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Abstract

Resilience is a network property of systems responding under stress, which for biomed-
icine correlates to chronic or acute insults. Current need exists for models and algo-
rithms to study whole transcriptome differences between tissues and disease states to
understand resilience. Goal of this effort is to interpret cellular transcription in a
dynamic system biology framework of RNA molecules forming an information struc-
ture with regulatory properties acting on individual transcripts. We develop and evalu-
ate a bioinformatics framework based on information theory that utilizes RNA
expression data to create a whole transcriptome model of interaction that could lead to
the discovery of new biological control mechanisms. This addresses a fundamental
question as to why transcription yields such a small fraction of protein products. We
focus on a transformative concept that individual transcripts collectively form an “infor-
mation cloud” of sequence words, which for some genes may have significant regula-
tory impact. Extending the concept of cis- and trans-regulation, we propose to search for
RNAs that are modulated by interactions with the transcriptome cloud and calling such
examples nebula regulation. This framework has implications as a paradigm change for
RNA regulation and provides a deeper understanding of nucleotide sequence structure
and -omic language meaning.

Keywords: transcriptome, RNA, diffusion, secondary structure, resilience, information
theory

1. Introduction

The concept of resilience is receiving increasing attention in chronic stress-related disease

conditions. Resilience has been shown in clinical studies to play a protective role in patients
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



with chronic disease conditions including osteoarthritis, breast and ovarian cancer, diabetes,

and cardiovascular disease. The purpose of this study is to explore the relationships between

RNA-RNA interactions and to devise a related measure of resilience from network properties

of the whole transcriptome.

1.1. RNA physiology

At various levels, RNA is processed by alternate mechanisms [1], suggesting a biological

framework that supports important system network features such as resilience. Trafficking of

RNAs is essential for cellular function and homeostasis, but only recently it has become

possible to visualize molecular events in vivo. Analysis of RNA motion within the cell nucleus

has been particularly intriguing as they have revealed an unanticipated degree of dynamics

within the organelle [2]. Single-molecule RNA imaging methods have revealed that the

intranuclear and cytoplasmic trafficking occurs largely by energy-independent mechanisms

and is driven by diffusion. RNA molecules undergo constrained diffusion, largely limited by

the spatial constraint imposed by chromatin and chromatin-binding proteins if in the nucleus

as demonstrated in numerous studies. In the cell, transcripts move by a stop-and-go mecha-

nism, where free diffusion is interrupted by random association with cellular structures [3].

The ability and mode of motion of RNAs has implications for how they find nuclear targets on

chromatin or cellular sub-compartments and how macromolecular complexes are assembled

in vivo. Most importantly, the dynamic nature of RNAs is emerging as a means to control

physiological cellular responses and pathways [4]. For example, unexpectedly complicated

nuclear egress and nuclear import of small RNAs is more common than previously

appreciated [5].

Much attention has been focused on noncoding RNAs and their physiological/pathological

implications [6]. This focus in RNA research is ultimately directed toward understanding the

regulation of protein-coding gene networks, but ncRNAs also form well-orchestrated regula-

tory interaction networks [7]. For example, computational prediction of miRNA target sites

suggests a widespread network of miRNA-lncRNA interaction [8]. Others suggest the possi-

bility of widespread interaction networks involving competitive endogenous RNAs (ceRNAs)

where ncRNAs could modulate regulatory RNA by binding and titration of binding sites on

protein coding messengers [9]. Cellular uptake and trafficking of RNA could be wide-

spread [10]. As the number of experiments increases rapidly, and transcriptional units are

better annotated, databases indexing RNA properties and function will become essential tools

to understand physiologic processes in the transcriptome.

1.2. Biological-omic information theory

Much of bioinformaticians sequence analyses focuses on methodologies based on string align-

ment algorithms. However, such approaches fail to discover genomic aspects of systemic

nature regarding dynamics or resilience. An alternative framework is based on alignment-free

methods of genome analysis, where global properties of genomes are investigated [11]. A key

concept of informational analysis is that of probability distributions. A genomic, or in our case

transcriptomic, distribution associates to discrete values defined on transcripts, the number of
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times these values occur in a given transcriptome. The general concept of discrete probability

distribution, called information source, was the starting point of information theory developed

by Shannon [12]. Links between information theory and biology emerged from Shannon’s Ph.

D. thesis, titled “An Algebra for Theoretical Genetics” (1940), where the notion of information

entropy was introduced [13]. For example, distributions of codons have shown characteristic

properties that are linked to biological meanings, such as secondary structure free energy [14].

Other approaches based on the recurrence of genomic elements and on correlation structures

in DNA sequences use mutual information, which plays a central role in the mathematical

analysis of message transmission. Dictionary-based methodologies analyze sequences through

properties of collections of words. Dictionaries are concepts from formal language theory,

probability, and information theory that provide new perspective which may uncover the

physiology of internal transcriptome structures.

2. Methods

We formally define the transcriptome as an information structure, and then construct several

simple models as examples. The most realistic model is used to examine real datasets of

partitioned RNAs for validation of framework.

2.1. Transcriptome information theory structure

RNA sequence is abstractly represented as a string over the nucleotide alphabet R ¼ {A, C, G,

U}. This can be extended to modified nucleotides with an extended alphabet R ffi {A, C, G, U,

N}, such that symbolN represents a modified nucleotide.Wk denotes a set of alphabet letters of

length k, called k-mers andWdenotes the set of all possible nonempty strings over the alphabet

R. Given a transcript string S ¼ s1, s2, … to sn, of length n, S[i, j] with 1 ≤ i ≤ j ≤ n is the

substring of S from position i to position j (included). The length of S is |S|¼ n. Substrings of S

of length k are called k-words or simply words of S. In the following, the entire transcriptome is

denoted by W based on k-mer dictionaries and entropies, which are aimed at defining and

computing informational indexes for representative sets of transcriptomes. We assume that the

complexity of a transcriptome increases with its distance from randomness, as identified by

suitable comparison between transcriptomes of the same length. This framework provides

clues about the appropriate k length to consider for analysis of transcriptome properties.

