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Abstract

Microvesicles (MVs) are small spherical fragments of plasma membrane between 50 
and 1000 nm in diameter. MVs arise through direct outward budding and fission of the 
plasma membrane. As almost all cells, human red blood cells (RBCs) are able to release 
MVs into extracellular environment under stimulating or storage conditions. Recently, 
it has been known that MVs not only play a role in homeostasis but also have diverse 
functions in cell-cell interactions and in the pathogenesis of diseases. In this chapter, 
the formation and release of MVs from human RBCs have been described. In addition, 
MVs have demonstrated to be potential vehicle for transport of nucleic acid and other 
molecules to the target cells. Although RBC-derived MVs are potential material for the 
development of delivery systems, it is still a great challenge to the clinical application. 
Future research should pay more attention to MVs as biological targets for diagnosis and 
practical therapeutics of cancer and other diseases.

Keywords: microvesicles, red blood cell, exosomes, nucleic acid delivery, THP-1 cells, 
endothelial cells, transfection

1. Introduction

Extracellular vesicles (EVs) are spherical fragments released from biological membranes of 

various cell types under both physiological and pathological conditions. So far, many terms 

have been used to describe EVs, such as exosomes, microvesicles (MVs), membrane micropar-

ticles, ectosomes, and apoptotic bodies. Recently, based on their size and origin, EVs are classi-

fied as exosomes, MVs, and apoptotic bodies. Under stimulating or storage conditions, human 
red blood cells (RBCs) release EVs. This chapter focuses on the formation and release of MVs 
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from human RBCs and considers the isolation and characterization of MVs in order to apply 

MVs as potential vehicles for nucleic acid delivery. Similar to EVs released from nucleated 

cells, MVs from human RBCs carry biomarkers originated from plasma membrane and also 

microRNAs but not DNA. These properties suggest that MVs can be used as potential vehicles 

to transport proteins, nucleic acids, or signal molecules. While the understanding of the bio-

genesis of MVs in human RBCs and their physiological role remains limited, accumulating 

data suggest that MVs may be applied in cancer therapy. This chapter reviews our current 

knowledge pertaining to MVs released from human RBCs. It describes the formation and bio-

logical properties of MVs and mentions the potential application of MVs as a molecular vehi-

cle for drug and nucleic acid delivery. Furthermore, it gives an introduction in the application 

of MVs for cancer treatment. In addition, MVs and exosomes released from other cell types 

are also taken into consideration to provide findings of the nature of the membrane-derived 
vesicles, their mechanism of action, and their possible role in biological processes both under 

in vitro and in vivo conditions.

2. Microvesicles and their biological considerations

Under physiological and pathological conditions, various cell types release small spherical 
fragments called membrane vesicles or extracellular vehicles (EVs). So far, many different 
terms such as ectosomes, MVs, shedding vesicles, apoptosomes, membrane microparticles, 

or apoptotic bodies have been used in a vast number of reports on EVs [1–8]. Fifty years ago, 

in 1967, Wolf first identified small procoagulant structures deriving from activated platelets 
in human blood and created the initial term “platelet dust” [9]. Twenty years later, in 1987, 

Johnstone described the vesicle formation during maturation of sheep reticulocytes in vitro 

[10]. These findings were seen as a milestone in EV research allowing further studies on their 
function at various physiological conditions and in certain diseases. Since then, EVs have been 

detected in different body fluids such as peripheral blood, urine, saliva, semen, cerebrospi-
nal fluid, synovial fluid, bronchoalveolar lavage, and bile. The mechanism of EV formation 
and the biochemical composition of EVs depend on cell types, physiological conditions, and 

the function of the cells from which they originate [11–16]. Recently, based on their size and 

biogenesis, EVs have been classified into exosomes, MVs, and apoptotic bodies. Exosomes 
are generally accepted to have size from 40 to 100 nm in diameter. They are secreted from 

endosomal compartments or multivesicular bodies of cells. In contrast, MVs including mic-

roparticles or membrane particles are larger in size varying from 50 to 1000 nm in diameter. 

The biogenesis of MVs arises through direct outward budding and fission of the plasma mem-

brane following different kinds of cell activation or during early state of apoptosis [11, 17, 18]. 

Distinct from exosomes and MVs, apoptotic bodies are much larger with 1–5 μm in diameter. 

They are formed by cell-membrane blebbing when the cells undergo apoptosis [7, 11, 19–21]. 

Three subtypes of EVs, namely exosomes, MVs, and apoptotic bodies, are shown in Figure 1. 

In fact, it is still a challenge to separate one EV type from another because of their overlapping 

biophysical characteristics. Nevertheless, some discriminating markers have been reported 

[22]. In this chapter, the term MVs will be used for MVs, microparticles, or membrane mic-

roparticles (MPs) and EVs for both exosomes and MVs.
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It has been reported that MVs are released from various types of activated or apoptotic cells 

including platelets, monocytes, endothelial cells (ECs), red blood cells, THP-1 monocytic cells, 

and granulocytes. MPs were also collected from the culture media, cell supernatants, and 

plasma by centrifugation at 20,000 g for 30 min. The average diameter of all types of MVs 

was varying much comparing different reports [19, 23–25]. The plasma MPs had the smallest 

size similar to MPs released from platelets and THP-1 cells, while MPs from monocytes were 

larger, and MPs from granulocytes and ECs were the largest ones. The data obtained from 

various reports indicate that the size of membrane MPs depends on the type of the cells from 

which they originate [23]. Although MVs have been discovered for years, the understanding of 

the mechanism of the formation as well as the biological roles of MVs is still a matter of debate. 
Recent reported findings led to advances of our understanding of the mechanism of formation 
and the role of MVs in many different diseases such as vascular diseases, cancer, infectious dis-

eases, diabetes mellitus, diabetes, inflammation, and pathogen infection [24]. Inhibition of the 

production of MPs may serve as a novel therapeutic strategy for some diseases, especially for 

cancer treatment [11, 23, 26, 27]. In the next part of this chapter, the biogenesis, properties, and 

biological function of MVs released from human red blood cells (RBCs) are mainly addressed.

Figure 1. Potential vesicular structures of circulating DNA. Depending upon the mechanism of release, three subtypes 

of EVs, namely, exosomes, MVs, and apoptotic bodies, are described [28]. The figure is taken from Rykova et al. [29].
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In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of inter-

cellular communication due to their capacity to transfer proteins, lipids, and nucleic acids, 

thereby influencing various physiological and pathological functions of both recipient and 
donor cells [30]. In addition, EVs also represent an important mode of intercellular communica-

tion by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, 

and RNA. Shortage of our knowledge of the molecular mechanisms for EV formation and lack 

of methods to interfere with the packaging of cargo or with vesicle release leads to a difficulty in 
identification of their physiological relevance in vivo [6]. EVs have been implicated in important 

biological processes such as surface-membrane trafficking and horizontal transfer of proteins 
and RNAs among neighboring cells, and distant tissues. Therefore, they play an important role 

in cell-to-cell communication under both physiological and disease conditions [11].

It is evident that direct investigation of the biological function of MVs in vivo is extremely 

complicated. Most of the studies regarding physiological roles of exosomes or MVs have to 

carry out in vitro, especially in the context of the immune system and cell-cell communica-

tion [31]. In 1996, a pioneering study by Raposo and colleagues demonstrated that exosomes 

derived from both human and mouse B-lymphocytes spread antigens bound to the class II 

major histocompatibility complex (MHC). These vesicle-associated complexes were capable 

of activating MHC class II leading to a restriction of T-cell responses. This finding suggests a 
role for exosomes in antigen presentation in vivo [32]. Furthermore, B cell–derived exosomes 

specifically interacted with the membrane of follicular dendritic cells derived from human 
tonsils. This finding is also an example for further supporting the idea of the active secretion 
of exosomes in vivo [33]. In addition, Montecalvo and colleagues demonstrated that different 
subsets of miRNAs are exchanged between follicular dendritic cells through exosomes at 

different maturation stages [34].

In a study, Wu showed that cancer cells release MVs and exosomes under both in vivo and in 

vitro conditions. MVs and exosomes carry different types of molecules on their surfaces, which 
are seen as biomarkers [24]. That is the reason why MVs or exosomes are used in cancer diag-

nosis. For example, circulating levels of MVs are elevated in gastric cancer patients. In these 

patients, MPs released from CD41a-positive platelets are significantly increased in stage IV 
compared with stage I or II/III [35]. It has been recently demonstrated that MVs released by cells 

represent another important mediator of cell-cell communication and are also an integral part 

of the intercellular microenvironment [3, 36, 37]. This opens a new scenario to understand sig-

nal and molecule transfers between cells even at long distances. For human RBCs, released MVs 

in both resting state (storage at 4°C) and stimulating conditions showed the ability to adhere 

together. It might be suggested that MVs are involved in the blot clot formation and also play 

a substantial role in the aggregation of stimulated RBCs [38, 39]. Further investigations have 

to be carried out to understand the role of MVs in both physiological and disease conditions.

