial phenotypes [3]. 

Intrathecal transplantation of human amniotic mesenchymal stem cells has promoted func-

tional recovery in a rat model of traumatic spinal cord injury [148] and in a chronic constric-

tive nerve injury model [149]. Placental mesenchymal stromal cells have rescued ambulation 

in ovine myelomeningocele [150]. Umbilical cord-derived mesenchymal stem cell therapy for 

neurological disorders may act via inhibition of mitogen-activated protein kinase pathway-

mediated apoptosis [115]. Through the effect on glial cells(suppression of activated astrocytes 
and microglia), proinflammatory (Interleukin-1β and Interleukin-17A) and anti-inflammatory 
cytokines (anti-inflammatory cytokine Interleukin-10), intrathecal injection of human umbili-
cal cord-derived mesenchymal stem cells has ameliorated neuropathic pain in rats [151]. Also, 

neurotrophic factors have been expressed in the injured spinal cord after transplantation of 

human-umbilical cord blood stem cells in rats [152].

Preconditioning of umbilical cord mesenchymal stem cells in physioxic environment can 

enhance the regenerative properties of these cells in the treatment of rat spinal cord injury. 

In a study on umbilical cord, mesenchymal stem cells pretreated with either atmospheric 

normoxia (21% O
2
) or physioxia (5% O

2
) have grown faster, whereas physioxia has upregu-

lated the expression of trophic and growth factors, including hepatocyte growth factor, brain-

derived neurotrophic factor and vascular endothelial growth factor. This has been associated 

with a significant increase in axonal preservation and a decrease in the number of caspase-3+ 
cells and ED-1+ macrophages [153].

Calcitonin gene-related peptide, a neural peptide synthesized in spinal cord, contributes to hom-

ing of human umbilical cord mesenchymal stem cells. The PI3K/Akt and p38MAPK  signaling 
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pathways have played a critical role in the calcitonin gene-related peptide-induced chemotac-

tic migration of human umbilical mesenchymal stem cells [154].

Lavandula angustifolia has neuroprotective effects; it has potentiated the functional and cel-
lular recovery with human umbilical mesenchymal stem cell treatment in rats after spinal 

cord injury [155]. The combined treatment with methylprednisolone and amniotic membrane 

mesenchymal stem cells after spinal cord injury in rats has potentiated the anti-inflammatory 
and anti-apoptotic effect of mesenchymal stem cell transplantation [156]. The neuroprotective 

effects of conditioned medium from cultured human CD34(+) cells have been similar to those 
of human CD34(+) cells and the conditioned medium has been found to enhance the neuro-

protective effects of 17β-estradiol in rat spinal cord injury [157].

3.3. Inducing the transformation of mesenchymal stem cells into motor neuron-like cells 
or Schwann cells

A third method for optimizing the therapeutic effect of mesenchymal stem cell transplantation 
is inducing their transformation into motor neuron-like cells or Schwann cells [158–169]. Their 

differentiation into motor neuron-like cells has been induced through a pre-induction step using 

β-mercaptoethanol followed by 4 days of induction with retinoic acid and sonic hedgehog 
[158]. Motor neuron axonal sprouting has been induced by adding different concentrations 
of a nerve growth factor to the differentiation media. In another study [159], such cells have 

been tested for 2′,3′-cyclic-nucleotide-3′-phosphodiesterase and microtubule-associated pro-

tein 2, as well as to glial fibrillary acidic protein and beta III tubulin. Cells have been injected 
percutaneously into the spinal cord of paraplegic dogs for two times separated by a 21-day 

interval. Optimal culture conditions have been investigated as to the production of neural cells 

and neural stem cells [160]. β-Mercaptoethanol has been used as the main inducer of the neu-

rogenesis pathway. Three types of neural markers have been used: nestin as the immaturation 

stage marker, neurofilament light chain as the early neural marker, and microtubule-associ-
ated protein 2 as the maturation marker. Results have shown that the best exposure time for 

the production of neural stem cells is 6 hours. It has also been demonstrated that LY294002, 
a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can 
promote neuronal differentiation of mesenchymal stem cells cultured on polycaprolactone/
collagen scaffolds [161]. Similarly, microRNA-124 has promoted bone marrow mesenchy-

mal stem cell differentiation into neurogenic cells for accelerating recovery in the spinal cord 
injury [166, 169]. Such induced motor neuron-like cells have promoted axonal regeneration into 

the injured spinal cord, whether derived from bone marrow [162, 163, 168], human chorion 

[164] and placenta [167]. Their in vivo tracking by magnetic resonance has been possible in 

rabbit models of spinal cord injury [169].