2.2. Spatial transcriptome information cloud (STIC) model construction

We hypothesized that miRNA localization in cellular compartments is an emergent property

from Brownian motion interactions of a cloud of RNA sequences and RNA-binding proteins

that can be analyzed in W [15]. There k-mer words of miRNA functional size were added to a

dictionary from sliding windows of transcript sequences S. A prediction from this cloud model

is that anomalous diffusion can occur if random-walk transcripts interact with their surround-

ing scaffold as a stochastic semantic cloud, and if the cloud relaxation time is a longer time

frame than transit [16]. We showed that RNAs with sequences similar to the whole

transcriptome exhibit modified or enhanced transport compared to RNA sequences without
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similar sequences [17]. Thus, RNAs were found to partition into different cellular compartments

based on a semantic similarity of word compositions within Wk. We determine the frequency

of all k-mers in the transcriptome as a matrix composed of RNA sequences and their word copy

levels. For each transcript, we count the number of k-mer words in common within Wk or

dictionary as a semantic similarity measure to the transcriptome, and we can also able to

compare such counts to randomizedWk sequence words.

Model assumptions are: (1) RNA diffuses away from point of transcription creating a cloud of

k-mer sequences. (2) All RNAs comprise the transcriptome, and each transcript is affected by

local RNAs with effective interaction windows of some sequence word length k nucleotides

(nt). We assume significant k-mer word size to be 3–22 nt, which is equal to the functional

miRNA size at the high side, and down to below the size of the “core” sequence [18]. (3) The

diffusion rate of individual RNAs depends on degree of (a) sequence similarity and (b) reverse

complementarity of RNAwords at that location in the STIC (Figure 1). (4) Cloud dictionaries

(collection of transcriptome word sets in Wk) change as function of distance from transcriptome

site and cell state. (5) The cloud affects anomalous RNA diffusion that can give rise to an

emergent and patterned behavior in the cell [19].

We model the RNA sequence word content of the transcriptome cloud as a function of distance

from transcription site at the chromosome. RNA molecule diffusion in nuclear compartments

would lead to cytoplasmic and extracellular localization of RNA if the transcript half-life is

greater than its transit time. Calculations at arbitrary transit distances could be determined

Figure 1. K-mer words classified as solvent-accessible or inaccessible. Note that in this framework, k-mer words are

generated from a sliding window and not from a contiguous word segments as could be interpreted by the figures

adjacent to word blocks. Transcriptome is a dictionary of N þ n words and their associated frequencies. Interaction of

transcript with transcriptome affects diffusion from solvent-accessible bases (words). Transcript itself is a part of the

transcriptome.
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from this model with a large set of partial differential equations modeling RNA mobility, but

was described as computationally prohibitive [15] for any realistic sized transcriptome. Each

sequence S would be dynamically modeled with a neighborhood sized number of RNA-RNA

interactions. Instead, we pursue a thermodynamic approach based on the Fokker-Planck

equation to quantify stochastic processes in liquid medium [20]. RNA interactions are assumed

to function over sequence lengths encompassing small single-stranded and solvent-accessible

regions.

Assuming smallest word in the cloud is 3 nt long, corresponding to the lower limit of size for a

seed sequence in miRNA [18]. The upper limit for word size is set at 22 nt, corresponding to the

size of a typical mature miRNA. Again, this is the same as the miRNA response elements (MRE)

size in the simpler related ceRNA hypothesis by Salmena [9]. Instead, we determine the fre-

quency of all words in the transcriptome as a matrix composed of RNA sequences and copy

levels from RNA-seq datasets. For each transcript, count number of words in common with the

cloud dictionary as a similarity measure to the transcriptome (tCount), and also count reverse

complement words (rcCount) for RNA-RNA interactions. These raw counts can be multiplied by

the frequencies of repetitive words inW to yield tWord¼ tCount * tFreq and rcWord¼ rcCount *

rcFreq. As shown by Seffens [17], miRNAs with greater similarity to the transcriptome, i.e.,

greater tCount and tWord, are suggested to diffuse differentially based on spatial partitioning.

In addition, greater intramolecular RNA-RNA interactionwould be expected to hinder diffusion.

This work proposes a general RNA sequence function that combines the influence of similarity

with native (NAM) and reverse complementarity (RCM) measures as a cloud interaction func-

tion: C[W, NAM, RCM], such that cloud interactions increase with RCM, and decrease with

NAM. Transcripts with low C would have “ideal solution” diffusion coefficients and found in

cytoplasmic compartment, and those with greaterCwould be slowed by RNA-RNA interactions

and hence enriched in nuclear or perinuclear compartments.

2.2.1. Accessibility of an RNA sequence word

For each component word of a transcript, determine whether it is expected to be in a single-

stranded and solvent-accessible state (state “A”), or double-stranded or buried within the RNA

molecule and is inaccessible (state “I”). For model calculations and preliminary studies (Model-1