It has been described that blood cells are able to generate a great variety of EVs. First iden-

tified in 1967, MVs are cell plasma membrane-derived small vesicles which are 0.1–1 mm 
in diameter. Later, the formation and release of EVs have been demonstrated in platelets, 

monocytes, endothelial cells, RBCs, and granulocytes [9]. EVs have been thought to serve as 

a disseminated storage pool of bio-effectors that circulate and play important roles in physi-
ological homeostasis of the body under both physiological and disease conditions. Recent 
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functional assays and analysis of MVs by multicolor flow cytometry have shown that MPs 
possess a broad spectrum of biological activities and may play an important role in multiple 

cellular processes including intercellular communication, immunity, apoptosis, and homeo-

stasis [24, 40]. In case of human RBCs, MVs have a phospholipid bilayer structure expos-

ing coagulant-active phosphatidylserine and expressing various membrane receptors [40]. It 

should be mentioned that mature human RBCs do not contain DNA but RNAs including 

mRNA and other non-coding RNAs. Therefore, it suggests that MVs from human RBCs may 

not only be involved in thrombosis, amplifying systemic inflammation or cell adhesion, but 
also in cell-cell interactions in term of nucleic acid transfer [38, 39, 41, 42].

Recently, it has been reported that negatively charged membranes of erythrocyte-derived 

microparticles display procoagulant activity [38, 39]. However, relatively little is known about 
the possible fibrinolytic activity of such MVs. This issue becomes particularly important dur-

ing RBC storage, which significantly increases the number of MVs [43]. Regarding the ability 

of carrying nucleic acid, recently, a novel system composed of MVs from RBCs was created for 

efficient delivery of ultra-small superparamagnetic iron oxide particles into human bone mar-

row mesenchymal stem cells for cellular magnetic resonance imaging in vitro and in vivo. It 

showed that MVs are highly bio-safe to their autologous (exosomes) as manifested by cell via-

bility, differentiation, and gene microarray assays. The data suggest that MVs could be used 
as potential intracellular delivery vehicles for biomedical applications [44]. More recently, a 

study of the function of MVs from human RBCs infected with Plasmodium falciparum para-

sites showed that infected RBC-derived MVs contain miRNAs that can modulate target 

genes in recipient cells. In addition, multiple miRNA species in EVs have been identified. 
They are bound to Ago2 and form functional complexes. The infected RBC-derived MVs were 

transfected successfully into endothelial cells repressing miRNA target genes and changed 

 endothelial barrier properties [45]. In addition, role of RBCs-derived MVs in malaria response 

showed that the development of MVs by Plasmodium sp. has a major impact in disease out-

comes and serves as an integral part in controlling stage switching in its life cycle. Clinical 

studies have highlighted elevated levels of EVs in patients with severe malaria disease, and 

EVs have been linked to increased sequestration of infected RBCs to the endothelium [46].

3. Formation and release of MVs from human red blood cells

It has been known that during their 120-day of lifespan, RBCs lose approximately 20% of 

their volume through vesicle release, whereas their hemoglobin concentration increases by 

14% [47]. Although a number of mechanisms explaining the formation of MVs have been 

proposed, the creation and the role of RBC microparticles are far from being completely 

understood. It has been pronounced that the formation of MVs involves the activity of certain 

components of the plasma membrane as well as cytoskeletal proteins [19]. Under physiologi-
cal conditions, the phospholipids of the cell membrane are distributed asymmetrically. In 

particular, phosphatidylcholine (PC) and sphingomyelin (SM) are predominantly present in 

the outer membrane leaflet, while phosphatidylserine (PS) and phosphatidylethanolamine 
(PE) are located predominantly in the inner membrane leaflet. This asymmetric distribution 
is controlled by a group of enzymes, flippase, floppase, and scramblase [48–51]. The flippase 
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is responsible for the transfer of PE and PS from the outer to the inner leaflet of the cell mem-

brane, while the floppase has been shown to have the opposite effect. Their activity is regu-

lated by ABCC1 protein, also known as a multidrug-resistant protein 1 [19]. In contrast, the 

distribution of the phospholipid PS is determined by the activity of the scramblase. In human 

RBCs, the mechanism of the formation of MVs has been investigated and described by many 

research groups [50–54].

The integrity of RBC membrane is supported from many components of cytoskeleton structure, 

e.g., hexagonal actin–spectrin lattice anchoring with other proteins such as glycophorin A and 
band 3 protein [55]. It has been described that the vesiculation would be a mean for RBCs to get 

rid of specific harmful agents such as denatured hemoglobin, C5b-9 complement attack complex, 
band 3 neoantigen, and IgG that tend to accumulate in RBCS or on their membrane during their 

lifespan [22]. An influx of Ca2+ through nonspecific cation channels leads to the activation of sev-

eral enzymes such as calpain or scramblase leading to the externalization of phosphatidylserine 

of the RBC membrane and degradation of cytoskeleton proteins and aggregation of band 3 lead-

ing to vesiculation [41, 56]. In our recent study, the kinetics of membrane blebbing and formation 

of MVs were characterized by using annexin V-FITC and fluorescence microscopy. The kinetics 
of budding and shedding of MVs were captured in every 30 s. Treatment of RBCs with a calcium 

inonophore (as positive control), lysophosphatidic acid (LPA), or phorbol-12-myristate-13-ace-

tate (PMA) led to the externalization of PS at the outer membrane leaflet of RBCs as well released 
MVs. Moreover, it was interesting to see that a stimulation of RBCs by PMA in the absence of Ca2+ 

also led to the release of MVs [17, 41]. This suggests that the formation of MVs is also under the 

control of a calcium-independent pathway related to the activity of the PKC (Figure 2).

Based on the current understanding, a scheme with the interaction of protein components in 

the cells has been proposed. The proposed mechanism for the budding and shedding of MVs 

in human RBCs is shown in Figure 3.

Although many factors influence the formation and release of MVs, Ca2+ and PKC play essen-

tial roles in the process of MV formation [17, 19, 41]. An increase of intracellular calcium 

inactivates the flippase and activates the scramblase as well as the floppase leading to a reor-

ganization of phospholipids in the cell membrane [21, 22, 41, 53, 54, 57]. The activation of cal-

pain and degradation of actin filaments leads to breaking of bonds between the cytoskeleton 
filaments and the phospholipids. The weakening of the protein fibrils of the cytoskeleton 
initiates the budding and shedding of MVs [52, 58–60]. It has been demonstrated that reorga-

nization or disruption of the cytoskeleton plays an important role in the release of MVs [36]. 

Another study showed that the activation of the scramblase requires a larger increase of the 

calcium concentration and therefore it is considered as being less important for the forma-

tion of MVs [19, 50]. By using a special compound R5421, a scramblase-specific inhibitor, it 
has been shown that vesicle shedding was attenuated in human RBCs [52, 61]. By adding 

ascorbic acid to RBCs during storage, a significant decrease in MVs formation was observed 
[62]. In our study, the MVs formation was observed within 1 hour when RBCs were treated 

with the PKC activator, phorbol-12-myristate-13-acetate (PMA), even in the absence of Ca2+. 

In addition, the kinetics of the formation of MVs in human RBCs has recently investigated by 

real-time measurement using fluorescence microscopy [17].
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Figure 2. Bright field imaging of the formation of MVs in human RBCs depending on time (up to 120 min) stimulated 
by 6 μM PMA in the presence of 2 mM Ca2+ (upper row) and in the absence of Ca2+ and with 2 mM EGTA (lower row).

Figure 3. Proposed mechanisms of the formation of MVs in human RBCs. Lysophosphatidic acid (LPA) or prostaglandin 

E2 (PGE2), which are two typical substances released from activated platelets, activate a nonselective voltage-dependent 

cation (NSVDC) channel. The opening of this channel leads to an increase of the intracellular Ca2+ content. An increase of 

the intracellular Ca2+ level activates the phospholipid scramblase (PLSCR) and the protein kinase C (PKC). The activated 

PKC moves from the cytoplasma to the membrane. The amino-phospholipid translocase (APLT) is inhibited by high 

concentrations of intracellular Ca2+, PKC, and ATP depletion. The PKC also activates and opens Cl− channels leading to 

an efflux of Cl−. The efflux of Cl− leads to an intracellular acidification. Under stress conditions, ceramide is formed and 
caspases are activated. Calpains are a family of calcium-dependent non-lysosomal cysteine proteases activated by Ca2+. 

