
Experimentation Made Easy with the AMazING Panel

João Martins
Instituto Telecomunicações

Universidade de Aveiro
Aveiro, Portugal

jmartins@av.it.pt

João Paulo Barraca
Instituto Telecomunicações

Universidade de Aveiro
Aveiro, Portugal

jpbarraca@ua.pt

Diogo Gomes
Instituto Telecomunicações

Universidade de Aveiro
Aveiro, Portugal

dgomes@ua.pt
Rui L. Aguiar

Instituto Telecomunicações
Universidade de Aveiro

Aveiro, Portugal
ruilaa@ua.pt

ABSTRACT
Experimental testbeds for evaluating solutions in computer net-
works, are today required as a complement to simulation and emu-
lation. As these testbeds become larger, and accessible to a broader
universe of the research community, dedicated management tools
become mandatory. These tools ease the complex management of
the testbed specific resources, while providing an environment for
researchers to define their experiments with large flexibility. While
there are currently several management tools, the research commu-
nity is still lacking tools that smooth the experimentation workflow.
These were key aspects that we considered when developing the
management infrastructure for our wireless testbed[4] (AMazING).
We developed a experimentation support framework supported by
an attractive GUI, automation and scripting capabilities, as well as
experiment versioning and integrated result gathering and analysis.

Categories and Subject Descriptors
C.2 [Computer Communication Networks]: Network Operations;
D.2 [Software Engineering]: Management; H.4 [Information Sys-
tems Applications]: Miscellaneous

General Terms
Experimentation, Management, Measurement

Keywords
network, testbed, experimentation, web, wireless, omf

1. INTRODUCTION
The Internet, and networks in general, are in many ways part

of our daily life. As their usage increases, their faults and limita-
tions also become more apparent, motivating network researchers
to evaluate and develop new solutions anticipating future scenar-
ios and overcoming the challenges identified. These challenges

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiNTECH’12, August 22, 2012, Istanbul, Turkey.
Copyright 2012 ACM 978-1-4503-1527-2/12/08 ...$15.00.

vary across a wide range of networking areas, from traffic opti-
mization in telecom operators, to scalability in wide area networks
and broadband multimedia streaming, or even to the contextualiza-
tion of communications in order to optimize usage. For researchers
to create reliable network solutions, able to be included in our ev-
eryday life, these solutions must be carefully designed, tested, and
then put into a cycle of successive refinement.

Simulations are an inexpensive and controllable method of eval-
uating solutions, especially appropriate for initial approximations
to new technologies. However, most simulations rely on simple
network models, use mathematical based propagation models, of-
ten neglect end terminal complexities, and sometimes consider-
ing unrealistic interaction assumptions. Therefore they frequently
don’t accurately represent the complexities of a highly dynamic
environment, such as those resulting of practical usage of IEEE
802.11[9] and other wireless technologies.

Under some conditions, network emulation is an alternative ap-
proach to simulation, since it enables instantiations of proposed
solutions closer to the real world. Emulation consists of the re-
production of simple scenarios, with a reduced number of physical
entities, being some of those entities actual devices, and others sim-
ulators. This is a valid approach but is limited in the reproduction
of environments closer to real life. Emulating aspects such as radio
coverage and link quality is possible, but can result in misleading
results (e.g., using MAC filtering to simulate reduced radio range),
and these effects can also be observed at higher layers of the proto-
col stack [6]. Consequently, experimentation using real hardware,
and preferentially real users, is the most trustworthy method of vali-
dating solutions, under real-world conditions, or close to real-world
conditions. Under this assumption, several testbeds have been de-
ployed worldwide [7].

This experimental approach comes with some limitations attached.
Testbeds are frequently created within the scope of a funding grant,
and around a project. Its construction involves considerable de-
ployment and operation costs, supported by that grant. Once the
project is complete, if no other funding appears, and due to the in-
herent operational costs, the testbed falls into disuse, resulting in
a waste of resources. Furthermore, testbed usage is hard for the-
oretical researchers. They typically lack easy instrumentation and
maintainability capabilities, requiring users to have a deep under-
standing of the testbed software and hardware. More importantly,
they frequently lack repeatability capabilities as they lack user in-
terfaces and methods for the coordination of multiple experimental
runs. Albeit testbed management systems do exist, they are cen-
tered on the equipment management issues and not on the exper-

11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/32243185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

imenter interests in managing a set of tools. This work focus in
the last aspect: providing an interface able to evaluate solutions in
a repeatable manner, making it possible to easily identify the im-
pact of changes to the solutions under evaluation in wireless based
testbeds.