W1 discussed later), we assume all words are accessible in state “A,” and the transcriptome is

uniform within the cell (i.e., ignore distance r from transcription site). Construct a matrix Wk(T,

fA, fI, r) for each word size k, and populate the respective matrix with the component words of

the transcriptome from RNA-seq reads such that S is the actual word sequence, fA is the

frequency or number of accessible words of that sequence, and fI is the frequency or number of

inaccessible words. Matrix Wk then contains information of all transcript sub-sequences and is a

representation of the spatial transcriptome information cloud in some volume elements of the

cell fraction. Let the diffusion coefficient for a transcript be described [24]as DRNA [21]. Then the

effect of interaction of that transcript with the cloud would yield

DRNA ¼ DRNA
ideal � C Wk S, fA, f I, r

� �

, S
� �

¼ DRNA
ideal � RCM þ NAM ð1Þ

where C is the cloud interaction term for molecule RNA exhibiting probabilities of RNA-RNA

interactions as a function of the STIC represented by matrix Wk at some position r in the cell.
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For RNA expression data from the whole cell, r is ignored. In experiments from purified nuclei,

r ranges from 0 to the radius of the cell’s nucleus, rN. In experiments derived from the cytosol, r

ranges from rN to the cellular membrane radius rC. Experimental data from extracellular

vesicles will have r > rC and RNA half-life becomes important to consider as a factor. As a first

approximation for the C function, we assume that the deviation from ideal DRNA scales as the

number of reverse complement words (rcCount) in common with transcriptome Wk and is

measured by difference to the number tCount of words in common withWk, which normalizes

for transcript size. We could also compare to ranCount, number of words in common with a

randomized Wk. Putting together, we have

C Wk, S½ � ¼ α rcCount=4k ð2Þ

to normalize number of words, or alternately,

C Wk, S½ � ¼ α rcCount � rcFreq – tCount � tFreq
� �

¼ RCM for α ¼ 1:0 ð3Þ

where α is a scaling factor and is dimensionless. The reverse complement measure (RCM),

which factors rcCount word frequencies by rcFreq, then subtracting the count of words in

common with transcriptome (tCount) by the corresponding tFreq, is one of several possible

measures for correlation to measured compartmentalization of individual transcripts from

RNA-expression datasets. The content of Wk(r) changes as a function of r due to changing

concentrations of transcripts in the cell. Boundary condition on whole cell measurement from

microarray or RNA-seq experiments would be

Wk ¼

ðrC

0

WkðrÞ dr ð4Þ

assuming no export from the cell. If there are no reverse complement words in common

between transcript S and Wk, then C [Wk, S] is zero and the diffusion of that molecule is ideal.

As a first approximation for the C function, we assume that the deviation from ideal DRNA

scales as the number (rcCount) of reverse complement words in common with Wk and is

compared by a difference to the number tCount of words in common with Wk to normalize

for transcript size. We could also compare to ranCount, number of words in common with a

randomized Wk. Reverse complement measure (RCM) factors word frequencies to assess

transcript-cloud interactions that correlate to measured compartmentalization of individual

transcripts [17].

2.2.2. Words that are solvent-accessible

The above model treatment assumed that all RNA sequences are available for reverse comple-

mentarity interactions. RNAs except for miRNAs typically have regions that are solvent-

inaccessible and/or double-stranded, preventing intramolecular interactions [22]. mRNAs

have more secondary structures or intra-strand base pairing than expected by chance [23]. We

have determined the secondary structure of all RefSeq transcripts to predict single-stranded

regions using RNAfold [24], while others have used RNA structure predictors (RNAplfold in
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Refs. [25, 26]) in a pooling predictor using machine learning [27]. Additionally, nucleotide

solvent-accessibility in RNA structures could be estimated by the neural network method of

Singh [22] using models of window size 3 nt, which could be expanded to 5–9 nt windows for k

length. Alternatively, accessible surface area can be calculated by a publically available pro-

gram NACCESS [28] to refine the STIC transcriptome words to those populated from single-

stranded regions only, along with confidence measures. Solvent accessibility estimates for each

transcript word partition the frequency entries in the transcriptome matrix Wk(S, fA, fI, r) by

reducing fA in the amount that fI increases. Shifts of fA to fI could be caused by RNA-binding

factors (RNA or protein) that cover a word in the transcript or the word in the transcriptome,

or indirectly by binding to some other region of the RNA causing a cis-type of structural

alteration leading to solvent inaccessibility (Figure 2). Transcriptome cloud or nebula regula-

tion is introduced here and is proposed to occur as an indirect result of some factor that

changes fA/fI for some word that then alters a different interacting transcript’s diffusion coeffi-

cient. Conversely, fI to fA shifts could be caused by the release of binding factors or conforma-

tional change leading to exposure of the particular word and to nearby target RNAs.

Dictionaries with this dynamic accounting of the transcriptome are labeled T, instead of the

simpler W word matrix.

Figure 2. Words classified as solvent-accessible or -inaccessible in dynamic transitions. Interaction of RNA binding-

proteins and other RNA affects balance of solvent-accessible words in transcriptome and transcript.
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2.2.3. Genome-wide profiling of in vivo RNA structure

Recent transcriptome-wide RNA structure profiling through application of structure-probing

enzymes or chemicals combined with high-throughput sequencing promises in vivo RNA struc-

tural information availability. Resultant datasets provide opportunity to investigate RNA struc-

tural information on global scale for STIC development. The analysis of high-throughput RNA

structure profiling data requires considerable computational effort and currently dataset are not

readily available. StructureFold processes and performs analysis of raw high-throughput RNA

structure profiling data [29], incorporatingwet-bench structural information from chemical probes

and ribonucleases to restrain RNA structure prediction via RNAstructure and ViennaRNA pack-

age algorithms. StructureFold is deployed via the Galaxy platform. Alternatively, structure-seq is a

recent quantitative and high-throughputmethod that provides genome-wide information onRNA

structure with single-nucleotide resolution [30]. The methodology can perform both in vitro and

in vivoRNA structure-function determinations,with insights to RNA regulation of gene expression

and RNA processing. Implementation of structure-seq begins with chemical RNA structure prob-

ing under single-hit kinetics conditions. Modified RNA is then subjected to reverse transcription

using random hexamer primers, then reverse transcription executed until it is blocked by chemi-

cally modified residues. Resultant cDNAs are amplified by adapter-based polymerase chain reac-

tion (PCR) which are subjected to high-throughput sequencing, subsequently allowing retrieval of

structural information on a genome-wide scale. A single structure-seq experiment can provide

information on tens of thousands of RNA structures in a matter of weeks. Ding et al. [31] used

