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Abstract

Skeletal muscle is not only an endocrine organ but also one of core components of mus-
closkeletal system. Sarcopenia refers to a decline in the skeletal muscle mass and func-
tion. The former involves the size and number of changes in two types of myofibers, 
lower satellite cell density, and regeneration ability. The latter shows a loss of muscle 
strength. Frailty is a geriatric syndrome with multisystem impairment associated with 
increased vulnerability to stressors. Sarcopenia increases the risk of frailty and may be 
one of the major causes of physical frailty phenotype. Sarcopenia is also potentially asso-
ciated with cognitive frailty phenotype. Aging might be the common underlying patho-
physiology of sarcopenia and frailty. Therefore, there are some potential target molecules 
in aging-related signaling pathways that might be associated with sarcopenia and frailty. 
Nevertheless, sarcopenia can mediate metabolism and promote accelerate systemic 
aging, frailty, and age-related diseases by myokines in an endocrine manner. Lifestyle 
interventions (resistance exercise and dietary restriction) of gerontoscience are effective 
in the prevention of sarcopenia. Some pharmacological agents are registered in different 
phases of clinical trials for sarcopenia intervention. Phytochemicals, mTOR inhibitors, 
metformin and acarbose, NAD precursors, and sirtuin activators demonstrated that mul-
tiple target antiaging effects might also have preventive and therapeutic perspectives on 
sarcopenia and frailty.

Keywords: sarcopenia, physical frailty, cognitive frailty, aging

1. Introduction

Sarcopenia and frailty are two common geriatric conditions that may co-occur within a single indi-

vidual with aging. Frailty is a heterogeneous clinical condition depended on different domains. 
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Definitions of frailty includes fried physical frailty phenotype (weight loss, exhaustion, physical 
inactivity, handgrip strength, and walk time) [1] and frailty index (use of walking aid, activities of 
daily living, incontinence, cognitive impairment, and multiple other components) [2]. Cognition 

performance decline is considered as a domain in Frailty index, but as “cognitive frailty” pheno-

type when physical frailty and potentially reversible cognitive impairment simultaneously occur 

[3]. Sarcopenia refers to decline in skeletal muscle mass and function, which includes primary sarco-

penia, or age-related loss of muscle mass and function decline, and secondary sarcopenia resulting 
from nutrition, activity, and disease-related loss of muscle mass [4]. Sarcopenia is different from 
cachexia, which combines the loss of both muscle and fat. Obviously, physical frailty and sarco-

penia share the core components, physical function impairment (weakness, slow walking speed, 
and balance problems), and sarcopenia is considered as the biological substrate and the pathway of 
physical frailty development [5, 6].

Although it is a controversy, sarcopenia and frailty are two separate conditions based on 
their definitions, and outpatients with sarcopenia were more likely to be more frail than frail 
outpatients to be sarcopenic [7]. Skeletal muscle is not only a component of muscloskeletal 

system but also an endocrine organ. Two components of sarcopenia also obviously contribute 

to frailty, a geriatric syndrome that has been defined as a multisystem impairment charac-

terized by decreased reserve associated with increased vulnerability to stressors. First, the 
loss of muscle mass plays a critical role in unintentional weight loss of frailty in the elderly. 

Second, age-related loss of muscle strength, commonly referred as dynapenia, was associated 
with both sarcopenia and frailty [8]. Sarcopenia and frailty had the sensitivity and specificity 
for dynapenia of 33 and 89%, 17 and 98%, respectively. A longitudinal aging study with 731 
community-dwelling older people demonstrated that dynapenia was related to the cognitive 

impairment [9]. Thus, dynapenia is also the important factor responsible for frailty. Moreover, 
muscle cross-talks with other tissues and organs by myokines in an endocrine manner to 

mediate metabolism and promote aging, diseases, and frailty. Here, we review the epide-

miological evidence and pathophysiological basis of skeletal muscle aging, or primary sar-

copenia, that result in frailty and potential target molecules of intervention. Particularly, we 
focus on the pathophysiological basis of sarcopenia, including age-related changes of nutrient 
and stress sensors, positive and negative regulators of muscle growth, and the maintenance 
of muscle mass and function. Moreover, we also summarize the underlying mechanisms of 
sarcopenia accelerating systemic aging, frailty, and age-related diseases. Finally, we looked 
for the potential target molecules of intervention of sarcopenia according to the pathophysi-

ological basis and relevant signal pathways.