Currently, there are some testbed management systems available.
The core of most existent solutions can be reduced to a couple of
shell scripts to operate the testbed resources, without the proper
support for experiment automation. Running experiments is thus
possible and flexible, but cumbersome, labor intensive, and error
prone. The existent solutions lack proper graphical interfaces fa-
cilitating user interaction, while centralizing the whole process of
configuring experiments, reserving resources, scheduling, and col-
lecting its results. Furthermore, collaboration of multiple parties is
vital in the current research environment. Experiment results must
be shared with a closed number of peers in order to allow a better
analysis and a more solid validation inside research terms.

This paper will present the solution developed for addressing this
problem in the AMazING testbed [4], centering the experimenter
workflow as the central target of the testbed management system.
Section 2 contains an overview of current tools developed for the
purpose of managing testbeds, as well as the current user interfaces
supporting them. Section 3 discusses with greater detail one of the
most common testbed management systems (OMF), which served
as basis for the AMazING testbed management system. Section
4 presents our management system and Section 5 describes how
a typical experiment would be developed. Our closing arguments
and future work is presented in Section 6.

2. RELATED WORK
As the complexity of both networks and software grows, sophis-

ticated tools must be developed to support rigorous experimenta-
tion in current testbeds. Real-world experimentation provides reli-
able results with the exchange of higher complexity on deployment
and management tasks. Next we will describe the available tools
that assist the research community to conduct these experiments in
the different testbed deployments.

The ORBIT Testbed made a significant contribution towards au-
tomated experimentation. It introduced a framework to manage re-
sources, and instrumentation capabilities on testbed resources [17].
Tasks such as collecting measurements or environment properties
become more automated, so the user can focus on the design of
scenarios and refining solutions. ORBIT later turned this package
into a generic framework for the management of testbeds, namely
the cOntrol and Management Framework (OMF) [16], which is al-
ready used in many deployments across the world. They created
a Redmine based portal, to support resource reservation and mea-
surement analysis[12]. Similar initiatives[15], replicating OMFs
features, created restricted, yet similar frameworks. MiNT focused
in extending the experiment capability of the physical infrastructure
[8] by combining the NS-2 simulator [2] with the hardware nodes.
PlanetLab, originally a wired testbed, delivers an overlay network,
bringing seamless integration of different services. It brings several
resources, distributed across many institutions, together to build a
planetary testbed[1], and recently has focused towards federation
mechanisms and the addition of wireless technologies[3]. Tools
such as namely Stork or Gush assist users to deploy software in
nodes, with CoMon easing troubleshooting and monitoring in the
testbed. ProtoGENI also has similar objectives having tools such
as Flack and INSTTools that streamlines resource allocation and
measurements collection. Emulab testbed provides an environment
that promotes experimenters methodology through his multi-user
workbench[18]. More recently, the NEPI[13] Framework was in-

troduced to unify all these different environments, mixing the use
of network simulators, OMF-enabled testbeds, and even Planet-
Lab. The DES TestBed Management System (DES-TBMS) [5] are
composed of a subset of components responsible for different tasks
in the experimentation process. Each application targets monitor-
ing, scheduling and monitoring of the experiments. A XML file
contains network configurations, log files to collect and actions to
make during the experiment. This script is evaluated and actions
taken in the Testbed, whereas log files are collected and delivered
in a database for later visualization, which also represents another
component. An additional tool also displays the overall testbed
state. ASSERT[14] enhanced their testbed usability by developing
a set of applications that simplified experiments creation on their
testbed.

While same of tools mentioned here target mostly non-wireless
testbeds, they are referred as part of current experimenter tools.
These tools aim to solve management of a large-scale geograph-
ically distributed testbed, while suggesting important features to
have in a testbed deployment.

All of these management systems share similar problems for
wireless testbeds: lack of integrated environment, steep learning
curve due to custom description languages and methodologies, and
lack of reproducibility and optimization driven functionalities. Mea-
surement analysis is reduced to manually editing log files; software
deployment of target images and execution of the experiments are
usually done manually, which voids most attempts of reproducing
the timing of most events. No testbed easily allows running the
same experiment multiple times, with the possibility of varying a
small aspect and comparing results. While these issues are much
desired by the research community, attempts to develop a func-
tional integrated environment are recent, and mostly incomplete in
critical ways.