3.4. Mode, quantity and number of injections; time point for injection age and donor 
variation; allo- and xenotransplantation

The mode, quantity and number of injections may influence the therapeutic effect of mesen-

chymal stem cell transplantation
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3.4.1. Mode of injection

All methods for stem cell transplantation (intravenous, intrathecal, intramedullary, intranasal 
or skeletal muscle injection ) are based on the homing effect, the ability of implanted stem 
cells to move to the injured area [170–180]. Mesenchymal progenitor cells have been injected 

intravenously in two models of cervical spinal cord injury, unilateral C5 contusion and com-

plete unilateral C5 hemisection. Cells have been isolated from green fluorescence protein-
luciferase transgenic mice and have been injected via the tail vein at D1, D3, D7, D10, or D14. 
Transplanted cells have been tracked via postmortem bioluminescence imaging. Cells have 

been found to accumulate in the lungs, irrespective of the time of injection or injury model. 

It has been proposed that they modulate the immune system via the lungs through secreted 

immune mediators [173]. The antioxidant and anti-inflammatory effects of intravenously 
injected adipose-derived mesenchymal stem cells have been proven in dogs with acute spinal 

cord injury [174]. Diffuse and persistent blood-spinal cord barrier disruption after contusive 
spinal cord injury has recovered following intravenous infusion of bone marrow mesenchy-

mal stem cells [177]. Intravenous mesenchymal stem cell therapy has been effective after 
recurrent laryngeal nerve injury [179]. In a meta-analysis, the efficacy of intravenous bone 
marrow mesenchymal stem cell transplantation in spinal cord injury has been investigated. It 

has been concluded that the therapeutic window of intravenous bone marrow mesenchymal 

stem cell transplantation is wide [180]. The feasibility and safety of intrathecal transplantation 

of autologous bone marrow mesenchymal stem cells have been investigated in horses [175]. 

The intranasal delivery of bone marrow stromal cells to spinal cord lesions has been success-

fully tried out [176]. Stem cell injection in the hindlimb skeletal muscle has enhanced neurore-

pair in mice with spinal cord injury [178].

Although intrathecal is more effective than intravenous injection, it needs large stem cell 
numbers. Subarachnoid adhesions may prevent the cells from reaching the target site. The 

homing effect is absent in the chronic stage of spinal cord injury. Therefore, direct intramed-

ullary injection into the injured site is the most effective method for delivering stem cells. 
Intramedullary injection proximal to the injured area is ideal for stem cell survival, but is 

hampered by volume effects caused by high tissue pressure and subsequent normal spi-
nal cord damage. On the contrary, large volumes can be injected into the cavity area at the 

injured level. Injecting into the contused cavity may lead to resolution of the glial scar and 

may bridge for axonal regeneration. Therefore, Park et al. [171, 172] have injected into both 

the normal proximal spinal cord and the injured area. In addition, subdural stem cells have 

been applied in the hope the homing effect has been reinduced because of intramedullary 
injection.

3.4.2. Quantity, number and time point for mesenchymal stem cell transplantation

3.4.2.1. Quantity and number

Diversity of lesion models, animal types and route of cell administration influence the quan-

tity of mesenchymal stem cells administered. Cell survival and enhancement in locomotor 

performance have been observed both after intravenous injection of one million cells in a 
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volume of 0.5 mL of DMEM in a model of balloon compressive injury in rats and after trans-

plantation of 600,000 cells in a volume of 6 μL directly into the injury site after contusive 
injury in rats [112]. Other studies have advocated intrathecal administration from 100 × 106 up 

to 230 × 106 cells followed by an additional 30 × 106 cell administration at 3 months [5], or the 