When caspase and calpain are activated, they are able to break down the cytoskeleton by a proteolysis activity leading 

to membrane blebbing and vesicle formation [41].
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4. Content and biomarkers of microvesicles

4.1. Content of microvesicles

In recent years, numerous works have focused on providing a comprehensive characteriza-

tion of the content of exosomes and MVs. Recently, information about molecules including 

proteins, mRNAs, microRNAs, or lipids observed within these vesicles has been deposited 

in EVpedia and Vesiclepedia [48, 63, 64]. By the end of 2015, Vesiclepedia stores records for 

92,897 proteins, 27,642 mRNAs, 4934 miRNAs, and 584 lipids from 538 studies in 33 differ-

ent species [48]. These numbers suggest that exosomes and MVs contain an extremely broad 

and heterogeneous range of molecules. Although these databases are extremely valuable, 

it still needs more evidences to elucidate the biological role of MVs and exosomes because 

the processes of biogenesis and packing molecules into these vesicles are complicated. It 

should be also mentioned here that the interpretation of the content of exosomes and MVs 

may be influenced or interfered by artifacts in sample preparation, isolation procedures, and 
analysis methods [65]. In comparison to MVs, exosomes are vesicles secreted upon fusion of 

multivesicular endosomes with the cell surface. Thus, exosomes transfer not only membrane 

components but also nucleic acid among different cells. Therefore, in order to understand 
the function of exosomes, it is necessary to have more evidences at subcellular compartments 

and mechanisms involved in the biogenesis and secretion of these vesicles [66]. Moreover, for 

many years, it is commonly thought that human mature RBCs do not contain nucleic acids 

because they are terminally differentiated cells without nuclei and organelles. However, 
transcriptomic analysis of a purified population of human mature RBCs from individuals 
with normal hemoglobin (HbAA) and homozygous sickle cell disease (HbSS) showed that 

there was a significant difference in microRNA expression in HbAA in comparison with 
HbSS [67]. This finding is very important to understand that MVs released from human 
mature RBCs carry nucleic acid and are likely involved in the biological processes of cell-cell 

communication and nucleic acid delivery.

4.2. Biomarkers on microvesicles

It is known that the antigens occurring on MVs are typical for cells from which the MVs are 

released. Depending on the origin of formation, MVs contain numerous markers that deter-

mine their origin, e.g., CD41 for platelets, CD235a and Ter-119 for RBCs [55, 68], and CD11c 

for dendritic cells [69]. Additionally, MVs released from B cells, dendritic cells, and melanoma 

cell lines are richer in sphingomyelin, rather than in cholesterol which are also characteris-

tics of their parental cells [70]. Some glycoproteins on the surface of RBCs expressed at low 

and variable levels protect RBCs from damage and elimination. These include complement 

inhibitors, such as DAF and CD59, and signaling molecules such as CD47 [71, 72] and SHPS-

1, a multifunctional transmembrane glycoprotein [72]. These makers inhibit phagocytosis of 

RBCs by macrophages because CD47 prevents this elimination by binding to the inhibitory 

receptor signal regulatory protein alpha (SIRPα) [73]. Therefore, these markers also exist on 

the surfaces of MVs released from RBCs [11, 74, 75]. In human RBCs, if the released MVs carry 

CD47 on their surface, they may be avoided from the clearance by macrophages [76, 77].
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Studies on proteomics of MVs released from human RBCs were first carried out by Bosman 
presenting pioneering investigations [78–80]. In these series of studies, membranes of intact 

RBCs and MVs were compared, allowing the identification of several proteins differentially 
expressed between the two types of samples. Together with further studies on the oxidation 

and the depletion of spectrins and cytoskeletal proteins such as proteins 4.1 and 4.2, band 3 

followed by the time course of storage, it has been concluded that RBCs have the ability to get 

rid of harmful materials by vesiculation such as denatured hemoglobin, C5b-9 complement 

attack complex, and band 3 neoantigen [81, 82]. In human RBCs, the formation of MVs has 

been described as part of the RBC senescence process [47, 78] and also proposed as part of an 

apoptosis-like form of these cells [20, 21].

It should be also mentioned that due to the variation of the lateral composition of the cell 

membrane, MVs originated from the same cell may contain different proteins or lipid compo-

nents. Proteomic analyses have revealed that the spectrum of proteins found in MVs released 

from cultured cells is influenced partly by the stimulating conditions, which were used to 
trigger the vesiculation [36]. A study on the components of proteins in human RBC-derived 

MVs by two-dimensional gel electrophoresis discovered that the protein components in MVs 

under various stimulating conditions (cold storage and increased intracellular calcium level) 

are different. This was especially the case for sorcin, grancalcin, PDCD6, and particularly 
annexins IV and V [83]. Therefore, the molecular pathways to form MVs are different under 
both in vivo and in vitro conditions. In addition, this finding suggests that MVs may be also 
classified based on the presence of proteins. Recently, a method has been reported using car-

boxyfluorescein diacetate succinimidyl ester, which allows to detect the phospholipid com-

ponent PS in the outer membrane leaflet of MVs that fail to react with annexin V [84]. This 

study is very important for screening blood products during storage in blood bank because 

the formation of MVs with PS in the outer membrane leaflet may lead to thrombus formation 
or aggregation of RBCs or phagocytosis.

It seems relatively simple to isolate EVs from human plasma with available protocols 

described elsewhere. However, to isolate MVs from RBCs, it requires a step to separate only 

RBCs without contamination of platelets or white cells. Upon the purpose of study, MVs can 
be collected by differential centrifugation. Menck and colleagues isolated and distinguished 
MVs and exosome from human blood cells using Western blot analysis. The data revealed that 

MVs pelleted from EDTA-anticoagulated plasma samples by differential centrifugation were 
100–600 nm in diameter. MVs can be distinguished from exosomes by detecting the presence 

of proteins tubulin, actinin-4, or mitofilin, while antibodies for CD9 and CD81 were used as 
markers for exosomes [85].

5. Stability of microvesicles

Jayachandran and colleagues isolated MVs from platelet-free plasma (PFP) and platelet poor 

plasmas (PPP) and stored the MVs at either −40 or −80°C for more than a year. No effect on 
MV counts irrespective of initial counts was observed after three freeze thaw cycles of PFP 

[86]. Another investigation on the stability of MVs after different times of storage at 4 and 

Microvesicles Released from Human Red Blood Cells: Properties and Potential Applications
http://dx.doi.org/10.5772/intechopen.69599

145



−80°C by using flow cytometry analysis showed that there was no significant difference by 
counts and size distribution of MVs stored at 4°C for 3–4 days or 1 week and MVs frozen at 

−80°C for 1 or 4 weeks [87]. In another study, Gallart showed that plasma containing exo-

somes and MVs frozen at −150°C can keep vesicles intact for long time [88]. Investigation 

was carried on the effect of short-term storage and temperature on the stability of exosome 
by incubating at temperatures ranging from −70 to 90°C for 30 min. Immunoblot results 
showed that all exosome-associated proteins incubated at 90°C were mostly degraded for a 

short period of time. The effect of long-term storage was carried out by incubating isolated 
exosomes for 10 days at wide range of temperature from −70°C to room temperature (RT). 
It revealed that protein and RNA amounts were significantly reduced at RT compared with 
data obtained at −70 and 4°C. Incubation at 4°C and RT resulted in major loss of CD63, and 
decreasing level of HSP70 was shown only at RT. In addition, flow cytometry result showed 
that exosome population became more dispersed after RT incubation for 10 days compared 

with −70°C incubated or freshly isolated exosomes [88]. Study on exosomes isolated from 

urine defined that freezing at −20°C caused a major loss of the integrity of these exosomes. 
In contrast, storage at −80°C increased the recovery almost complete (86%). Vortexing after 
thawing resulted in a significantly increased recovery of exosomes in urine frozen at −20 
or −80°C, even if it was frozen for 7 months [89]. A similar study has been done to evalu-

ate the stability of MVs released in whole blood samples under the influence of different 
anticoagulants. Analysis of MVs stored at 4°C and RT using nanoparticle tracking analysis 

(NTA) showed that total MV counts increased after 24 hours in sodium citrated or heparin-

ized blood. The presence of EDTA showed stable platelet-derived MVs and RBC-derived MV 

counts at RT over a period of 48 h [90].