3. OMF: CONTROL AND MANAGEMENT
FRAMEWORK

The cOntrol Management Framework (OMF) [16] framework is
a set of popular tools allowing control, management and measure-
ment collection of testbed resources. Testbed administrators obtain
a system providing effective management of all resources, while
users can instrument, run experiments, and collect all results in a
centralized way. It provides unique capabilities in terms of con-
trollability and operation in a testbed. Currently, it is one of the
best tools providing management functionalities for experimental
testbeds, while being able to be deployed at a wide range of fa-
cilities. It considers the existence of a set of experiment nodes,
having multiple radio technologies and local storage, and a set of
support servers which provide storage for results and disk images
to be loaded by each experiment. These servers also host control
software providing an interface to users, and manage the execution
of the experiments.

The OMF provides a command line interface (CLI) for users to
create their experiments and a simple web GUI to observe its sta-
tus running. The greatest advantage is the OMF Experiment Def-
inition Language (OEDL) which allows the description of experi-
ments with great detail, similar to the approach followed by simu-
lation tools such as NS-3, and OMNET++. Using OEDL, a script
can be created describing all aspects of nodes, as well as applica-
tions, events and data collection processes. The major hurdle is the
learning curve associated to learning an application specific lan-
guage (common to most languages). Experiments are defined in a
domain language based in Ruby, which can and must be validated
prior to execution. Some applications are directly integrated with

12

OEDL, allowing the definition of application specific parameters in
the OEDL script. More advanced experiments, demanding custom
applications or complex measurement collection, require deploying
the hooks interfacing OEDL and the application.

The OMF Measurement Library [11] was developed to target
these issues associated with collecting application-specific metrics,
and aiming to unify the way results are collected. It consists of an
infrastructure whose clients (applications) inject metrics to a cen-
tral server that is responsible for its aggregation and deliver the re-
sults at the end of the experiment, by means of a SQLite database.
Data can be queried offline and even visualized using tools such
as MatLab. The OML bundles a traffic generator/receiver, and
proper integration with the iperf (and many other tools) for unfa-
miliar users of these kind of tools. This library was created taking
into consideration the usability of results collection, also providing
an easy method to instrument third-party applications.

The network community, needs regarding integrated manage-
ment system integration, is growing. Solutions are required to pro-
vide the proper abstraction of the underlying management tools. So
far, several advancements were made into the development of tools
that largely improve tasks such as monitoring, software deployment
and measurement collection. We will tackle these issues to provide
an attractive interface that promotes automation and repeatability
of such processes, allowing one to create experiments effortlessly:
our focus is on the experimenter experience, and we rely on OMF
for the testbed management tasks.

4. THE AMAZING MANAGEMENT SYSTEM
The AMazING testbed [4] is composed by twenty-four nodes

located in the rooftop of Instituto de Telecomunicações - Aveiro.
A customized version of OMF is used to provide testbed manage-
ment functions, automating otherwise tedious but required tasks
such as network configuration, software deployment, and experi-
ment execution. In addition we further developed a management
overlay centered on the experimenters’ workflow, allowing users to
create and schedule experiments, as well as analyze the results pro-
duced. This management overlay constitutes an extension to OMF
that exposes in a user friendly way its functionality for operation in
a testbed, and will be detailed in the following sections.

In a standard OMF deployment users must submit their exper-
iment definition, written in OEDL, through the Experiment Con-
troller (EC) loading the system images provided by the Aggregate
Manager (AG). Each user must have an EC instance deployed on
their machine to be able to run an experiment. Our intent was to
extend this deployment (Figure 1) with an additional component,
called the AMazING Panel 1, that aggregates OMF sub components
and functionality under a common, web oriented, multi-user man-
agement application, and streamlines testbed management, hiding
most of the complexity associated to running experiments. It presents
the testbed user with an interface oriented to the experiments, and
not to the testbed administration.

The Panel development was based on the Ruby on Rails frame-
work, and consists of an application that allows users to interact
with the testbed through a graphical interface, while at the same
time allowing administrators to manage users and some aspects of
system operation. All OMF functionality is available through the
interface created. Therefore, we will focus our description in the
components and functionalities added or enhanced.

1Documentation and Code freely available at http://helios.
av.it.pt/projects/amazing-panel, testbed interface avail-
able at http://amazing.atnog.av.it.pt

Internet

Resource
Controller

Measurement
Library Client

Application A

Application B

Node N

Power Relay

Experiment
Definitions

System
Images

User A

Panel

AMazING

FTP

A
u

th
o

ri
za

ti
o

n

OEDL Integration

Testbed Manager

Inventory

Queue

P
ro

xy

EV
C

SA
M

OML Server

Experiment
Controller

OMF

Aggregate
Managerstores images

access oedl repositories

power management

execute experiments

collects results

HTTP

OMF

Figure 1: OMF architecture extensions

• Testbed Manager - Accesses the chassis manager, control-
ling the electrical power provided to each node.