administration of two or three intrathecal injections with a median of 1.2 × 106 mesenchymal 

stem cells/kg body weight [6]. In a phase III clinical trial, limited efficacy has been proven 
after injecting 1.6 × 10 autologous mesenchymal stem cells into the intramedullary area at the 

injured level and 3.2 × 10 autologous mesenchymal stem cells into the subdural space. Single 

mesenchymal stem cell application to intramedullary and intradural space has had a very 

weak therapeutic effect compared to multiple injections [7]; partial efficacy has been dem-

onstrated in other trials [8–11]. Continuous improvement after multiple mesenchymal stem 

cell transplantations has been observed in a patient with complete spinal cord injury [181]. 

Multiple injections of human umbilical cord-derived mesenchymal stromal cells through the 

tail vein have improved microcirculation and the microenvironment in a rat model of radia-

tion myelopathy [182].

3.4.2.2. Time point

Acute phase is defined as the first three days after spinal cord injury and chronic phase is 
defined as more than 12 months after spinal cord injury. Subacute phase is defined as the 
period between acute and chronic phase. In the acute phase, reactive oxygen-free radicals, 

excitatory transmitters, inflammatory molecules and hypoxia caused by hypoperfusion are 
cytotoxic to implanted stem cells. In the chronic phase, glial scar tissue acts as a physical 

barrier to axonal regrowth. Thus, it is difficult for implanted stem cells to survive in chronic 
spinal cord injury. In contrast, in the subacute phase, the inflammatory response is reduced 
and the glial scar formation has not formed. Therefore, the subacute phase seems to be an 

optimal phase in the respect of timing of stem cell application [170]. Experimentally, bone 

marrow-derived stem cells have been infused intravenously 10 weeks after spinal cord 

injury [183].

3.4.3. Age and donor variation, allo- and xenotransplantation

3.4.3.1. Age and donor variation

The potency of mesenchymal stem cells exhibits significant age and donor variation [3, 184–186]. 

A robust potency assay has been established based on pooling responder leukocytes to mini-

mize individual immune response variability. It has highlighted significant donor variation of 
human mesenchymal stem/progenitor cell immune modulatory capacity and extended radio-

resistance [184, 185].

3.4.3.2. Allo- and xenotransplantation

The neuroprotective and immunomodulatory effects of xenotransplantation of adipose tissue 

mesenchymal stem cells in Lewis rats after lumbar ventral root avulsion have been proven 
[187]. The therapeutic effects of autologous and allogenic bone marrow-derived  mesenchymal 
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stem cell transplantation have been established in canine spinal cord injury [188]. Immuno-

suppression of allogenic mesenchymal stem cells transplantation after spinal cord injury may 

improve graft survival [189].

3.4.4. Evaluating the therapeutic effect of mesenchymal stem cell transplantation

Although neurological evaluation of the spinal cord injured patient is usually conducted 

according to the International Standards for Neurological Classification of Spinal Cord Injury 
recommended by the American Spinal Cord Injury Association, it should be confirmed by 
electrophysiological studies (somatosensory evoked potentials and motor evoked potentials) 
and magnetic resonance imaging studies. Magnetic resonance imaging findings after stem 
cell therapy include widening of cord diameter, blurring of intramedullary cavity margin 

and appearance of fiber-like streak pattern in the injured spinal cord. Diffusion tensor imag-

ing can perform accurate visualization and assessment of white matter tracts and is useful 
for the prediction of neurological recovery in spinal cord injury patients. Fiber continuity 

on diffusion tensor imaging not seen before stem cell therapy may be an indicator of axonal 
regeneration in stem cell therapy. Cell labeling techniques for in vivo visualization using bio-

logical indicators or contrast agents have helped monitoring the status of the transplanted 

stem cells in the body (survival, migration and exact location of implanted stem cells). Typical 
examples are supermagnetic iron oxide particle monitoring using magnetic resonance imag-

ing and radionuclide monitoring using positron emission tomography or single-photon emis-

sion computed tomography [170, 190, 191].

4. Supplying neurotrophic factors and accessory cells

A combinatorial approach has been agreed upon for effective treatment of spinal cord injury 
[192–208].