RNAstructure calculated for each of thousands ofmRNAs a positive predictive value (PPV), which

they use to compare relative frequencies of base pairing in vivo constrained RNA structures to in

silico predicted RNA structure. They found that most mRNAs do not fold in vivo as to in silico-

predicted structures, as evident from a broad PPV distribution. Interestingly, mRNAs of cold and

metal ion stress-response genes folded in vivo significantly different from their unconstrained in

silico predictions. These stressors are known to affect RNA structure and thermo-stability like

melting temperature Tm. Instead, genes involved with basic biological functions such as gene

expression, protein maturation or processing, and peptide metabolic processes show little change

in their in vivo-constrained and in silico-predicted RNA secondary structures. Ding speculated

mRNAs related to cell maintenance and showing high PPV may have evolved to resist large

conformational changes in order tomaintain homeostasis, an idea suggesting RNA resilience. This

bias may be detectable in our transcriptome model W. As genome-wide profiling of in vivo RNA

structure datasets becomes easily available [32], the information can be incorporated into the STIC

model by adding custom transform and load tools for each dataset.

2.3. Simplest models of transcriptomes

We consider simplest models of the transcriptome to examine some limits on the model

parameters and functions. Component of a transcriptome are listed in Table 1.

2.3.1. Transcriptome model 0 (W0)

Simplest model considers a spatially uniform transcriptome composed of ribosomes, tRNA,

and a minor number of mRNAs. Here, the distribution of transcripts is assumed uniform and

the transcriptome model lacks spatial elements. Further, consider a transcriptome where
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ribosomes and tRNAs are all “A” for adenosine, and the mRNAs are also all “A.” We can

construct transcriptome model W0 using transcript values found in Table 1 from Seffens [17],

with sizes n and respective abundances. The number of nonunique words (of size k) would be

n – k þ 1 for each transcript. Using sizes and respective abundance values in Table 1 [17], gives

2.8�1010 words, composed of all “A”s. Assume mRNAs are 2 kb “A”s, then there are no

reverse complement interactions, so RCM should be zero, while NAM would be maximal

(RCM and NAM defined in Section 2.2). The diffusion coefficient for these mRNAs would be

ideal since there are no base-pairing interactions within W0 and transcript similarity to the

transcriptome is maximal. Now assume the mRNAs are all “U”s, they now strongly interact

with the majority of W0. RCM becomes 2000�2.8�1010 or 5.6�1013 for each mRNA transcript

(while NAM would be zero). This would be the expected maximal value for RCM with

mRNAs of 2 kb size, yielding diffusion coefficients smaller than ideal values. These RNAs

would exhibit larger intramolecular RNA-RNA interactions, and they do not look (NAM ¼ 0)

and behave (DRNA ≪ DRNA
ideal) as the rest of the transcriptomes.

2.3.2. Transcriptome model 0-R (W0-R)

Now assume that the transcriptome W0 is composed of completely random sequences of A, C,

G, Us-labeled W0-R. How many of the 2.8�1010 words of length k composed of four different

letters would be unique (not identical) in the model? Combination of all possible k-mer words

would be 422 ¼ 1.76�1013 since there are four possible nucleotide letters at each of the k

positions. Since there are about 1000 times more possible combinations than there are k ¼ 22

words, we could assume that all 22-mer words are unique. Smaller values of k will result in

repeats or duplicate words increasing frequency values in Wk. These calculations give an

expected value for RCM based on no biases in the sequences.

2.3.3. Transcriptome model 1 (W1)

The next more realistic model is composed of eight real human RNA transcripts comprising a

simple representation of the transcriptome in a cell (Table 1 and in Ref. [17]). It is assembled

Transcriptome construction

Class Biotype Network system function

ncRNA rRNA Most abundant; constant character

ncRNA tRNA Most frequent; constant character

Protein coding mRNA Act as gene; bigger than coded protein

ncRNA miRNA Block some mRNA; smallest func. RNA

Processed transcripts lncRNA Block or regulate some other RNA

Transcriptome ¼ ΣWBiotype

Notes: Sequence words summed into dictionary over all transcript types.

Table 1. Transcriptome construction from different RNA biotypes. Transcriptome model W1 is a subset of 8 human

rRNA and tRNA types.
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from four of the most prevalent human tRNAs with lengths of n ¼ 71–73 nt, and four of the

major subunits of the eukaryotic ribosome with sizes from n ¼ 121 to 5034 nt, with the total

number of nucleotides N being the sum of the nucleotides in each transcript, or N ¼ 7470 nt.

Then the frequency of words with length k that are contained in each transcript is a subset of

the number of possible k-mer words which is n – k þ 1. In Model-1 labeled as W1, for each

word length from k¼ 3 to 22, word count was calculated along with the sum of the frequencies

of those words extracted from the simple eight RNA transcripts. The intermediate output from

program TIC-generator (for transcriptome information cloud generator, described in Ref. [17])

listed all k-mer words contained in each transcript, together with their frequency of occurrence.

These lists from the eight rRNA and tRNA transcripts were combined, and then duplicate

words resolved to form dictionary Wk
1. With the total possible number of words of length k ¼

4k, the fraction of all the words actually present inWk
1 decreased for increasing word size [17].

It is interesting that the peak in unique and total duplicate (blue diamonds in Ref. [17]) words

is maximal at the same size as the miRNA “seed” sequence as defined in Ref. [18].

2.3.4. Randomized transcriptome of Model-1 (W1-R)

We ran TIC-generator with shuffled-sequence transcripts labeled Model 1-R. Base composition

of Model-1 transcriptome is 1341 “A,” 2320 “C,” 2519 “G,” and 1291 “T,” or 18% “A,” 31% “C,”

34% “G,” and 17% “T.” Using a random letter generator, we assembled four random

transcriptomes with the same transcript length for the eight sequences and equal Model-1 base

composition. We examined mostly word lengths k of 7 and 8 in preliminary studies shown

below.