• Queue - A FIFO Queue is used as the schedule mechanism
for experiments execution. Experiments are executed one at
a time. The AMazING usage model is "lease-time", meaning
that at a given time the whole testbed is dedicated to a single
experiment.

• Proxy - Is the component responsible for the testbed op-
eration, by preparing and executing experiments, on behalf
of the users. Most importantly, it exposes OMF commands
through a service oriented interface.

• Integrated Experiments Environment (IEE) - An user in-
terface guides users in the development and execution of their
experiments. For new users of the platform, it simplifies
the learning process when using an OMF-enabled testbed.
An OEDL implementation (which powers experiments driv-
ability) was developed in order to extract information from
scripts to deliver a better user experience in the panel.

• Authorization and System Accounts Manager (SAM) - Users
are divided in different roles and can access the panel using
both HTTP and FTP. Besides controlling user accesses to the
panel, SAM is in charge of managing the FTP accounts ex-
posed to the FTP Server.

• Inventory - Is the main data repository. All the experiment
definitions, system images and experiment related data are
stored in this module.

• Experiment Version Control (EVC) - This module is re-
sponsible for supporting experiment versioning and the cre-
ation of branches.

In the following subsections, we describe the most relevant com-
ponents of the Panel in detail and present an overview of the inter-
action between them.

4.1 Integrated Experiments Environment
The most visible aspect of our system is the Integrated Exper-

iment Environment (IEE), which presents users with a graphical

13

interface allowing them to collaborate in the realization of experi-
ments.

The architecture of this component is divided into two parts:
i) the presentation layer consisting in the UI component manage-
ment; and ii) the engine, which handles code generation (OEDL)
and OMF related data. Web services supporting the script code
generation, repository auditing, and user application management
were developed. All data exchanged makes use of the JavaScript
Object Notation (JSON) format.

This module is thus divided in two main components:

• The Engine responsible for handling all data related service
invocations. It keeps the state of active experiments, main-
taining information about groups, event timeline, resource
properties, and applications deployed to experiments. These
applications are software packages (e.g. traffic generators)
which are required by users for the purpose of executing a
given experiment. The engine fetches the definition of OEDL
applications, described in the OMF script repositories to later
be made available. When a user refers such application in an
experiment, all information about its properties comes from
this reference. It also maintains information related to user
actions: defined groups, applications, network properties and
application properties. JSON data is generated with all this
information, to be later consumed by the web services in-
voked by the process of creating the experiment definition.

• The UI component is responsible for input handling, sending
the appropriate data the engine will maintain during the ex-
periment creation. This component is divided between con-
tent generators, helpers and templates used to generate the
proper content.

An environment was created to support these modules, which
defines a custom implementation of the OEDL (later described).
The purpose is to enable the management system to more easily
audit scripts definitions, and to scan OMF repositories and user
experiment definitions for matching application. The experiment
definition will be generated according to user actions in the IEE.
The code generator will be responsible for taking the data from the
IEE Engine, and for delivering the source code of the experiment
and application definitions to the OMF components.

4.2 Proxy
Interaction with OMF internal components is not directly done

by the IEE, but through an intermediate component, the Proxy. Its
role is to mediate the interaction between the web application and
the testbed. Since OMF does not provide an API for developers to
programmatically use the testbed, other than the EC CLI, the Proxy
fulfills this role by exposing the missing API. The assets (system
images, nodes, experiment definition) will be passed down to this
proxy, being the proxy’s responsibility to communicate with the
regular OMF entities.

The Proxy API follows a Service-oriented Architecture and ex-
poses a service interface supporting the methods which the web
application uses. Behind these services, state machines control the
preparation, and execution behavior of the experiments as reported
by OMF. The current implementation specifically maps the OMF
commands to web services, so that all functionality provided by
OMF is kept.

The OMF Command Line Interface (OMF CLI) provides com-
mands to load an image into nodes and to execute the experiment

definition script. When the Proxy component prepares an exper-
iment it will invoke the OMF load command for the images re-
quired by the experiment. Later, in order to check the experi-
ment state, the web interface can inquire the Proxy with a stat

command. When the experiment starts, it executes an experiment
script (one or multiple times) using the OMF exec command. A
new preparation may be issued according to the experiment overall
state, when nodes or system images are modified. In each of these
proxy routines, all the generated logs and important files are au-
tomatically stored and organized within the experiment repository,
and available to users in the interface, or through an FTP account.