6. Isolation and characterization of microvesicles

Currently, there is no standard protocol for isolation of EVs for either therapeutic applica-

tion or basic research [91]. However, a conventional method to obtain EVs is ultrafiltration 
followed by differential centrifugation. Ultrafiltration and size-exclusion liquid chromatog-

raphy is suitable for EV isolation at large scale [92]. In fact, many research groups use dif-

ferential centrifugation combined with filtration to isolate and define the MVs or exosomes. 
For example, a centrifugation force from 10,000 to 20,000 g is commonly applied to pellet MVs 

and from 70,000 to 100,000 g or even higher for exosomes. Although the centrifuge force is 

indicated in a number of publications, it is still varying among research groups. Nevertheless, 

there is always an overlap in the size of collected MVs or exosomes when analyzed by using 

dynamic light scattering (DLS) method. Therefore, the procedure for sample preparation and 
also isolation of MVs should be simplified as much as possible with minimal steps. In general, 
four critical steps should be taken into consideration: (i) removal of intact cells and large cell 

debris by low-speed centrifugation of the extracellular fluid (200–1000 g for 3–15 min); (ii) pel-
leting of large, secreted vesicles from the cell-free supernatant by medium-speed centrifuga-

tion (10,000 g for 30 min, a minimum of 2 times); (iii) collection of small, secreted vesicles by 
ultracentrifugation at 70,000–100,000 g, and (iv) noting all other parameters and type of rotors 

used in experiments [7].
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At present, there is still a lack of studies assessing EV products after periods of storage. 

However, our unpublished investigations showed that the polydispersity (PI) of MV 

increased proportionally with the storage time at −20°C in deionized water. Vortexing was 
useful to recover MVs after storage. Further studies have to be done investigating the stabil-

ity and the polydispersity of MVs in different solvents or buffers. The results of such analyses 
will facilitate defining provisional shelf-life times of EV-based products. The materials used 
for sample preparation, isolation, and storage should also be taken into consideration, espe-

cially for human therapeutics because solvents and buffers have a strong influence on the 
stability of EVs, especially after storage [93]. There is a wide range of solvents from water, 

sodium chloride solution, to phosphate-buffered saline (PBS), Tris-HCl, HEPES, and glyc-

erol. However, glycerol and dimethyl sulfoxide (DMSO) showed a significant influence to 
the stability of EVs [94]. For investigation of the function and physical properties of EVs, 

isotonic buffers are recommended to prevent pH shifts during storage as well as during 
freezing and thawing procedures. Although PBS or other phosphate-containing buffers are 
widely used, it has to be considered to avoid calcium even at a very low concentration due 

to the formation of calcium phosphate aggregated in the buffer as nanoparticles, which can 
interfere with EV quantification assays [93]. Storage vials can also affect the quality of EVs 
due to unexpected or irreversible binding to certain materials. Thus, vials should be carefully 

selected to eliminate the factors that influence the concentration or integrity of stored EVs 
[93, 95].

So far, a variety of techniques have been commonly used to study MVs released from 

human RBCs. Traditionally, nanoparticle analysis is available to analyze the particles 

at nanosize including flow cytometry, DLS, and electron microscopy. Most widespread 
is flow cytometry; however, commercial flow cytometry typically has a lower practical 
size limit (for polystyrene beads) of around 300 nm at which point the signal is hard to 

distinguish clearly from the baseline noise level or so-called “dust” [96]. Fluorescence 

labeling can be efficient to detect particles at lower sizes. DLS has also been used, but 
being an ensemble measurement, the results comprise either a simple z-average (intensity 

weighted) particle size and polydispersity (PI), or a very limited-resolution particle size 

distribution profile. Electron microscopy is a useful research tool for studying micro- and 
nanovesicles but at high running costs and extensive sample preparation [22]. Atomic 

force microscope (AFM) is also an applicable method to measure the size and also the 

morphology of MVs [17]. An alternative approach for measuring EVs is using the NTA 

method. In NTA, the size is derived from the measurement of Brownian motion of EVs in 

a liquid suspension [22].

In recent study, under stimulating conditions, MVs from RBCs were collected by differential 
centrifugation and characterized by using SEM, AFM, and DLS. Data from the measurement 

using a Zetasizer (Nano ZS) for both size and zeta potential showed that the sizes of two sub-

populations of MVs were 125.6 ± 31.4 nm and 205.8 ± 51.4 nm. There was an overlapping in the 

size of the two populations in the region from 150 to 200 nm. Zeta potential of released MVs 

was measured in different solvents showing negative values from −40 to −10 mV depending 
on the solvent used [17]. The morphology and size of MVs released from human RBCs were 

also analyzed using AFM and SEM (Figure 4).
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7. Potential applications of microvesicles

The structural feature that makes EVs especially attractive for drug delivery purpose is due to 
their analogy to liposomes. This means that EVs originated from an organism can be used as 

conventional liposome with an advantage when they are administered to the same organism 

in vivo. EVs are able to deliver molecules through hard-to-cross barriers like the blood-brain 

barrier. Therefore, EVs can be used for loading with drugs or other bioactive molecules and 

then work as efficient delivery systems. Several strategies are described for loading small 
molecule and genetic materials into liposomes; however, most of these strategies are not fea-

sible for exosomes [97–99]. Two major strategies have been applied to load small molecules 

or drugs to EVs. The first possibility is the loading after EV isolation, and the second is the 
loading during EV biogenesis. In addition to loading, labeling of MVs is required to detect or 

investigate the efficiency of delivery to target cells and the expression of protein or function of 
miRNAs in recipient cells. So far, several techniques and methods have been applied to label 

MVs. Most common methods are incubation with fluorescence lipophilic dye, biotinylated 
radioisotope, substrate of luciferase (for in vivo trial), streptavidin-conjugated fluorescence 
dyes, or other modified proteins [100].

7.1. Microvesicles and nucleic acid transport

When nucleic acid (DNA, RNA) is directly introduced to the body, it will be rapidly removed 

out of the circulation via degradation by nucleases or by kidneys before reaching the target 

Figure 4. Topographical imaging of stimulated RBCs and released MVs. Glutaraldehyde-fixed samples of PMA-
stimulated RBCs using AFM (A) and SEM (D); MVs scanning using AFM (B, C) and SEM (E) [17].
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 tissues or cells of interest. Recent evidence has shown that different kinds of RNAs are trans-

ported by EVs during cell-cell communications. It has been shown that miRNAs are enriched in 

EVs in form of miRNA-RISC complexes and transferred from exosomes and MVs to many dif-

ferent cells. As such, EVs can be applied as a new attractive alternative approach for therapeutic 
miRNA delivery [14]. Recently, a study showed that embryonic stem cell MVs likely are use-

ful therapeutic tools for transferring mRNA, microRNAs, protein, and siRNA to cells and also 

important mediators of signaling within stem cell niches [101]. It has been known that the lipids, 

proteins, mRNA, and microRNA (miRNA) delivered by these vesicles change the phenotype 

of the receiving cells [11, 102]. The ability to encapsulate and deliver different types of nucleic 
acid of both exosomes and MVs has been investigated. The results showed that MVs delivered 

functional plasmid DNA, but not RNA, whereas exosomes from the same source did not deliver 

functional nucleic acids. These results have significant implications for understanding the role 
of EVs in cellular communication and also the role of MVs for development of tools for nucleic 

acid delivery [11]. MVs from human RBCs infected with P. falciparum parasites contain miRNAs 

that can modulate target genes in recipient endothelial cells and serve as an integral part in con-

trolling stage switching in the life cycle of the parasites [45, 46]. A typical example of application 

of EVs as vehicle for drug transport is the loading of curcumin, chemotherapeutic compounds 

paclitaxel and doxorubicin to EVs using electroporation. After transfecting loaded EVs to 

implanted breast tumor tissues, the results showed that the loaded EVs suppressed the growth 

of tumors without causing any toxicity [103]. As such, curcumin-loaded EVs have already made 

their way into the clinic to specifically suppress the activation of myeloid cells [93, 104].

7.2. Transfection of nucleic acid mediated by microvesicles

The strategy for cancer treatments is specifically killing malignant cells by vehicles, which 
carry appropriate substances or compounds to the target cells. Unfortunately, so far, it was 
not successful to cure the disease. The current concept in tumor treatment is to control the 

microenvironment of the tumor because the tumor is not only composed of malignant cells 

but also consists of other groups of cells that work together [105, 106]. Future research direc-

tions should draw more attention to EVs as biological targets for diagnosis, prognosis, and 
therapy of cancer. In addition, EVs participate and play a significant role in cell communica-

tion, and therefore they may become a valuable drug delivery system [107]. So far, a vast 

number of investigation on exosomes in carrying and transport of nucleic acid to target cells 

have been carried out; however, more information about using MVs to carry nucleic acid for 
transfection to cultured cells is required. Recently, an investigation of the capacity of MVs to 

deliver functional nucleic acids was carried out by using recipient HEK293FT cells cultured 

with exosomes and MVs derived from transfected donor cells with the fusion protein Luc–