2. From Sarcopenia to frailty: the pathophysiological basis

2.1. From sarcopenia to physical and cognitive frailty: the epidemiological evidence

Frailty is heterogeneous and contains physical and cognitive multiple domains. In this con-

text, the concept of “Cognitive frailty” becomes essential. It refers to simultaneous presence 
of physical frailty and potentially reversible cognitive impairment but without dementia [3]. 

Cognitive frailty includes reversible and potentially reversible subtypes [10] and may represent 
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a precursor of neurodegenerative processes [10]. The link between physical function and cog-

nitive decline provides important targets to develop effective preventive strategies in earlier 
cognitive impairment stages [3, 11, 12].

Epidemiological studies suggested that sarcopenia increases the risks of both physical frailty 

and cognitive impairment. Loss of muscle mass and strength is associated with increased 
dependence, frailty, and mortality. Low appendicular lean mass related to body mass index 
could detect patients at risk for frailty [13]. A cross-sectional study with small subjects, 273 
Japanese community-dwelling older women aged >65 years showed that sarcopenia was 

related only with prefrailty and frailty, and cognitive decline was related to frailty [14]. 

However, several studies showed an association between sarcopenia parameters and cognitive 
impairment. Low handgrip strength was shown to correlate with a decrease in Mini Mental 
State Examination (MMSE) score [15]. Other studies also reported an association between 
handgrip strength and the risk of Alzheimer disease and the rate of cognitive decline [16–18]. 

In prospective studies, a decrease in physical performance in relation to future dementia was 
demonstrated [19, 20]. Subjects aged >65 years who scored low in a physical performance test 

had a three-times higher risk of developing dementia at a 6-year follow-up [21]. Recently, the 
new concept of “Motoric Cognitive Risk (MCR) syndrome” was defined as having mild cog-

nitive impairment (MCI) and slow gait, supporting the common underlying mechanism in 
physical and cognitive impairment [22]. MCR offered further benefit on predicting dementia 
than MCI or slow gait alone. A recent study demonstrated an association between increased 
risk of cognitive impairment, mainly MCI, and poor lower extremity function [21].

2.2. Aging promotes sarcopenia and frailty

Factors relating to skeletal muscle mass and strength changes include the loss of motor units 

innervating muscle, age-related hormone changes, muscle hypoxia resulting from atherosclerosis 
and chronic proinflammatory status, decreased physical activity and protein intake, age-related 
insulin resistance, and mitochondrial dysfunction [23]. Aging leads to a preferential reduction of 

type II myofiber size. There is a significant loss of type II muscle fibers, lower satellite cell density, 
and lower satellite cell/fiber ratio in older individuals with sarcopenia [24]. The loss of motor 

units innervating muscle, especially type II myofibers [25], and the decreased blood flow to mus-

cle [26] results in the loss of muscle mass. Meanwhile, many elderly population with insulin 
resistance who maintains the sensitivity of glucose metabolism, but not protein synthesis, show 
age-related anabolic resistance, meaning the reduced muscle protein synthesis [27, 28]. However, 
muscle of older individuals with type 2 diabetes [29] metabolic syndrome [30] demonstrated a 

significant low proportion of type I fibers that is positively associated with the severity of insulin 
resistance. Thus, the loss of muscle mass and the alterations of myofiber type proportion due 
to insulin resistance could potentially affect whole body glucose homeostasis [31]. Age-related 

hormone changes, for example, the decline of anabolic hormone testosterone leads to the loss of 
both muscle mass and strength [32]. The decline in both growth hormone and insulin-like growth 

factor 1 are related to the loss of muscle mass but not muscle strength [33]. Muscle hypoxia results 
from atherosclerosis and chronic proinflammatory status leads to the loss of both muscle mass 
and strength [25]. Other factors, decreased physical activity and protein intake, also involve in 
the loss of muscle mass.
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Age-related decline of the levels of 25(OH) vitamin D due to a decreased production of 25(OH) 
vitamin D in skin or a decline in vitamin D absorption can result in the decline of muscle func-

tion [25]. Age-related insulin resistance causes an increase of fat infiltration into muscle and 
a decline in muscle strength [34]. Mitochondrial dysfunction in aging skeletal muscle causes 
oxidative damage and the decline of energy generation to maintain function properly [35].