2.4. Real model validation

As a validation of this transcriptome model framework, we utilized the simple transcriptome

model version (simple model W1) that used real highly expressed genes, and for comparison

separately, randomized sequences of that transcriptome (W1-R). This simple realistic model

is composed of only eight real human RNA transcripts as a basic representation of the

transcriptome in a cell. Experimental validation of the basic model transcriptome for k-mers

considered various trial functions of semantic word similarity and reverse complementarity,

which were calculated using published data sets. For example, trial functions evaluated include

tWord for transcriptome words in common with target multiplied by respective word frequency

in Wk. A total of seven RNA studies, with data sources grouped into high and low study

parameter sets, were statistically analyzed by mean values and t-test calculated as two-tail t-test

under two-sample equal variance assumption models (Table 2). Validation for the STIC model

examined various functions of reverse complementarity using these published data sets. Here, we

assume that appearance in exosomes or microparticles requires greater mobility and hence larger

diffusion coefficients than cytoplasmic or nuclear RNAs [17]. Several functions tested include

tWord for transcriptome words in common with target multiplied by word frequency in the

transcriptome, rcWord (reverse complement k-mer words in common times frequency), RCM ¼

rcWord – tWord, reverse complement count (RCC) measure ¼ tCount – rcCount, Z-RCC as a z-

score of RCC compared to four randomized transcriptomes Model 1-R, Z-RCM as the z-score of

RCM, RCC-Ran which subtracts the value computed from 1-R and finally (RCC-Ran)/Len which
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is normalized for sequence length. The first five studies examined miRNA, while the Chen [33]

and Friedel [34] studies measured mRNAs. Description of data sources that were grouped into

high and low study parameter sets, with mean values and t-tests calculated detailed in sections

below.

2.4.1. Model 1 validation with miRNA from exosome datasets

The Villarroya-Beltri [35] work reports on microarray datasets of exosome and cellular frac-

tions from activated and resting human T lymphocyte cultures. They differentially assessed

whether RNAs are specifically enriched within exosomes by performing microarray analysis of

activation-induced variations in mRNA and miRNA profiles from primary T lymphoblast and

their secreted exosomes. Data found in their supplementary data and also data publicly

available at gene expression omnibus as Gene Expression Omnibus (GEO) Series accession

number GSE50972 were used for Table 2. They showed that for most cases, miRNAs modu-

lated upon activation are differentially found in cells and exosomes for either upregulated or

downregulated miRNAs. This suggests that mRNA andmiRNA loading into exosomes is not a

simple passive process. Specific miRNAs were more highly expressed in exosomes than found

in the cells, and in most cases this difference is preserved under cellular resting or activated

conditions. Similarly, most miRNAs that are preferentially found in cells than in exosomes also

keep this tendency regardless of the activation state of the cell. As such, Villarroya-Beltri

classified some miRNAs as specifically sorted into exosomes (labeled EXOmiRNAs), whereas

others are specifically retained in cells (as CLmiRNAs). We calculated tCount and rcCount as a

count (Table 2 in Ref. [17]), and tWord and rcWord, the latter which factor the expression level

of that word. Other measures compared counts and words to a randomized transcriptome

(RAN). We used a word size k ¼ 7 roughly equal to the miRNA seed sequence length [17].

Values of rcWord (mean 10.31) were lower than tWord (mean 12.45), and hence RCM and RCC

were more negative for exosomes compared to cytoplasmic miRNAs. This supports the STIC

model since exosome transcripts must diffuse further than cytoplasmic (CL) RNA, so avoid

reverse complementarity. In summary, all trial measures calculated from this dataset showed

significant support for the transcriptome model except for Z-RCM.

2.4.2. Model 1 validation with nuclear-enriched miRNAs

Park et al. [36] study compared microarray analysis of cytoplasmic and in this case nuclear

fractions of hct116 colon cancer cells. They identified various miRNAs that exist in isolated

nuclei from miRNA profiles correlated between cytoplasmic and nuclear fractions from multi-

ple microarray analyses. Nuclear confinement of the mature form of miRNAs was validated by

controlling reverse transcriptase RT-PCR conditions excluding the presence of precipitate

forms of miRNA (e.g., as pri-miRNA or pre-miRNA). They found that elevated levels of

representative miRNAs in purified nuclei support the idea that significant numbers of mature

miRNAs survive not only in the cytoplasm but also in the nucleus. We sorted their data byN/C

ratio and *partitioned these data into two groups: N/C > 0.47, which was nuclear-enriched (45

samples), and N/C < 0.47, which was preferentially found in the cytoplasm (33 samples). We

found that tCount was 4.02 for nuclear-enriched, and 5.00 for cytoplasmic, with a t-test p-value

of 0.116 between the groups; while tWord was 4.73 for nuclear and 10.58 for cytoplasmic
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miRNAs, with a significant t-test p-value of 0.023 between nuclear and cytoplasmic groups. We

also found nuclear-enriched miRNAs have higher rcWord values compared to cytoplasmic

miRNA (p-value ¼ 0.021 in Table 2), suggesting those transcripts have greater potential to

interact with other transcriptome RNAs and hence may have lower than expected diffusion

coefficients. The other evaluated measures did not show significance between groups.