RFP as reporter. The data revealed that only loaded MVs led to Luc–RFP expression in the 

recipient HEK293FT cells, even though both MVs and exosomes encapsulated the reporter 

proteins. After the MV-mediated transfer, the bioluminescence signal increased over 3 days 

that was not observed in case of exosomes. The finding suggested that nucleic acids were 
delivered and led to a de novo expression of reporter proteins in recipient HEK293FT cells. By 

comparison with HEK293FT cells transfected by lipofectin with Luc-encoding pDNA, there 

was a different time course of Luc expression of the two methods. This observation suggested 
that the mechanism of MV-mediated delivery of nucleic acids and protein expression may be 
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different from that of cationic liposome-based delivery of pDNA, which is typically used for 
transfection to culture cells [11]. Although this finding was very important to confirm the abil-
ity of MVs in carrying nucleic acid and transfection to recipient KEK293FT cells, experiments 

with different cell types are required. Another example is the study using MVs shed from the 
monocytic cell line THP-1 enriched with miR-150 to transfect to endothelial cells promoting 

angiogenesis of these cells [108]. MicroRNA-223 delivered by platelet-derived MVs promotes 

lung cancer cell invasion via targeting tumor suppressor EPB41L3 [109]. Another example 

of using MVs in nucleic acid delivery was the work of Zhang to prove the inhibitory effect 
of TGF-β1 siRNA delivered by mouse fibroblast L929 cell-derived MVs (L929 MVs) on the 
growth and metastasis of murine sarcomas 180 cells both in vitro and in vivo. By comparing 

to the same concentration of free TGF-β1 siRNA, TGF-β1 siRNA delivered by L929 MVs effi-

ciently decreased the level of TGF-β1 in the recipient tumor cells [110]. Other works dealing 

with miR-150 proved that MVs can be an excellent carrier for nucleic acid delivery [108, 110]. 

Taken all together, MVs carrying microRNAs can influence the recipient cell phenotypes.

7.3. Efficiency of nucleic acid transfection by microvesicles

Protein expression induced by MV-mediated pDNA delivery is a slower process than after 

transfection using cationic lipid complexes. It may be due to that fact that loaded MV need 

to fuse with the endosomal membrane before releasing nucleic acid contents into the cytosol. 

Studies on EVs from transiently transfected cells may be confounded by a predominance of 

pDNA transfer. Compare the efficiency of transfection of MVs loaded with pDNA or RNA, 
it revealed that MVs functionally deliver DNA much better than RNA. Further studies of the 
nature of this transfer are necessary to understand the specificity of pDNA loading pathways 
and delivery mechanisms [11]. So far, small RNAs have been successfully loaded into MVs 

for a variety of delivery applications; however, the potential use of MVs for DNA delivery has 
been abandoned. By using electroporation, Lamichhane investigated the ability of loading MVs 

with linear DNA. Loading efficiency and capacity of DNA in MVs were dependent on DNA 
size as well as on the conformation of DNA. By using this approach, linear DNA molecules 

with less than 1000 bp in length were more efficiently associated with MVs compared to larger 
linear DNAs and pDNA. In addition, MV size was also influencing the potential of DNA load-

ing, as larger MVs encapsulated more linear and plasmid DNA than smaller vesicles and exo-

somes. These results demonstrated critical parameters that define the potential use of MVs for 
gene therapy [111]. Another example is the application of EVs isolated from media of cultured 

cardiomyocytes derived from adult mouse heart. These EVs, which were transfected to target 

fibroblasts, led to a change in the gene expression patterns in comparison with controls [112]. 

Recently, a study on delivery of a therapeutic mRNA or protein via MVs for treatment of can-

cer was carried out. Genetically engineered MVs by expressing high levels of the suicide gene 

mRNA and protein–cytosine deaminase (CD) fused to uracil phosphoribosyl transferase (UPRT) 
in MV from HEK-293T cells. Isolated MVs from these cells were used to treat pre-established 

nerve sheath tumors (schwannomas) in a mouse model. MV-mediated delivery of CD-UPRT 
mRNA or protein by direct injection into schwannomas led to regression of these tumors. This 

finding suggests that MVs can serve as novel cell-derived vehicle to effectively deliver thera-

peutic mRNA/proteins for treatment of diseases [113]. Taken all together, the results from these 

studies suggest that MVs can be used as new vehicles for nucleic acid transfer.
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7.4. Development of microvesicle-based delivery systems

Although EVs were applied to humans already in the early 2000s for the treatment of cancer 

patients, no recommended standard techniques have been established for the production of 

EVs at clinical grade. Several manufacturing and safety considerations need to be addressed 

and appropriate quality controls have to be implemented and validated. It remains a chal-

lenge to set up platforms for the production of EVs at clinical grade that fulfill all necessary 
criteria for the successful approval of subsequent EV-based clinical trials [93]. The most rel-

evant issue to be addressed at the various levels of the developmental processes is to bring 

MV-based therapeutics into the clinical application in treatment of diseases including cancers. 

It is obvious that MVs are part of parental plasma cells; therefore, their antigenicity is mainly 
determined by protein and lipid components, profile of miRNAs and mRNAs, and also other 
factors originated from the parent’s cells. Similar to exosomes, MVs are able to overcome 

limitations of cell-based therapeutics including safety, manufacturing, and availability. With 

a capability of crossing the blood-brain barrier, which classically acts as a major hurdle in the 

administration of therapeutic agents for targeting cells and tissue, especially of the central 

nervous system, MVs can be applied for the transport of molecules to target cells or tissues 

[114, 115] The presence of biomarkers on the surface may drive the loaded MVs to the specific 
target and help them to protect their cargoes from degradation [65, 116]. The standard pro-

cedure for isolation, purification, and storage of EVs at large scale should be established for 
certain cell types for trials at both in vitro and in vivo levels.

Another important issue in application of MVs is how to load bioactive compounds into 

these vesicles. For example, in order to load MVs with therapeutic small RNA molecules, 

two encapsulation approaches commonly used are post-loading or pre-loading. Post-loading 

method is using a specific method to introduce RNA into EVs (e.g., electroporation) while 
pre-loading is carried out during the EV formation (it is also called endogenous method that 

exploits the cellular machinery for small RNA loading into EVs). This endogenous method 

has been successfully used for the packaging of both siRNA and miRNA in EVs [99, 117, 118]. 

Functional delivery into recipient cells has been shown in several reports [119–121]. Several 

recent reports have shown functional siRNA delivery into recipient cells using EVs loaded by 

electroporation. However, the efficacy of this exogenous method has not been fully demon-

strated, and other research groups stated that the loading of EVs with miRNA by using this 

method was not successful [120, 122]. Therefore, further studies are needed to confirm the 
feasibility and efficiency of this method for EVs loading. Nevertheless, the feasibility of the 
method likely varies depending on the siRNA or miRNA species. Furthermore, the efficiency 
of the overexpression or the direct transfection of particular small RNA-loaded EVs to recipi-

ent cells is still the matter of concern.

8. Conclusion

MVs are able to carry macromolecules, especially nucleic acid, and play a key role in cellular 

communication. In near future, MVs may efficiently support for the conventional treatment 
of tumor or cancer, which are using chemotherapeutic drugs, radiation therapy, or surgery. 

Microvesicles Released from Human Red Blood Cells: Properties and Potential Applications
http://dx.doi.org/10.5772/intechopen.69599

151



Recent findings suggest that released MVs from human RBCs can be applied as novel treat-
ment for various diseases including cancer. Structurally, MVs contain various membrane 

receptors and also carry nucleic acids, proteins, or other molecules. With many advantages in 

overcoming many of the limitations of cell-based therapeutics including safety, manufactur-

ing, and availability, MVs may serve as cell-to-cell shuttles for carrying bioactive molecules 
to target cells. Therefore, MVs involve biological processes, especially the interaction with 

tumors or cancers. Human RBCs, with a large number of cells in the human body, can be 

easily collected without requiring cell culturing or sophisticated instrumentation. In addition, 

MVs released from RBCs can move to almost all tissues in the body without being hindered 

by any biological barrier. Therefore, MVs from human RBCs are potential candidates for the 

transport of nucleic acid and other bioactive compounds to the target cells. However, to make 

MVs to become applicable and efficacious in therapeutic treatments, underlying functions of 
MVs still need to be better understood. Future research directions should pay more attention 
to MVs as biological targets for cancer diagnosis, prognosis, and therapy that enable MVs as 

new source and of new material and promising approach for practical therapeutics.

Acknowledgements

The authors would like to thank the Vietnam National Foundation for Science and Technology 

Development (NAFOSTED) for the support under the grant number 106-YS.06-2013.16. Nguyen 

Duc Bach received this grant including the travel expenses for working in the group of IB.