The biological mechanisms underlying the association between sarcopenia and frailty are 

uncertain [36]. Any plausible explanations are that physical, motor, and cognitive functions 
are not causally related but are affected by common underlying pathophysiology [37]. Frailty, 
cognitive impairment, and sarcopenia share many common risk factors, such as immune 
or inflammatory response, oxidative stress, and hormonal dysregulation [38, 39]. In view 

of this, frailty, cognitive impairment, and sarcopenia may be highly interrelated [38, 40]. 

Inflammatory markers such as C-reactive protein and interleukin-6 concentrations are cor-

related negatively with muscle strength and physical performance [41, 42]. According to the 

definition of cognitive frailty, physical factors are the potential causes of cognitive impair-

ment. In a study, high levels of these markers are associated with a 66% increase in cognitive 
impairment risk at 4-year follow-up in elders with metabolic syndrome [43]. Elevated oxida-

tive stress [44], decreased sex steroid levels [45, 46], and insulin resistance [47, 48] are also 

involved in the association between physical and cognitive dysfunction.

2.3. The maintenance of muscle mass and function

The maintenance of normal muscle mass and function depends on the dynamic balance 

between positive and negative regulators of muscle growth. Muscle growth promoters 
include follustatin (FST), bone morphogenetic proteins (BMPs), brian-derived neurotrophic 
factor (BDNF), and irisin. Muscle growth suppressors contain myostatin, transforming 
growth factor beta (TGFβ), activins A and B, growth, and differentiation factor-11 and 
-15 [49, 50]. Age-related changes of these molecules, together with other factors, such as 
age-related diseases, chronic low-grade systemic inflammation, insulin resistance, endo-

crine aging, low physical activity, aging-related impairment of neuromuscular junction 
dysfunction, and contractile insufficiency because of skeletal muscle-specific troponin T 
leakage from sarcomere, result in imbalance between positive and negative regulators of 
muscle growth and sarcopenia development [49]. Muscle growth suppressors through the 
antibody-coupled, T-cell receptor/anaplastic lymphoma kinase 4,5 (ActR/Alk 4,5), or type 
I and II TGFβ receptor (TβRI and TβRII), phosphorylate mothers against decapentaplegic 
homolog 2/3 (SMAD 2/3), then combine SMAD 4 and inhibit the activation of an alterna-

tive pathway/mammalian target of rapamycin (Alt/mTOR) signal. TGFβ promotes SMAD3 
binding to the promoters of both fibronectin type III domain containing 5 (FNDC5) and 
procaspase-activating compound 1α (PAC-1α), and suppresses the expression of irisin and 
PAC-1α [51].The elevated growth differentiation factor 11 (GDF11) increases the risk for 
age-related frailty and comorbidities [50]. Muscle growth promoters through their receptors 
phosphorylate SMAD 1/5/8 decrease the inhibition of Alt/mTOR signal and maintain mus-

cle mass and strength. Insulin resistance due to aging, obesity, and diabetes results in the 
suppression of insulin/insulin-like growth factor-1/phosphatidyl Inositol 3-kinase/protein 

kinase B (IGF 1/PI3K/AKT)/mTOR, and muscle hypotrophy and dysfunction of metabolism; 
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the less activated Alk fails to block the nuclear translocation of Foxo 3 to enhance the expres-

sion of autophagy-related genes and the consequent protein degradation [31, 52].