4.3 OEDL language implementation
OEDL is the way users define an experiment and its flow in a

OMF-enabled testbed. OEDL script describes valuable data such
as the nodes configuration data, applications deployed and met-
rics to be collected. Current OEDL engine implements each of
the domain language methods affecting the overall testbed/nodes
state. For other purposes besides experiment execution, the data
described in the experiment/application definitions cannot be ob-
tained, making it difficult to provide statistics or better user experi-
ence through the web interface.

To support this integration, we built a custom implementation of
OEDL, which is responsible for extracting all data contained in the
scripts. Besides experiments, this module also fetches information
from the Experiment Controller script repositories, which contains
a description of the OMF bundled applications included in our pro-
vided baseline system image. An example of such integration is
the ability to know the resources required by an experiment prior
to its execution, in order to visualize resource occupation for each
experiment, and provide better feedback during the design phase of
the experiment.

4.4 Experiment Version Control (EVC)
Creating an experiment can be a time consuming event. Disk im-

ages must be created, OEDL must be built, and everything must be
deployed to the selected experiment nodes. Syntax and semantic
errors in the OEDL script, as well as bugs in the application un-
der test or simply hardware failures can hinder the entire process.
Moreover, when evaluating new solutions, it is useful the creation
of multiple versions of the same experiment where only a particu-
lar set of variables is modified. But above all, it is most important
to keep track of which changes are made between different runs of
the same experiment. The EVC role is to hide such concerns from
users, maintaining a track of the experiment assets and results.

The Experiment Version Control provides the means for users to
manage experiment versions, which can be run multiple times in a
batch, and branched to new experiments. It is based on the same
philosophy of popular versioning systems such as SVN and GIT,
providing the means to create branches, modify experiments and
keep versions (through explicit commits) of the configuration and
results obtained. Therefore, users can truly evaluate their solutions
through controlled modification of experiment conditions, and a
unified view provided by this tool.

Instead of integrating existent versioning solutions, excessively
complex for our basic needs, we developed a fully functional ver-
sioning system, based on a filesystem structure and text files. In-
ternally, the EVC component considers that each experiment is a
repository with one or more branches. Each branch will contain a
set of experiment assets that are under version control: the script
and resource map (both text files). Additionally, a folder contains a
set of runs, each containing log files and database results (SQLite)
which can be retrieved at a later time. Branch information includes

14

commit logs and the number of successful/failed runs. All this in-
formation is stored using YAML format. While avoiding depen-
dencies, the use of such a simple structure, text based logs and
text based experiment definitions, and SQLite based results, allows
users to easily explore data in their own computers, almost inde-
pendently of the operating system they use.

Defining a scenario involves both a repetitive and iterative pro-
cess until it is successfully defined with valid results. With branches
semantics, users can fork the experiment in order to create different
scenarios perspectives. Combining this tool with EVCs results and
changes tracking, quick comparisons can be made with completely
different experiments versions.

These versioning features applied to experimentation enables a
rapid switch to completely different experiment versions through a
well-organized version control system. It allows brief analysis to
be made with the results obtained, while having runs historically
stored. These are all reasons that make EVC one of the most im-
portant components of this system.

4.5 System Accounts Manager (SAM)
Additionally to the IEE, which users can explore to interface

with the AMazING Panel, another interface using FTP was pro-
vided. The FTP interface does not provide means for users to in-
teract with their experiments, but allows them to manage their li-
brary and experiment assets. Besides FTP file transfer being faster
than using HTTP, it is important that the user gets access to all the
experiment assets, and its resources, as well as results in both pro-
cessed and unprocessed forms. Moreover, disk images sometimes
are rather big files and may imply many changes over different ex-
periment versions. Its transfer is facilitated through the use of FTP.
Access to each account is directly controlled from the AMazING
Panel application, and related to the membership information of
each workspace. The SAM module consists in this bridge between
the AMazING Panel and the actual FTP service.

All information contained in the experiments (e.g. scripts, sys-
tem images) is exposed through FTP, and users may download it to
their computers. As described previously, even data kept under ver-
sioning can be analyzed without resorting to specific software. An
important design requirement is that both structure and information
is mapped into readily available forms. In this case: directories and
text files.

4.6 Experiments workflow
In order to make use of the testbed, users are expected to follow

an experiment setup workflow, obviously related to the underlying
the OMF experiment setup workflow. The workflow is enforced
through the testbed management system, which requires from the
user a set of initial setups, before any test can be conducted on the
platform. One of the testbed management system base concepts is
the notion of workspaces, which can be shared by multiple users.
Each workspace represents a set of experiments related to the same
topic, and having the same set of users associated. The workspace
metaphor can be useful not only for researchers evaluating the same
set of solutions, but also for teachers. Using this approach, teach-
ers can create workspaces with several experiments ready to run.
Students can be added to the workspace and either analyses the re-
sults obtained by their colleagues, replay experiments or run new
experiments. Visibility of experiment definitions, results and the
remaining assets is restricted to members of a workspace.