Author details

Duc Bach Nguyen1*, Thi Bich Thuy Ly2 and Ingolf Bernhardt3

*Address all correspondence to: ndbach@vnua.edu.vn

1 Department of Molecular Biology, Faculty of Biotechnology, Vietnam National University 

of Agriculture, Hanoi, Vietnam

2 Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam

3 Laboratory of Biophysics, Saarland University, Saarbruecken, Germany

References

[1] Holme PA, Solum NO, Brosstad F, Roger M, Abdelnoor M. Demonstration of platelet-

derived microvesicles in blood from patients with activated coagulation and fibrino-

lysis using a filtration technique and western blotting. Thrombosis and Haemostasis. 
1994;72(5):666-671

Novel Implications of Exosomes in Diagnosis and Treatment of Cancer and Infectious Diseases152



[2] Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA. Ectosomes released by human neu-

trophils are specialized functional units. Journal of Immunology. 1999;163(8):4564-4573

[3] Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: Artefacts no more. Trends 
in Cell Biology. 2009;19(2):43-51

[4] Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, et al. Membrane vesicles, cur-

rent state-of-the-art: Emerging role of extracellular vesicles. Cellular and Molecular Life 

Sciences. 2011;68(16):2667-2688

[5] Trams EG, Lauter CJ, Salem Jr N, Heine U. Exfoliation of membrane ecto-enzymes in the 
form of micro-vesicles. Biochimica et Biophysica Acta. 1981;645(1):63-70

[6] Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. 

Journal of Cell Biology. 2013;200(4):373-383

[7] Gould SJ, Raposo G. As we wait: Coping with an imperfect nomenclature for extracel-

lular vesicles. Journal of Extracellular Vesicles. 2013;2(2)

[8] Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular vesicles: Composition, 
biological relevance, and methods of study. Bioscience. 2015;65(8):783-797

[9] Wolf P. The nature and significance of platelet products in human plasma. British 
Journal of Haematology. 1967;13(3):269-288

[10] Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during retic-

ulocyte maturation. Association of plasma membrane activities with released vesicles 

(exosomes). Journal of Biological Chemistry. 1987;262(19):9412-9420

[11] Kanada M, Bachmann MH, Hardy JW, Frimannson DO, Bronsart L, Wang A, et al. 

Differential fates of biomolecules delivered to target cells via extracellular vesicles. 
Proceedings of the National Academy of Sciences of the United States of America. 2015;112 
(12):E1433-1442

[12] Freyssinet JM, Toti F. Formation of procoagulant microparticles and properties. 

Thrombosis Research. 2010;125 Suppl 1(1):S46-48

[13] Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, Yasar S, Dworacki G. Exosomes 

- structure, biogenesis and biological role in non-small-cell lung cancer. Scandinavian 

Journal of Immunology. 2015;81(1):2-10

[14] Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: Extracellular vesicles 

for genetic information transfer and gene therapy. Human Molecular Genetics. 2012;21 
(R1):R125-134

[15] Horstman LL, Ahn YS. Platelet microparticles: A wide-angle perspective. Critical 

Reviews in Oncology Hematology. 1999;30(2):111-142

[16] Flaumenhaft R. Formation and fate of platelet microparticles. Blood Cells Molecules and 

Diseases. 2006;36(2):182-187

Microvesicles Released from Human Red Blood Cells: Properties and Potential Applications
http://dx.doi.org/10.5772/intechopen.69599

153



[17] Nguyen DB, Ly TB, Wesseling MC, Hittinger M, Torge A, Devitt A, et al. Characterization 
of microvesicles released from human red blood cells. Cellular Physiology and Bioche-

mistry. 2016;38(3):1085-1099

[18] Inal JM, Kosgodage U, Azam S, Stratton D, Antwi-Baffour S, Lange S. Blood/plasma sec-

retome and microvesicles. Biochimica et Biophysica Acta. 2013;1834(11):2317-2325

[19] Zmigrodzka M, Guzera M, Miskiewicz A, Jagielski D, Winnicka A. The biology of extra-

cellular vesicles with focus on platelet microparticles and their role in cancer develop-

ment and progression. Tumor Biology. 2016;37(11):14391-14401

[20] Foller M, Huber SM, Lang F. Erythrocyte programmed cell death. International Union of 
Biochemistry and Molecular Biology Life. 2008;60(10):661-668

[21] Lang F, Gulbins E, Lerche H, Huber SM, Kempe DS, Foller M. Eryptosis, a window to 

systemic disease. Cellular Physiology and Biochemistry. 2008;22(5-6):373-380

[22] Tissot J-D, Canellini G, Rubin O, Angelillo-Scherrer A, Delobel J, Prudent M, Lion N. 

Blood microvesicles: From proteomics to physiology. Translational Proteomics. 2013;1(1): 

38-52

[23] Alchinova IB, Khaspekova SG, Golubeva NV, Shustova ON, Antonova OA, Karganov 

MY, et al. Comparison of the size of membrane microparticles of different cellular origin 
by dynamic light scattering. Doklady Biochemistry and Biophysics. 2016;470(1):322-325

[24] Wu ZH, Ji CL, Li H, Qiu GX, Gao CJ, Weng XS. Membrane microparticles and diseases. 
European Review for Medical and Pharmacological Sciences. 2013;17(18):2420-2427

[25] Wu YW, Goubran H, Seghatchian J, Burnouf T. Smart blood cell and microvesicle-

based Trojan horse drug delivery: Merging expertise in blood transfusion and bio-

medical engineering in the field of nanomedicine. Transfusion and Apheresis Science. 
2016;54(2):309-318

[26] Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al. Intercellular transfer 

of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nature 

Cell Biology. 2008;10(5):619-624

[27] Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted 

miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 

2014;25(4):501-515

[28] Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and func-

tions of circulating DNA in oncology. Cancer and Metastasis Reviews. 2016;35(3):347-376

[29] Rykova EY, Morozkin ES, Ponomaryova AA, Loseva EM, Zaporozhchenko IA, 

Cherdyntseva NV, et al. Cell-free and cell-bound circulating nucleic acid complexes: 

Mechanisms of generation, concentration and content. Expert Opinion on Biological 

Therapy. 2012;12 Suppl 1(1):S141-153

Novel Implications of Exosomes in Diagnosis and Treatment of Cancer and Infectious Diseases154



[30] Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, et al. Biological 

properties of extracellular vesicles and their physiological functions. Journal of 

Extracellular Vesicles. 2015;4(27066):27066

[31] Cossetti C, Smith JA, Iraci N, Leonardi T, Alfaro-Cervello C, Pluchino S. Extracellular 
membrane vesicles and immune regulation in the brain. Frontiers in Physiology. 2012; 
3(117):117

[32] Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. 

B lymphocytes secrete antigen-presenting vesicles. Journal of Experimental Medicine. 

1996;183(3):1161-1172

[33] Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. 

Nature Reviews Immunology. 2014;14(3):195-208

[34] Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, et al. 

Mechanism of transfer of functional microRNAs between mouse dendritic cells via exo-

somes. Blood. 2012;119(3):756-766

[35] Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, et al. Elevated levels of circulating 

platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: Possible 

role of a metastasis predictor. European Journal of Cancer. 2003;39(2):184-191

[36] Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-

derived microvesicles: Important and underappreciated mediators of cell-to-cell com-

munication. Leukemia. 2006;20(9):1487-1495

[37] De Broe ME, Wieme RJ, Logghe GN, Roels F. Spontaneous shedding of plasma membrane 

fragments by human cells in vivo and in vitro. Clinica Chimica Acta. 1977;81(3):237-245

[38] Steffen P, Jung A, Nguyen DB, Muller T, Bernhardt I, Kaestner L, et al. Stimulation of 
human red blood cells leads to Ca2+-mediated intercellular adhesion. Cell Calcium. 

2011;50(1):54-61

[39] Kaestner L, Steffen P, Nguyen DB, Wang J, Wagner-Britz L, Jung A, Wagner C, Bernhardt I. 
Lysophosphatidic acid induced red blood cell aggregation in vitro. Bioelectrochemistry. 

2012;87:89-95

[40] Burnouf T, Chou ML, Goubran H, Cognasse F, Garraud O, Seghatchian J. An overview 

of the role of microparticles/microvesicles in blood components: Are they clinically ben-

eficial or harmful? Transfusion and Apheresis Science. 2015;53(2):137-145

[41] Nguyen DB, LW-B, Maia S, Steffen P, Wagner C, Kaestner K, Bernhardt I. Regulation of 
phosphatidylserine exposure in red blood cells. Cellular Physiology and Biochemistry. 

2011;28:847-856

[42] Zecher D, Cumpelik A, Schifferli JA. Erythrocyte-derived microvesicles amplify sys-

temic inflammation by thrombin-dependent activation of complement. Arteriosclerosis 
Thrombosis and Vascular Biology. 2014;34(2):313-320

Microvesicles Released from Human Red Blood Cells: Properties and Potential Applications
http://dx.doi.org/10.5772/intechopen.69599

155



[43] Levin G, Sukhareva E, Lavrentieva A. Impact of microparticles derived from erythro-

cytes on fibrinolysis. Journal of Thrombosis and Thrombolysis. 2016;41(3):452-458

[44] Chang M, Hsiao JK, Yao M, Chien LY, Hsu SC, Ko BS, et al. Homologous RBC-derived 

vesicles as ultrasmall carriers of iron oxide for magnetic resonance imaging of stem cells. 