The combination of neurotrophic factors such as BDNF and neurotrophin-3 has enhanced 
axonal regeneration and myelination [193]. Cyclic adenosine monophosphate (a neuronal 
stimulator) and neurotrophin-3 (neurotrophic factor) have been injected 5 days prior to a 
C4 transection at L4 to precondition the dorsal root ganglion soma. Bone marrow mesenchy-

mal stem cells have been transplanted 7 days post injury. The effect of bone marrow mesen-

chymal stem cells on spinal cord regeneration has been augmented by modifying them to 

either express human brain-derived neurotrophic factor (BDNF) in an acute injury or neu-

rotrophin-3 in a chronic injury model, by prestimulating them to secrete neurotrophic fac-

tors, e.g. by pretreating them with Schwann cell differentiating factors [3]. In an attempt to 
generate mesenchymal-derived differentiated neural cells expressing nerve growth factor or 
neurotrophin-3, mesenchymal stem cells have been infected with recombinant lentiviruses 

that express nerve growth factor both to induce their neural lineage genes and as a combi-

natorial approach [194]. Magnetic targeting of neurotrophin-3 gene-transfected bone mar-

row mesenchymal stem cells via lumbar puncture has enhanced their delivery to the site of 

injury and has significantly improved functional recovery and nerve regeneration compared 
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to transplanting neurotrophin-3 gene-transfected bone marrow mesenchymal stem cells 

without magnetic targeting system [195, 196]. Pulsed electromagnetic field exposure near the 
injured site and for 8 hours per day over 4 weeks has been suggested as a suitable protocol for 

directing the cells to the site of injury [197]. Electro-acupuncture has promoted the survival 

and differentiation of transplanted bone marrow mesenchymal stem cells pre-induced with 
neurotrophin-3 and retinoic acid in gelatin sponge scaffold after rat spinal cord transection 
[53, 198].

A combination of other trophic factors, including epidermal growth factor, fibroblast growth 
factor type 2 and platelet-derived growth factor have enhanced the survival of implanted 

cells. Likewise has been the addition of granulocyte macrophage-colony stimulating factor  
[4, 170]. Co-transplantation of bone marrow-derived mesenchymal stem cells and nano-

spheres containing FGF-2 has improved cell survival and neurological function in the injured 

rat spinal cord [199]. Human ciliary neurotrophic factor overexpressing stable bone mar-

row stromal cells have proved effective in a rat model of traumatic spinal cord injury [200]. 

Bone marrow mesenchymal stem cells combined with minocycline have improved spinal 

cord injury in a rat model [201]. Propofol has enhanced the therapeutic effect of bone marrow 
mesenchymal stem cell transplantation on spinal cord injury in rats [202].

The addition of accessory cells includes combining mesenchymal stem cells with neural progeni-

tor cells [3], neural crest stem cells [203], olfactory ensheathing cells [204, 205] or Schwann 

cells [207, 208]. The effects of mesenchymal stem cell and olfactory ensheathing cell trans-

plantation at early or delayed time after a spinal cord contusion injury in the rat have been 

compared. Mesenchymal stem cell grafting seems a better option than olfactory ensheathing 
cell grafting [206].

5. Establishing a continuous drug and cell delivery system

In spinal cord injury, the gap is usually extensive and associated with excessive scarring. The 

axonal growth cone would thus take years to reach the distal spinal cord. Consequently, the 

factors mentioned before have to be replenished continually.

This can take place through an intrathecal (possibly extradural) continuous cell and drug 
delivery system (catheter) [39, 209]. Catheter-related complications include tension headache, 

meningitis, fibrous track formation, catheter slippage, difficult catheter insertion and catheter 
blockage. Microsphere, nanosphere and nanoshell technology may help keep the catheter 

patent, dissolve fibrosis and replenish molecules and cells [43, 210–215]. Co-transplantation 

of bone marrow-derived mesenchymal stem cells and nanospheres containing FGF-2 

has improved cell survival and neurological function in the injured rat spinal cord [199]. 