A Library provides storage capabilities, to where users can up-

load their disk images, which later can be loaded to experiment
nodes. Upload of disk images can be done through a web interface
or through FTP. Each system image being composed by a complete
filesystem, containing all the software components required for in-
teraction with an OMF-enabled testbed, plus user software under
test (additional kernel modules, third-party applications, software
packages, etc.). The experiment definition contains all logic con-
ducting the experiment, including application definitions, network
properties, shell commands, etc. Any user can add experiments
to the workspace, or replay any of the public experiments present,
and use any system image present in the library. Experiments can
be constructed and edited, and the IEE provides a graphical inter-
face guiding users through the entire process of defining the exper-
iment, defining the timeline and applications, select nodes, setup
data gathering hooks and even analyze results. This task is made
simple through the use of the previous described IEE, which facili-
tates the configuration processes.

5. AN EXAMPLE EXPERIMENT
In this section of the paper, we will highlight how the AMazING

testbed management system can improve the process of creating,
and executing an experiment, as well as gathering the results ob-
tained. Provisioning of an experiment in the AMazING testbed
system is divided in three steps: configuration of the experiment
parameters and software deployed; definition of the execution sce-
nario, and finally configuration of the metrics to be observed and
analyzed. After these steps, the experiment is queued for execu-
tion, probes are deployed, code is executed, and results are gath-
ered. Finally, users can analyze the data obtained and, if required,
branch the current experiment by creating variations of the condi-
tions, which resulting data can then be compared. While the system
developed makes use of OMF, it enhances OMF by facilitating the
entire experimentation process.

5.1 Experiment Setup
In order for OMF to properly operate, it requires the existence

of an experiment definition script describing the configuration to
be applied to each node, and the set of applications to run at each
instant. Running experiments involving integration of applications
or execution more complex execution dynamics, will require full
understanding of the language used to describe the experiments.
In practice, the threshold of defining what is a complex experi-
ment is rapidly reached, and knowledge of the underlying language
(OEDL) becomes a requirement for experimenters.

While OEDL presents ultimate flexibility, the learning curve may
be too steep for new users; furthermore if the experiment to be ex-
ecuted is simple, this may impose a very large overhead, which
discourages usage of highly coordinated systems such as OMF en-
abled testbeds. Therefore, when using the AMazING Panel, users
are first presented with an interface where, by means of a graphical
representation of the testbed and its nodes, they can define which
nodes will be used and what configuration is to be applied to each
of the nodes. Since in the particular case of the AMazING testbed
not all nodes have direct radio connectivity, having a visual repre-
sentation of the nodes location greatly helps experiment planning,
setup and deployment.

As depicted in Figure 2, the application allows the definition of
the network configuration of each node, either individually or in
bulk, by aggregating nodes in groups and setting the configuration
for all members of the group. Users are also allowed to select or
define applications to deploy on nodes, as illustrated in Figure 3. As
shown, there is no need for interaction with the OEDL framework,
as the application will generate the correct experiment script.

15

Figure 2: Configuring experiment parameters. Left sidebar
represents the toolbox. Tables on top indicates nodes/applica-
tions configured

Figure 3: Per node application definition

The next step consists of defining the execution scenario and the
timeline of the experiment. Users can visually define their actions
in a timescale, allowing applications to start at a specific instant
during a certain amount time, or to execute shell commands (e.g.
a daemon, load additional kernel modules, poweroff node). As we
can see in Figure 4, all actions will be annotated in the timeline
which gives an overview of what will happen during your experi-
ment. Ultimately, advanced users can use the Ruby standard library
for an even broader range of possible actions.

Once the experiment description script is created, software de-
ployment takes place. Disk images must be configured and de-
ployed on nodes. Construction of these images can be done by
users using virtualization tools, and converted to compressed for-
mat used by Frisbee [10], which is bundled with OMF. Once the
image is created, the user must associate it with the nodes defined
in the script that are displayed in the form, therefore finishing the
experiment creation step. However note that the predefined images
already provide adequate tools for most users, and only require the
addition of the software solution under testing.

5.2 Execution
After the experiment is setup, it can be queued in the system, is-

suing either a single or multiple runs. Multiple runs are of particular
importance for system analysis, and when evaluating applications
over the highly dynamic wireless medium. Users can see the status
of the process, and an email is sent once the experiment finishes.