Nanotechnology. 2010;21(23):235103

[45] Mantel PY, Hjelmqvist D, Walch M, Kharoubi-Hess S, Nilsson S, Ravel D, et al. Infected 

erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-

miRNA complexes in malaria. Nature Communications. 2016;7(12727):12727

[46] Ankarklev J, Hjelmqvist D, Mantel P-Y. Uncovering the role of Erythrocyte-Derived 
extracellular vesicles in malaria: From immune regulation to cell communication. 

Journal of Circulating Biomarkers. 2014:1-11

[47] Bosman GJ, Werre JM, Willekens FL, Novotny VM. Erythrocyte ageing in vivo and 

in vitro: Structural aspects and implications for transfusion. Transfusion Medicine. 

2008;18(6):335-347

[48] Kim DK, Lee J, Simpson RJ, Lotvall J, Gho YS. EVpedia: A community web resource 

for prokaryotic and eukaryotic extracellular vesicles research. Seminars in Cell and 

Developmental Biology. 2015;40:4-7

[49] Devaux PF, Herrmann A, Ohlwein N, Kozlov MM. How lipid flippases can modulate 
membrane structure. Biochimica et Biophysica Acta. 2008;1778(7-8):1591-1600

[50] Bevers EM, Williamson PL. Phospholipid scramblase: An update. FEBS Letters. 
2010;584(13):2724-2730

[51] Bevers EM, Comfurius P, Dekkers DW, Zwaal RF. Lipid translocation across the plasma 

membrane of mammalian cells. Biochimica et Biophysica Acta. 1999;1439(3):317-330

[52] Gonzalez LJ, Gibbons E, Bailey RW, Fairbourn J, Nguyen T, Smith SK, et al. The influ-

ence of membrane physical properties on microvesicle release in human erythrocytes. 

PMC Biophysics. 2009;2(1):7

[53] Daleke DL. Regulation of phospholipid asymmetry in the erythrocyte membrane. 

Current Opinion in Hematology. 2008;15(3):191-195

[54] Daleke DL. Regulation of transbilayer plasma membrane phospholipid asymmetry. 

Journal of Lipid Research. 2003;44(2):233-242

[55] Pasini EM, Kirkegaard M, Mortensen P, Lutz HU, Thomas AW, Mann M. In-depth analy-

sis of the membrane and cytosolic proteome of red blood cells. Blood. 2006;108(3):791-801

[56] Chung SM, Bae ON, Lim KM, Noh JY, Lee MY, Jung YS, et al. Lysophosphatidic acid 

induces thrombogenic activity through phosphatidylserine exposure and procoagu-

lant microvesicle generation in human erythrocytes. Arteriosclerosis Thrombosis and 

Vascular Biology. 2007;27(2):414-421

[57] Williamson P, Kulick A, Zachowski A, Schlegel RA, Devaux PF. Ca2+ induces transbi-

layer redistribution of all major phospholipids in human erythrocytes. Biochemistry. 

1992;31(27):6355-6360

Novel Implications of Exosomes in Diagnosis and Treatment of Cancer and Infectious Diseases156



[58] Dekkers DW, Comfurius P, Vuist WM, Billheimer JT, Dicker I, Weiss HJ, et al. Impaired 

Ca2+-induced tyrosine phosphorylation and defective lipid scrambling in erythrocytes 

from a patient with Scott syndrome: A study using an inhibitor for scramblase that mim-

ics the defect in Scott syndrome. Blood. 1998;91(6):2133-2138

[59] Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium-dependent phospholipid scrambling by 
TMEM16F. Nature. 2010;468(7325):834-838

[60] Kalra H, Drummen GP, Mathivanan S. Focus on extracellular vesicles: Introducing the 

next small big thing. International Journal of Molecular Sciences. 2016;17(2):170

[61] Wesseling MC, Wagner-Britz L, Nguyen DB, Asanidze S, Mutua J, Mohamed N, et al. 
Novel Insights in the regulation of phosphatidylserine exposure in human red blood 

cells. Cellular Physiology and Biochemistry. 2016;39(5):1941-1954

[62] Stowell SR, Smith NH, Zimring JC, Fu X, Palmer AF, Fontes J, et al. Addition of ascorbic 
acid solution to stored murine red blood cells increases posttransfusion recovery and 
decreases microparticles and alloimmunization. Transfusion. 2013;53(10):2248-2257

[63] Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, et al. Vesiclepedia: A 

compendium for extracellular vesicles with continuous community annotation. PLOS 

Biology. 2012;10(12):e1001450

[64] Kim DK, Kang B, Kim OY, Choi DS, Lee J, Kim SR, et al. EVpedia: An integrated data-

base of high-throughput data for systemic analyses of extracellular vesicles. Journal of 

Extracellular Vesicles. 2013;2(2)

[65] Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on extracellular vesicles: 

Physiological role and signalling properties of extracellular membrane vesicles. 

International Journal of Molecular Sciences. 2016;17(2):171

[66] Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. 

Current Opinion in Cell Biology. 2009;21(4):575-581

[67] Chen SY, Wang Y, Telen MJ, Chi JT. The genomic analysis of erythrocyte microRNA 

expression in sickle cell diseases. PLoS One. 2008;3(6):e2360

[68] Kina T, Ikuta K, Takayama E, Wada K, Majumdar AS, Weissman IL, et al. The monoclo-

nal antibody TER-119 recognizes a molecule associated with glycophorin A and specifi-

cally marks the late stages of murine erythroid lineage. British Journal of Haematology. 

2000;109(2):280-287

[69] Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A. Cell-derived microparticles in 

haemostasis and vascular medicine. Thrombosis and Haemostasis. 2009;101(3):439-451

[70] Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Mobius W, Hoernschemeyer J, 

et al. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential 

implications for their function and multivesicular body formation. Journal of Biological 

Chemistry. 2003;278(13):10963-10972

[71] Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role 

of CD47 as a marker of self on red blood cells. Science. 2000;288(5473):2051-2054

Microvesicles Released from Human Red Blood Cells: Properties and Potential Applications
http://dx.doi.org/10.5772/intechopen.69599

157



[72] Ishikawa-Sekigami T, Kaneko Y, Okazawa H, Tomizawa T, Okajo J, Saito Y, et al. SHPS-1 

promotes the survival of circulating erythrocytes through inhibition of phagocytosis by 

splenic macrophages. Blood. 2006;107(1):341-348

[73] Burger P, Hilarius-Stokman P, de Korte D, van den Berg TK, van Bruggen R. CD47 func-

tions as a molecular switch for erythrocyte phagocytosis. Blood. 2012;119(23):5512-5521

[74] Villa CH, Pan DC, Zaitsev S, Cines DB, Siegel DL, Muzykantov VR. Delivery of drugs 

bound to erythrocytes: New avenues for an old intravascular carrier. Therapeutic 

Delivery. 2015;6(7):795-826

[75] Muzykantov VR. Drug delivery by red blood cells: Vascular carriers designed by mother 

nature. Expert Opinion on Drug Delivery. 2010;7(4):403-427

[76] Burger P, de Korte D, van den Berg TK, van Bruggen R. CD47 in Erythrocyte ageing 

and clearance - the dutch point of view. Transfusion Medicine and Hemotherapy. 2012; 
39(5):348-352

[77] Per-Arne O. Role of CD47 and signal regulatory protein alpha (SIRPalpha) in regulating 

the clearance of viable or aged blood cells. Transfusion Medicine and Hemotherapy. 

2012;39(5):315-320

[78] Bosman GJ, Willekens FL, Werre JM. Erythrocyte aging: A more than superficial resem-

blance to apoptosis? Cellular Physiology and Biochemistry. 2005;16(1-3):1-8

[79] Bosman GJ, Lasonder E, Groenen-Dopp YA, Willekens FL, Werre JM. The proteome of 

erythrocyte-derived microparticles from plasma: New clues for erythrocyte aging and 

vesiculation. Journal of Proteomics. 2012;76:Spec No.:203-10

[80] Bosman GJ, Lasonder E, Groenen-Dopp YA, Willekens FL, Werre JM, Novotny VM. 

Comparative proteomics of erythrocyte aging in vivo and in vitro. Journal of Proteomics. 