Controlling surface tension as well as hydrophobic and hydrophilic properties of the conduit 

lumen and the microspheres may help us fulfill the three aims described previously. One 
method to achieve the latter aim is using magnetic nanoparticle-incorporated human bone 
marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields [190, 191, 

197] (Figure 2).
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6. Conclusion

We have attempted to identify the prerequisites for effective mesenchymal stem cell trans-

plantation in spinal cord injuries. These fall into three categories (Table 1). The first category 
comprises those prerequisites, on which the literature is united. Research workers are thus 

obliged to follow them or provide a reasonable explanation for having not followed them.

The literature is unanimous on the following: (1) the gliosis has to be dissolved prior to mes-

enchymal stem cell transplantation (e.g. through chondroitinase ABC in high doses (50 or 
100 IUs) and at multiple times); (2) a suitable scaffold has to be used; this scaffold should 
meet both macro- and microengineering requirements and should provide adequate space for 

lumen fillers; (3) the efficiency of mesenchymal stem cells themselves has to be increased (by 
reducing oxidative stress-induced apoptosis, by hypoxic preconditioning, by modulating the 

extracellular matrix and by other measures); (4) a combinatorial approach including growth 
factors, cellular transplants and neurolyzing agents has to be followed.

There are many issues, however, on which the literature is still not united. These fall into the 

second category. Among others, they include (1) the ideal source for mesenchymal stem cells, 
mode, quantity, time point and number of injections; (2) which growth factors and cells to 
be used in the combinatorial approach; (3) optimizing the therapeutic effect of mesenchymal 
stem cell transplantation by inducing their transformation into motor neuron-like cells or 

Schwann cells; (4) increasing the homing effect of stem cells (by calcitonin gene-related pep-

tide). In the third category, more research has to be stimulated, e.g. as to how to establish a 

continuous drug and cell delivery system.

Figure 2. An intrathecal continuous cell and drug delivery system (catheter) (14) allows for the replenishment of stem cells, 
accessory cells, molecular growth factors and neurolyzing agents. To avoid catheter-related complications, it had better be 
lined with a biomaterial used for vascular grafts (15). Hydrophobic microsphere, nanosphere and nanoshell technology 
may also help keep the catheter patent, dissolve fibrosis and replenish molecules and cells. Magnetic nanoparticles (16) 
incorporated into microspheres may help guide the latter to the gliotic segment. After their release from microspheres, 

magnetic nanoparticles may be made to attach to the scaffold and to the intact cord segments and to apply tension on them 
(17—arrows), thus promoting axonal regeneration and enhancing engraftment and differentiation of transplanted cells.
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1. Establishing a suitable niche

1.1. Dissolving the gliosis

Category I (prerequisites, on which the literature is united)

Chondroitinase ABC in high doses (50 or 100 IUs) and at multiple times (at 0, 1, 2 and 4 weeks)

Category II (prerequisites, on which the literature is still not united)

- Heparins, sialidase

- Blocking myelin-associated inhibitors with Nogo-A monoclonal antibodies or with Nogoreceptor competitive 

agonist peptide (NEP1-40)
- Blocking Rho-A with Rho inhibitor ‘cethrin’

- A synthetic membrane-permeable peptide mimetic of the protein tyrosine phosphatase σ can bind to protein 
tyrosine phosphatase σ and relieve proteoglycan-mediated inhibition

- Cell permeable phosphopeptide (PI3Kpep) reverses proteoglycans inhibition of phosphoinositide 3-kinase 
signaling in axons.

- Rolipram, a phosphodiesterase4 inhibitor, can increase intracellular cAMP levels

- Improving blood vessel formation might reduce cell death and promote angiogenesis within the injury zone

- Taxol, a microtubule-stabilizing agent, increases neurite outgrowth

1.2. Providing a suitable scaffold, both to bridge the gap and to harbor the cells

Category I (prerequisites, on which the literature is united)

- Scaffolds should meet macro- and microengineering requirements
- Scaffolds should fulfill the same mechanical conditions of the recipient spinal cord
- Scaffolds should provide adequate space for the different molecular pathways for axonal regeneration; they should 

be of ideal porosity

- Scaffolds should provide adequate space for lumen fillers
- Scaffolds should meet requirements based on spatial distribution of neurotrophic factor gradients