As we can see in Figure 5, this application provides a variety
of actions related to experiments, visually distributed through tabs.
The user can observe the current status of the experiment, seeing
the load progress of images. The revisions tab allows a user to
switch to another version of the scenario. The next two tabs is in-
tended for scripts and system images mapping edition. The last one

Figure 4: Experiment Timeline, tables illustrate current nodes
and applications configured.

Figure 5: The experiment management page.

is saved for logging information when experiment preparation or
execution takes place, which is useful for third-party applications
debugging or to determine the cause of the failed experiments. Fi-
nally, the "Results" tab is reserved for graphics drawing and down-
load, but only appears when an experiment has valid results.

Repeatability in experiments is important for the quality of the
results obtained, and for robustness of the solutions under test. The
Experiment Version Control (EVC) allows users to isolate different
use-cases of the main scenario (e.g. fault tolerance, different traffic
profiles, etc.). One can easily switch the whole deployment of im-
ages, scripts and results, while preserving the history of the differ-
ent changes. Accurate results can be obtained by queuing dozens
of runs from the same experiment definition, and later download
and compare all the results produced. These results are also able
to be shared with the research community for later analysis in the
platform, or even reference in scientific studies. Peers can also use
the platform to re-run the experiment with no additional work at
all, or introduce variations and observe modifications in the results.

5.3 Result Visualization
Running an experiment can take several minutes or hours. When

an experiment reaches its completion, the user navigates to the pre-
viously described environment for further analysis of the results
obtained. If an offline analysis is preferred, a database with all the
results can be obtained and used in tools such as Matlab.

Besides downloading the database with the resulting data, users
are able to analyze the results obtained directly in the application.
As depicted in Figure 6, we resorted to cross-platform Javascript
and CSS technologies, and are able to dynamically create web charts
that take into consideration the results obtained by one or several
experiment runs. This functionality is very useful when designing
the experiment as it allows to rapidly run a variation of an experi-
ment and observe the impact to the results, eventually identifying

16

flaws in the experiment requiring further adjustment of the time-
line, configuration, or the actual solution.

Figure 6: Graphics visualized include data sets from different
runs or branches.

Without our application, this task involves instrumentation of a
high volume of log files, for valid data to be extracted, so that it
is later used in tools such MatLab or GNUPlot. The AMazING
Panel allows a coarse analysis to be reduced to a few clicks. If
custom applications are involved, a small integration with OML
is necessary, with the purpose of enabling gathering the relevant
metrics. The rest of the work remains delegated to the backend,
which provides a dynamically created database with the results. As
our testbed tool usage grows, a broader range of OML integrated
applications is expected to be available for users to use in their
experiments (e.g. VLC for streaming, Mobile IP). Nevertheless, we
already support most common tools such as Orbit Traffic Generator
and iperf.

We also believe that the educational potential of the AMazING
Panel is greatly increased with this functionality. In particular, be-
cause it allows the comparison of results obtained in different runs
and experiments integrated in the experiment interface, while en-
hancing repeatability in execution and simplifying complex tasks
such as node deployment, and network management.

6. CONCLUSION
The design of an experiment involves many steps and passes

through an iterative process until a scenario is successful described.
OMF alone only presents means to instrument a testbed, not a com-
plete set of experimentes, and it is not prepared for being used by
multiple experimenters through friendly web interfaces. A platform
was created to support the AMazING testbed focusing in expand-
ing OMF to become experimenter-friendly. This platform presents
a testbed management overlay system where experimentation is fa-
cilitated by hiding most of its complexity and proposing that users
focus more on the scenarios and results to obtain than on the con-
figuration and deployment of the experiment. It also introduces an
environment to create experiments which helps them to adapt better
to the whole platform, while allowing a stronger focus on their sci-
entific needs. Furthermore, it enables users to create experiments
in a methodological and repeatable way, with version control and
batch runs while being supplied with a usable interface to ease most
of these tasks.

In the near future we intend to enhance the solution developed,
adding support to a richer set of administrative tasks, as well as an

integrated monitoring module for the purpose of monitoring oper-
ational metrics (CPU usage, Temperature, etc...) and node status
(detect potential problems). Because only a subset of the OEDL
language is currently supported, we plan that, in a future version,
support for programmatically defined topologies and prototypes
can also be defined through the IEE GUI. Finally, enhancements
in the mechanisms handling disk images deployed are also envi-
sioned.

We believe that this approach can be replicated in other testbeds
and testbed management systems, greatly enhancing the attractive-
ness of the testbed usage.

7. ACKNOWLEDGEMENTS
We would like to thank Rui Ferreira, Carlos Gonçalves, André

Raínho and all the users that utilize the AMazING testbed for their
feedback.