2010;73(3):396-402

[81] Iida K, Whitlow MB, Nussenzweig V. Membrane vesiculation protects erythrocytes 

from destruction by complement. Journal of Immunology. 1991;147(8):2638-2642

[82] Kriebardis AG, Antonelou MH, Stamoulis KE, Economou-Petersen E, Margaritis LH, 

Papassideri IS. RBC-derived vesicles during storage: Ultrastructure, protein composi-
tion, oxidation, and signaling components. Transfusion. 2008;48(9):1943-1953

[83] Prudent M, Crettaz D, Delobel J, Seghatchian J, Tissot JD, Lion N. Differences between 
calcium-stimulated and storage-induced erythrocyte-derived microvesicles. Transfusion 

and Apheresis Science. 2015;53(2):153-158

[84] Piccin A, Van Schilfgaarde M, Smith O. The importance of studying red blood cells mic-

roparticles. Journal of Blood Transfusion. 2015;13(2):172-173

[85] Menck K, Bleckmann A, Schulz M, Ries L, Binder C. Isolation and characterization of 

microvesicles from peripheral blood. Journal of Visualized Experiments. 2017;6(119): 

55057

Novel Implications of Exosomes in Diagnosis and Treatment of Cancer and Infectious Diseases158



[86] Jayachandran M, Miller VM, Heit JA, Owen WG. Methodology for isolation, identifica-

tion and characterization of microvesicles in peripheral blood. Journal of Immunology 

Methods. 2012;375(1-2):207-214

[87] Kong F, Zhang L, Wang H, Yuan G, Guo A, Li Q, et al. Impact of collection, isolation 

and storage methodology of circulating microvesicles on flow cytometric analysis. 
Experimental and Therapeutic Medicine. 2015;10(6):2093-2101

[88] Lee M, Ban J-J, Im W, Kim M. Influence of storage condition on exosome recovery. 
Biotechnology and Bioprocess Engineering. 2016;21(2):299-304

[89] Zhou H, Yuen PS, Pisitkun T, Gonzales PA, Yasuda H, Dear JW, et al. Collection, storage, 

preservation, and normalization of human urinary exosomes for biomarker discovery. 

Kidney International. 2006;69(8):1471-1476

[90] Wisgrill L, Lamm C, Hartmann J, Preissing F, Dragosits K, Bee A, et al. Peripheral blood 

microvesicles secretion is influenced by storage time, temperature, and anticoagulants. 
Cytometry Part A. 2016;89(7):663-672

[91] Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, et al. Minimal experi-

mental requirements for definition of extracellular vesicles and their functions: A 
position statement from the International Society for Extracellular Vesicles. Journal of 

Extracellular Vesicles. 2014;3(26913):26913

[92] Nordin JZ, Lee Y, Vader P, Mager I, Johansson HJ, Heusermann W, et al. Ultrafiltration 
with size-exclusion liquid chromatography for high yield isolation of extracellu-

lar vesicles preserving intact biophysical and functional properties. Nanomedicine. 

2015;11(4):879-883

[93] Lener T, Gimona M, Aigner L, Borger V, Buzas E, Camussi G, et al. Applying extracel-

lular vesicles based therapeutics in clinical trials - an ISEV position paper. Journal of 

Extracellular Vesicles. 2015;4(30087):30087

[94] Lorincz AM, Timar CI, Marosvari KA, Veres DS, Otrokocsi L, Kittel A, et al. Effect of 
storage on physical and functional properties of extracellular vesicles derived from neu-

trophilic granulocytes. Journal of Extracellular Vesicles. 2014;3(25465):25465

[95] Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, et al. Production 

and characterization of clinical grade exosomes derived from dendritic cells. Journal of 

Immunology Methods. 2002;270(2):211-226

[96] Grisendi G, Finetti E, Manganaro D, Cordova N, Montagnani G, Spano C, et al. Detection 
of microparticles from human red blood cells by multiparametric flow cytometry. 
Journal of Blood Transfusion. 2015;13(2):274-280

[97] Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to 
the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology. 

2011;29(4):341-345

[98] Godbey DABaW. Liposomes for use in gene delivery. Journal of Drug Delivery. 

2011;2011(Article ID 326497):12. DOI: 0.1155/2011/326497

Microvesicles Released from Human Red Blood Cells: Properties and Potential Applications
http://dx.doi.org/10.5772/intechopen.69599

159



[99] van der Meel R, Fens MH, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers 
RM. Extracellular vesicles as drug delivery systems: Lessons from the liposome field. 
Journal of Controlled Release. 2014;195:72-85

[100] Kotmakci M, Bozok Cetintas V. Extracellular vesicles as natural nanosized delivery sys-

tems for Small-Molecule drugs and genetic material: Steps towards the future nano-

medicines. Journal of Pharmacy & Pharmaceutical Sciences. 2015;18(3):396-413

[101] Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, et al. Transfer 

of microRNAs by embryonic stem cell microvesicles. PLoS One. 2009;4(3):e4722

[102] van Dommelen SM, Vader P, Lakhal S, Kooijmans SA, van Solinge WW, Wood MJ, et al. 

Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug 

delivery. Journal of Controlled Release. 2012;161(2):635-644

[103] Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, et al. A doxorubicin delivery platform 

using engineered natural membrane vesicle exosomes for targeted tumor therapy. 

Biomaterials. 2014;35(7):2383-2390

[104] Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug 
delivery system: The anti-inflammatory activity of curcumin is enhanced when encap-

sulated in exosomes. Molecular Therapy. 2010;18(9):1606-1614

[105] Zhang L, Valencia CA, Dong B, Chen M, Guan PJ, Pan L. Transfer of microRNAs by 

extracellular membrane microvesicles: A nascent crosstalk model in tumor pathogen-

esis, especially tumor cell-microenvironment interactions. Journal of Hematology & 

Oncology. 2015;8(14):14

[106] Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in 

cancer: Cell-to-Cell mediators of metastasis. Cancer Cell. 2016;30(6):836-848

[107] Pultz BD, da Luz FA, Faria SS, de Souza LP, Brigido Tavares PC, Goulart VA, et al. The 
multifaceted role of extracellular vesicles in metastasis: Priming the soil for seeding. 

International Journal of Cancer. 2017;16(10):30595

[108] Li J, Zhang Y, Liu Y, Dai X, Li W, Cai X, et al. Microvesicle-mediated transfer of 
microRNA-150 from monocytes to endothelial cells promotes angiogenesis. Journal of 

Biological Chemistry. 2013;288(32):23586-23596

[109] Liang H, Yan X, Pan Y, Wang Y, Wang N, Li L, et al. MicroRNA-223 delivered by plate-

let-derived microvesicles promotes lung cancer cell invasion via targeting tumor sup-

pressor EPB41L3. Molecular Cancer. 2015;14(58):58

[110] Zhang Y, Li L, Yu J, Zhu D, Zhang Y, Li X, et al. Microvesicle-mediated delivery of 
transforming growth factor beta1 siRNA for the suppression of tumor growth in mice. 

Biomaterials. 2014;35(14):4390-4400

[111] Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA Loading into extracellular vesi-

cles via electroporation is Size-Dependent and enables limited gene delivery. Molecular 

Pharmaceutics. 2015;12(10):3650-3657

Novel Implications of Exosomes in Diagnosis and Treatment of Cancer and Infectious Diseases160



[112] Waldenstrom A, Genneback N, Hellman U, Ronquist G. Cardiomyocyte microves-

icles contain DNA/RNA and convey biological messages to target cells. PLoS One. 

2012;7(4):e34653

[113] Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP, et al. 

Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwan-

noma tumor growth. Molecular Therapy. 2013;21(1):101-108

[114] Lakhal S, Wood MJ. Exosome nanotechnology: An emerging paradigm shift in drug 

delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of 

RNAi heralds new horizons for drug delivery across biological barriers. Bioessays. 

2011;33(10):737-741

[115] Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. 
Exosome mimetics: A novel class of drug delivery systems. International Journal of 

Nanomedicine. 2012;7:1525-1541

[116] Chaput N, Flament C, Viaud S, Taieb J, Roux S, Spatz A, et al. Dendritic cell derived-
exosomes: Biology and clinical implementations. Journal of Leukocyte Biology. 

2006;80(3):471-478

[117] Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A compre-

hensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for 

targeted cancer therapy. Biochimica et Biophysica Acta. 2014;1846(1):75-87

[118] Vader P, Kooijmans SA, Stremersch S, Raemdonck K. New considerations in the 

preparation of nucleic acid-loaded extracellular vesicles. Therapeutic Delivery. 2014; 
5(2):105-107

[119] Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mech-

anisms and intercellular transfer of microRNAs in living cells. Journal of Biological 

Chemistry. 2010;285(23):17442-17452

[120] Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically 
injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. 

Molecular Therapy. 2013;21(1):185-191

[121] Zhou Y, Xiong M, Fang L, Jiang L, Wen P, Dai C, et al. miR-21-containing microvesicles 
from injured tubular epithelial cells promote tubular phenotype transition by targeting 

PTEN protein. The American Journal of Pathology. 2013;183(4):1183-1196

[122] Wahlgren J, De LKT, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, et al. Plasma 

exosomes can deliver exogenous short interfering RNA to monocytes and lympho-

cytes. Nucleic Acids Research. 2012;40(17):e130

Microvesicles Released from Human Red Blood Cells: Properties and Potential Applications
http://dx.doi.org/10.5772/intechopen.69599

161