2.4.3. Model 1 validation with additional RNA studies

Huang et al. [37] study utilized RNA-seq with exosomes from human plasma. We found that

the top 100 abundant miRNAs in exosomes had tCount (mean 4.80) and tWord (mean 6.72)

measures compared to those lower 100 with low “rcmm” reads (mean 4.64 and 7.41, respec-

tively). In support of the STIC model, exosome transcripts have more similarity to the simple

model transcriptome. Exosome abundant miRNAs had negative RCM (mean �0.87) and RCC

(mean �0.27) measures compared to those with low rcmm reads (mean 1.37 and 0.55, respec-

tively). The most significant trial function was RCM (p-value ¼ 0.002) followed by rcWord (p-

value ¼ 0.02) measure. From these data, we find similarity that exosome transcripts have less

reverse complementarity to the simple Model-1 transcriptome. Again, these results are

supported by Cheng et al. [38] study of exosomes in human blood. From 50 most abundant

miRNAs in exosome samples labeled “Plasma UC Exo,” we find mean tCount and tWord

Source experiment N tWord rcWord RCM RCC Z-RCC Z-RCM RCC-Ran (RCC-Ran)/Len

Villarroya-Beltri

EXO-CL resting 75 4�10�7** 2�10�5** 0.08* 0.023** 0.029** 0.603 0.04** 0.038**

EXO-CL activated 67 4�10�7** 1�10�5** 0.206 0.008 ** 0.033** 0.503 0.032** 0.028**

Park paper

N/C > 0.471 nuclear 43 0.024** 0.021** 0.62 0.76 0.77 0.31 0.41 0.42

Huang paper

Top-low rcmm 100 0.522 0.02** 0.002 ** 0.042 ** 0.83 0.16 0.078* 0.072*

Cheng paper

Top-low 50 0.128 0.002 ** 0.035 ** 0.002 ** 0.062* 0.25 0.132 nc

Guduric-Fuchs paper

Ratio EV/cell top-low 10 0.093* 0.39 0.3 0.075* 0.046** 0.178 0.03** nc

EV RPMM top-low 10 0.79 0.973 0.736 0.96 0.268 0.816 0.306 nc

Chen paper

Perinuclear-cell 6 0.62 0.76 0.24 0.14 0.15 0.18 0.076* 0.095*

Friedel

mRNA half-life 15 0.017** 0.025** 0.86 nc nc 0.44 nc nc

Notes: Double-asterisk cells have significance below 0.05, while single-asterisk cells have significance below 0.10 but above

0.05. Cells with “nc” were not calculated from randomized transcriptome.

Table 2. t-Tests of case studies with STIC model parameters.
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values of 4.56 and 6.00 compared to 5.58 and 8.80, respectively, for low abundance transcripts.

This set of exosome miRNAs had RCM and RCC values of�1.54 and 3.8 compared to 0.36 and

5.8 for low abundance transcripts, again supporting the STIC model. Several of the trial

functions in Table 2 were significant measures for data sets in that study.

Pursuing in-depth understanding of the mechanism supporting selective exportation of

miRNAs to extracellular vesicles (EVs), Guduric-Fuchs [39] employed next generation

sequencing to discriminate global expression patterns of small RNAs in HEK293T cells and

the EVs that they released. Enrichment of overexpressed miRNA in EVs was measured by RT-

qPCR in HEK293T cells, mesenchymal stem cells, macrophages, and immune cells. We sorted

data from Guduric-Fuchs by EV/cell ratio, then compared the top 10 (exosome-enriched) and

bottom (cytoplasmic enriched) miRNAs by evaluating the measures listed in Table 2. Only

trial functions Z-RCC and RCC-RAN were significant from this dataset. Overall from using

EV/cell in various measures examined across the studies, tWord and tCount (from Ref. [17]),

along with their difference (tW–tC), have values that progress from lower for nuclear, higher

for cytoplasmic, and highest for exosomal miRNAs. Therefore, we consider under transitivity,

EXO > CL > NUC for these transcriptome measures of similarity. This supports the notion that

miRNAs with sequence similarity to the overall transcriptome can random-walk furthest from

their points of transcription if the secretion mechanism requires a great distance to travel.

These conclusions on trial functions are most significant with the tCount measure, with a p-

value close to zero for the Villarroya-Beltri study, and 0.016 for the Guduric-Fuchs study, while

the Park study showed little difference (p-value ¼ 0.122) for tCount between nuclear and

cytoplasmic enrichment.

2.4.4. Word count normalization from RNA-seq datasets

Normalization is a crucial step in the analysis of RNA-seq data and has a strong impact on the

detection of differentially expressed genes sought to validate the STIC model. Several normal-

ization strategies have been proposed to correct for between-sample distributional differences

in read counts, such as differences in total counts (i.e., sequencing depths), and within-sample

gene-specific effects, such as gene length or GC-content effects [40]. Global-scaling normaliza-

tion adjusts gene-level counts by a single factor per sample, such as the per-sample total read

count, or reads per kilobase of exon model per million mapped reads (RPKM), or some

housekeeping gene count. Statistical corrections by a quantile per-sample count distribution

or other robust summaries obtained by relating each sample to a reference sample (e.g.,

trimmed mean of M values (TMM) and methods of Anders and Huber [41]). Although there

have been efforts to systematically compare normalization methods [42], this important aspect

of RNA-seq analysis is still not fully resolved. When data arise from complex experiments as in

Section 2 above, involving cell fractionation, low-input RNA or different batches and read

lengths, there may be more to correct for than differences in sequencing depth, referred to as

unknown nuisance technical variation error. One methodology correction is the addition of

spike-in controls within the normalization procedure [43]. Control designs have been success-

fully employed in microarray normalization, for miRNA and mRNA arrays [44]. Negative

controls in the normalization procedure test the assumption that the majority of genes are not

differentially expressed between study conditions. This assumption can be violated when a
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global shift in expression occurs between conditions, such that control-based normalization

may be necessary for technical variation, and a global mean read for global differences in RNA

levels.

3. Spatial and temporal localization

We follow with a description of possible experimental data sets for populating transcriptome

model in W. RNA-seq data sets would be the preferred source for fine structure of word

contents, but microarray expression data could also be used for overall population of W.

3.1. Spatial localization by RNA imaging

The only method that provides insight into both the level and localization in single cells is in

situ hybridization (ISH), which has increased considerably in importance in RNA research.