8. REFERENCES
[1] Planetlab architecture: An overview. http://www.planet-

lab.org/files/pdn/PDN-06-031/pdn-06-031.pdf, February
2006.

[2] The NS-2 Manual. http://www.isi.edu/nsnam/ns/doc/,
October 2011.

[3] The OneLab Project. http://onelab.eu/, February 2012.
[4] J. P. Barraca, D. Gomes, and R. L. Aguiar. AMazING –

Advanced Mobile wIreless playGrouNd. In International
Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities Proceeding,
TRIDENTCOM ’10, pages 219–230, 2010.

[5] B. Blywis, M. Guenes, F. Juraschek, and J. H. Schiller.
Trends, advances, and challenges in testbed-based wireless
mesh network research. Mobile Networks and Applications,
15(3):315–329, 2010.

[6] R. Chertov, S. Fahmy, and N. B. Shroff. Fidelity of network
simulation and emulation: A case study of tcp-targeted
denial of service attacks. ACM Trans. Model. Comput.
Simul., 19:4:1–4:29, January 2009.

[7] P. De, A. Raniwala, S. Sharma, and T. Chiueh. Design
considerations for a multihop wireless network testbed. IEEE
Communications Magazine, 43(10):102–109, October 2005.

[8] P. De, A. Raniwala, S. Sharma, and T. Chiueh. Mint: a
miniaturized network testbed for mobile wireless research. In
24th Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE, volume 4 of
INFOCOM ’05, pages 2731 – 2742, march 2005.

[9] J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat,
K. chan Lan, Y. Xu, W. Ye, D. Estrin, and R. Govindan.
Effects of detail in wireless network simulation. In
Proceedings of the SCS Multiconference on Distributed
Simulation, pages 3–11, Phoenix, Arizona, USA, January
2001. USC/Information Sciences Institute, Society for
Computer Simulation.

[10] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb. Fast,
scalable disk imaging with frisbee. In Proc. of the 2003
USENIX Annual Technical Conf., pages 283–296, San
Antonio, TX, June 2003. USENIX Association.

[11] J. White, G. Jourjon, T. Rakotoarivelo, and M. Ott.
Measurement architectures for network experiments with
disconnected mobile nodes. volume 46 of TRIDENTCOM
’10, pages 350–365. Springer-Verlag, May 2010.

[12] G. Jourjon, T. Rakotoarivelo, and M. Ott. A portal to support
rigorous experimental methodology in networking research.

17

In T. Korakis, H. Li, P. Tran-Gia, and H.-S. Park, editors,
Proceedings Testbeds and Research Infrastructures for the
Development of Networks and Communities, TRIDENTCOM
’11, volume 90, pages 223–238. Springer Berlin Heidelberg,
2011.

[13] M. Lacage, M. Ferrari, M. Hansen, T. Turletti, and
W. Dabbous. Nepi: using independent simulators, emulators,
and testbeds for easy experimentation. SIGOPS Oper. Syst.
Rev., 43(4):60–65, Jan. 2010.

[14] E. Nourbakhsh, R. Burchfield, S. Venkatesan, N. Mittal, and
R. Prakash. Enhancing assert: making an accurate testbed
friendly. In Proceedings of the 6th ACM International
Workshop on Wireless network testbeds, experimental
evaluation and characterization, WiNTECH ’11, pages 3–10,
New York, NY, USA, 2011. ACM.

[15] M. Portoles-Comeras, M. Requena-Esteso,
J. Mangues-Bafalluy, and M. Cardenete-Suriol. Extreme:
combining the ease of management of multi-user
experimental facilities and the flexibility of proof of concept
testbeds. In International Conference on Testbeds and

Research Infrastructures for the Development of Networks
and Communities Proceedings, TRIDENTCOM ’06, pages
266–276, 2006.

[16] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar. Omf: a
control and management framework for networking testbeds.
SIGOPS Oper. Syst. Rev., 43(4):54–59, Jan. 2010.

[17] D. Raychaudhuri, M. Ott, and I. Secker. Orbit radio grid
tested for evaluation of next-generation wireless network
protocols. In Proceedings of the First International
Conference on Testbeds and Research Infrastructures for the
DEvelopment of NeTworks and COMmunities,
TRIDENTCOM ’05, pages 308–309, Washington, DC, USA,
2005. IEEE Computer Society.

[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems
and networks. In Proc. of the Fifth Symposium on Operating
Systems Design and Implementation, volume 36, pages
255–270, Boston, MA, Dec. 2002. USENIX Association.

18