2. Optimizing the therapeutic effect of mesenchymal stem cell transplantation

2.1. The ideal source for mesenchymal stem cells

Category II (prerequisites, on which the literature is still not united)

Compared to stem cells of other mesenchymal origin (e.g. bone marrow, adipose tissue, skin), umbilical cord stem 
cells are superior

2.2. Increasing the efficiency of mesenchymal stem cells

Category I (prerequisites, on which the literature is united)

- Reducing oxidative stress-induced apoptosis

- Hypoxic preconditioning

- Modulating the extracellular matrix

Category II (prerequisites, on which the literature is still not united)

- Measures to reduce oxidative stress-induced apoptosis (arginine decarboxylase expressing cells; heme oxygenase-1 
expressing cells; calpain inhibitor MDL28170; plumbagin; polydatin, a glucoside of resveratrol; carvedilol, a 
nonselective β-adrenergic receptor blocker)

- Measures during stem cell culture (replacing fetal bovine serum, mechanical fibrinogen-depletion)
- Measures during grafting (electroacupuncture, hypothermia, extracorporeal shock wave, propofol, green tea 

polyphenols, ultrashortwave therapy, valproic acid, IL-8)
- Measures increasing the homing effect and mobilization of stem cells (calcitonin gene-related peptide, 

erythropoietin)

2.3. Inducing the transformation of mesenchymal stem cells into motor neuron-like cells or Schwann cells

Category II (prerequisites, on which the literature is still not united)
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List of abbreviations

2.4. Mode, quantity and number of injections; time point for injection; age and donor variation; allo- and 

xenotransplantation

Category I (prerequisites, on which the literature is united): intramedullary injection; injection during the subacute 
phase

Category II (prerequisites, on which the literature is still not united): all other issues

3. Supplying neurotrophic factors and accessory cells

Category I (prerequisites, on which the literature is united)

A combinatorial approach, including growth factors, cellular transplants and neurolyzing agents, has to be followed

Category II (prerequisites, on which the literature is still not united)

Which growth factors (epidermal growth factor, fibroblast growth factor type 2, platelet-derived growth factor, 
riluzole, minocycline, granulocyte-colony stimulating factor, BDNF, neurotrophin-3) and cells (embryonic stem cells, 
neural stem cells, induced pluripotent stem cells, neural crest stem cells, mesenchymal stromal cells, Schwann cells, 

olfactory ensheathing cells or macrophages) to be used in combination

4. Establishing a continuous drug and cell delivery system

Category III (prerequisites defective in the literature)

Table 1. Prerequisites for effective mesenchymal stem cell transplantation in spinal cord injuries.

Akt Protein kinase B (PKB), a serine/threonine-specific protein kinase

BDNF Brain-derived neurotrophic factor

cAMP Cyclic adenosine monophosphate

DMEM Dulbecco's Modified Eagle Medium ED-1+ macrophages: antibody against cellular marker 
CD68 macrophages

FGF-2 Fibroblast growth factor type 2

LY294002 Morpholine-containing chemical compound that is a potent inhibitor of numerous 

proteins, and a strong inhibitor of phosphoinositide 3-kinases

MAG108 Myelin-associated glycoprotein

MDL28170 Calpain inhibitor III

NEP1-40 Nogoreceptor competitive agonist peptide

NeuN Feminizing locus on X-3, Fox-3, Rbfox3, or hexaribonucleotide binding protein-3

NG2 Neural/glial antigen 2

Nogo-A Reticulon-4, neurite outgrowth inhibitor

Nrf 2 Nuclear factor (erythroid-derived 2)-like 2, also known as NFE2L2

Nrf 2/ARE pathway The transcription factor Nrf2 (NF-E2-related factor 2) binds to the ARE, a cis-acting 
element called the antioxidant responsive element

OMgp109 Oligodendrocyte myelin glycoprotein

PI3K Phosphatidylinositol 3-kinase

PI3Kpep Cell permeable phosphopeptide: p38MAPK P38 mitogen-activated protein kinases

Rho-A ras homolog gene family, member A
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