ISH along with multiplex RNA profiling (MERFISH) can be used to measure the degree of

associations among transcripts. Numerous RNA species have been identified, counted, and

localized in single cells using MERFISH, a single-molecule imaging approach that uses combi-

natorial labeling and sequential imaging with an encoding scheme capable of detection and/or

correction of errors. This multiplexed measurement of individual RNAs can be used to mea-

sure the gene expression profile and noise, along with covariation in expression among differ-

ent genes, and spatial distribution of RNAs within single cells.

3.1.1. Localization of small RNAs

For miRNAs, ISH is exceptionally challenging because of miRNA features such as small size,

sequence similarity among various miRNA family members, and low tissue-specific or devel-

opment-specific expression levels. Standard ISH protocols can be modified to improve miRNA

detection [45]. Locked nucleic acid (LNA/DNA) probes have great utility in miRNA detection

because of short hybridization time, high efficiency, discriminatory power, and high melting

temperature of the miRNA/probe complex [46]. Minimal length of LNA/DNA probes was

found to be 12 nt with probes usually containing 30% LNA nucleotides [46]. A mixture of 20-

OMe RNA and LNA modifications in a 2:1 ratio resulted in improved specificity and stability

of the probe/RNA duplex in comparison to LNA/DNA probes [47]. Experiment specificity was

found to be further improved by lengthening the probe length to 19 nt [48].

3.1.2. Localization by MERFISH

Chen et al. [33] used array-synthesized oligopools as templates to make encoding probes in the

MERFISH protocol. An oligopaint approach developed by Beliveau et al. [49] can generate a

large number of oligonucleotide probes to label chromosome DNA. Inspired by this approach,

Chen et al. [33] designed a two-step labeling scheme to encode and read out cellular RNAs.

They labeled a target set of cellular RNAs with a set of encoding probes, each probe compris-

ing a RNA targeting sequence and two flanking readout sequences. Four readout sequences

were assigned to each target RNA species based on error-correction optimized code words.
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They identified these readout sequences with complementary FISH probes via rounds of

hybridization and imaging; each round using a different readout probe. To increase the sig-

nal-to-background ratio, each cellular RNA is labeled with �192 encoding probes.

3.2. RNA diffusion

Brownian effects are ubiquitous in numerous examples of soft condensed matter physics [20]

in which the system can be modeled as a set of interacting degrees of freedom in contact with a

heat reservoir. Brownian motion plays an important role when one infers macroscopic behav-

iors frommesoscopic levels of description, frequently a desire in the study of complex systems.

Dynamics at the mesoscopic level is governed by a set of Langevin processes or equivalently

by the corresponding N-particle Fokker–Planck equation. This scheme applies nonequilibrium

thermodynamics to derive the kinetic equations describing the evolution of an N-particle

probability distribution function [20]. One then considers a system of N Brownian particles

diluted in a solvent, which acts as a thermal reservoir. Particle velocities are then modeled as

internal thermodynamic variables and permit an analysis in the phase space of the Brownian

particles. A local equilibrium hypothesis constrains the phase space level and from it one

derives the thermodynamic entropy balance equation. Entropy production accounts for irre-

versible processes taking place in the phase space, then quantifying fluxes and forces can be

done in a similar manner as in the thermodynamics of irreversible processes [20]. A general

thermodynamic treatment of systems of N interacting Brownian motion particles as described

by Fokker-Planck equations is detailed by Savel’ev et al. [16].

4. Resilience as a systems biology measure from transcriptome model

Development of a resilience measure from transcriptome RNAs could improve basic knowl-

edge of the transcriptome and responses to stress. Transcriptome size and overall variation

have been documented across cell cycle stages, tissue types, developmental stages, diurnal

cycles, sexes, and environment [50]. Despite the ubiquity of transcriptome size variation, its

potential to introduce systematic bias into expression profiling has been largely overlooked

and this study uncovers responses of the transcriptome to stress.

4.1. Formalization of metric for resilience in biological systems using STIC metrics

Insight into structural determinants of robustness and resilience can guide the understanding

of systems that go through transitions. Systems engineering research has developed method-

ologies to measure the functionality and complexity of engineered systems for designing and

assessing system resilience. While system functions, resilience, functionality, and complexity

are widely used concepts in systems engineering, there is significant diversity in definitions

and no unified approach to measurement in the systems biology area [51]. One method for

measuring impacts on functionality in dynamic engineered systems is based on changes in

kinetic energy [52]. This metric can be applied at particular levels of abstraction and system

scales, consistent with the established multiscale nature of biological systems.
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4.2. Measuring complexity

A difficulty in complexity theory is the lack of a clear definition for complexity, particularly

one that is measurable [53]. Underlying cause for this lack of a unified complexity definition is

that there are numerous conceptual types of complexity. The first formal treatment of com-

plexity focused on algorithmic complexity, which reflects the computation requirements for a

mathematical process [54]. Senge [55] and Sterman [56] expand the scope of definition to

include dynamic complexity, which is primarily characterized by difficult-to-discern and

hard-to-measure cause-effect relations. A recent workable definition is that of thermodynamic

depth, which essentially asserts that complexity is a “measure of how hard it is to put something

together” [57]. Several variations on this approach share the commonality that complexity

should disappear for both ordered and purely stochastic systems [58]. Additionally, Bar-

Yam [59] defined complexity as the length of the shortest string that can represent the properties

of a physical system. This string could be the result of measurements and observations over time.

An energy-based metric was proposed by Chaisson [60] measuring the energy rate density,

where Φm is energy rate density, E is energy flow through a system, τ is the time frame, and m

is system mass. Chaisson obtains results that correlate well with other notions of complexity,

and below we add our proposed relation from this transcriptome model framework

Φm ¼ E=τm or which we propose is : αðΣSNAMþ Σ
SRCMÞ=N ð5Þ

A practical difficulty in using the Φm metric is determining the appropriate mass and energy.

In measuring theΦm of a transcriptome, we can use the mass of RNA production and the total

energy processed by the system. Energy in this framework could be the total sum of all

possible RNA-RNA interactions, which is just the count of all NAM and RCM in W as a sum

of overall transcript sequences S. However, the total energy of a transcriptome does not flow

just through its cell, but also exported to the extracellular space and captured from that

external source of transcripts, the mass of which is difficult to measure.

While higher functionality can be associated with increased resiliency and robustness, the

concepts are not synonymous. As defined by the INCOSE Resilient Systems Working Group,

“Resilience is the capability of a system with specific characteristics before, during, and after a

disruption to absorb the disruption, recover to an acceptable level of performance, and sustain

that level for an acceptable period of time” [61]. Robustness is the ability of a system to reject

disturbances without altering its state. A system is robust when it can continue functioning in

the presence of internal and external challenges without fundamental changes to the original

system. In relation to previous section on energy availability, robustness is the ability for a

system to retain reachable states in the event of falling available energy.

4.3. Framework for measuring resilience

Instead, complexity in the presented framework can be derived from properties of Wor T as in

Figure 3. Consider a transcriptome from a cell type alpha to be represented as T
α
, such that it is

the sum of all RNAs, including mRNA, miRNA, lncRNA, and rRNAwithin the cell (Table 1).

This set is the result of transcripts produced from the cellular DNA, T
α

0, transcripts captured
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from the extracellular space (EC) in the form of microparticles and exosomes TEC
IN, and

depletion as microparticle or exosome export to the extracellular space with T
α

OUT. Or,

Tα ¼ T0
α
þ TIN

EC � TOUT
α

ð6Þ

with

Tα

OUT ¼ Tα �F½S, RC, n� ≈Tα � ½a � f SðSÞ=ðf RCðS,RCÞ � nÞ� ð7Þ

where F is a filter function with parameters S (transcript sequence), RC (reverse complement of

transcript sequence), n sequence length of S, and “a” is a fitting parameter with suitable dimen-

sions, derived from:F αNAM/(RCM * n) proportionality. Thus the extracellular pool is composed

of transcripts with greater similarity S, and less reverse complementarity RC to the transcriptome

of origin and also have smaller size n. The filter functions fS(S) and fRC(S,RC) operate on sequences

S and RC, and essentially is a semantic selection filter on transcripts by affecting diffusion. We

propose that resilience of the cell is proportional to size of the transcriptome filter F, then

resilience α |F|, where |F| ¼ |fS| þ |fRC|, or normalized for transcriptome size,

Resilience ¼ ðjf Sj þ jf RCjÞ=N ð8Þ

such that |fS| is sum of all similarity matches, |fRC| is sum of all reverse complement interac-

tions, and N is the total nucleotide size of the transcriptome.

Figure 3. Framework for deriving transcriptome interactions and resilience. Data source is from RNA expression exper-

iments using RNA-seq or microarray values, or randomized sets for controls. From input sets, the aligned gene ID and

frequency of the extracted words are populated into a dictionary. Gene ID is used to calculate solvent-accessible (A) and

inaccessible (I) word probabilities from full length transcripts in silico. The dictionary can be queried for any sequence S to

find probability distribution of S in the dictionary. Changes in the transcriptome will change the distribution due to

changes in A/I for affected words. Overall metrics of the dictionary measure resilience using Eq. (8) in the text.
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5. Discussion

The concept of resilience is receiving increasing attention in chronic stress-related diseases.

Resilience has been shown in clinical studies to play a protective role in patients with chronic

conditions including osteoarthritis, breast and ovarian cancer, diabetes, and cardiovascular

disease related to psychosocial dimensional levels. The purpose of this study is to explore the

relationships between RNA-RNA interactions and to devise a measure of resilience at the

cellular level.

5.1. Prospects, challenges, and limitations for resilience measure by variance in RNA-seq

Although research on empirical indicators of robustness and resilience is rudimentary, there is

already a fast-growing body of engineering modeling as well as empirical work in ecology.

Nonetheless, major challenges remain in developing robust procedures for assessment of the

transcriptome. A goal of systems biology is to analyze large-scale multidomain networks to

reveal relationships between network structures and their biological function. While generally,

it is not feasible to visualize and understand whole networks, a common analysis is to partition

the network into subnetworks responsible for specific biological functions. Since biological

functions can be carried out by particular groups of molecules, dividing networks into natu-

rally grouped clusters can help investigate the relationships between function and topology of

system networks or reveal hidden knowledge behind them. The expression in Eq. (8) for

resilience is a measure of the size of network interactions possible within a transcriptome.

5.2. Notion of the transcriptome as an information system

The body of this work considers the transcriptome as an information system modeling a

dynamic system. A dynamic system is characterized by two concerns: the static structure and

dynamic behavior. The structural elements of dynamic systems are those elements whichmay be

identified from static snapshots of the problem space; while dynamic aspects involve those

semantic elements of the system that exist over the time domain. While modeling the static

aspects of an information system like RNA expression data, an understanding of the dynamic

nature of information systems in the cell is low. Behavioral issues of large information systems

are usually complex, consisting of many interactive sessions with the outside environment, tasks

like coordination and collaboration among different entities. Dynamic systems can exhibit emer-

gent properties that result from the dynamics, and which cannot be attributed to static structural

factors. However, given any real world information system consisting of many multistream

interactive processes, emergent properties are usually complex, without a common characteristic

structure. Such emergent properties are beginning to be addressed with the transcriptome.

6. Conclusion

We show that the transcriptome can be modeled as an information system with emergent

dynamic properties. The term nebula regulation is introduced to consider the regulatory effects
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of the whole transcriptome acting locally through RNA-RNA interactions and shifts between

accessible and inaccessible stretches of RNA sequence. Described as a network of interactions

from semantic analysis of similarity and reverse complementarity, together with the size of a

transcript, affect the diffusion of transcripts in a cell, and hence the distribution of RNAs. A

measure to represent resilience is proposed as the sum of the component elements (similarity,

reverse complementarity, and normalized by total nucleotides) of this transcriptome filter.
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