2.4. Sarcopenia accelerates systemic aging, frailty, and age-related diseases

Skeletal muscle influence systemic aging and lifespan by nutrient and stress sensors and 
myokines [53]. DNA damage and mutations are particularly prominent in aging skeletal 
muscle. Overexpression of phosphoenolpyruvate carboxykinase (PEPCK-C) and mitochon-

drial uncoupling proteins delays reproductive aging and decreases the incidence of several 

age-related diseases. Nutrient and stress sensors in sarcopenia include decreased sirturin 1 

resulting from low nicotinamide adenine dinucleotide (NAD)+ synthesis and high NAD+ 
consumption and low adenosine monophosphate-dependent protein kinase (AMPK) activ-

ity, which results in the decline of the activity  of peroxisome proliferator-activated receptor 
gamma coactivator-1a (PGC-1a) [54, 55]. The overexpression of AMPK and PGC-1a in muscle 
not only delays the age-related muscle deterioration but also slows the functional decline 

of other tissues, delay age-related metabolic defects, including systemic low-grade chronic 
inflammation, insulin resistance, increase in the stress resistance of the organism and extend 
lifespan. The other two nutrient sensors, insulin/insulin-like growth factor (IIS) and mTOR 
signaled nutrient abundance (high fat, amino acids, and sugar diet) and anabolic activity, are 
major accelerators of aging. mTOR inhibition by rapamycin or mTORC1 activity inhibition 
by genetical modification, and the downregulation of mTORC1/ribosomal protein S6 kinase 
beta-1 (S6K1) increases lifespan in mammals [55]. The decrease in regenerative capacity and 

skeletal muscle loss with age coincides with suppression of IIS pathways which is an attempt 
to promote longevity of the organism and survival within the tissue [56]. Age-related sarco-

penia is associated with an increase in abdominal obesity, which refers to sarcopenic obesity 
[57]. Sarcopenic obesity leads to the infiltration of fat into the muscle and the accumulation 
of triglycerides within the cell, which impairs the function of the insulin receptor substrate 
causing insulin resistance, a lower lipid buffering capacity, and anabolic resistance in muscle 
[23, 58]. Sarcopenic obesity also results in cognitive impairment because of insulin resistance. 

In a cohort of 1570 older British men, compared with participants in the normal cognitive 
aging group, those elder men with severe cognitive impairment were more likely to be sar-

copenic, with waist circumference >102 cm, BMI >30 kg/m2 and to be in the upper quintile of 

total fat mass, central fat mass, peripheral fat mass, and visceral fat level after age-adjusted 
multinomial logistic regressions [59]. In experiment animal mouse, obesity in combination 
with sarcopenia exacerbates blood-brain barrier disruption, neuroinflammation, and oxi-
dative stress of hippocampus, which likely contribute to the remarkable cognitive decline 
[60]. Calorie restriction and exercise increase the concentrations of metabolic effectors NAD+ 
and AMP but reduce the concentrations of the hormonal effectors IIS and growth hormone. 
Meanwhile, these interventions also decrease the levels of glucose, amino acids, and lipids, 
recover downstream activity, such as DNA repair, mitochondrial biogenesis, and function, 
promote homeostasis, decrease frailty and comorbidities.

Beyond the profound influence on systemic aging and body metabolism, muscle secrete myo-

kines, which act on muscles and other tissues, such as adipose, bones and brain in an autocrine, 
paracrine, and endocrine fashion [61]. The metabolites released from muscle and the interactions 
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between muscle and nerve also participate in the systemic effects of muscle on the organism’s 
physiology. Exercise can activate PGC-1α/FNDC5 pathway, promote myokine irisin secretion, 
induce hippocampal BDNF release, and improve cognitive function [62].

3. From sarcopenia to frailty: the potential target molecules of 

intervention

The major causes of frailty include chronic diseases, such as congestive heart failure, dia-

betes, chronic obstructive pulmonary disease (COPD), anemia, polymyalgia rheumatic, 
and endocrine disorder; decreased nutrient intake because of anorexia resulting from social 
factors, decline in taste and smell, altered fundal compliance, enhanced release of chole-

cystokinin, increased leptin and cytokines, sarcopenia, and pain [63]. Treating the chronic 

diseases can reverse the loss of muscle mass and frailty, such as with angiotensin-converting 
enzyme inhibitors in some patients with congestive heart failure, both erythropoietin and 
darbepoietin-α in the individuals with anemia, and vitamin B12 supplementation in acro-

cytic anemia and related cognitive impairment. Lifestyle interventions play critical roles in 
the prevention of sarcopenia, frailty, and cognitive impairment. Physical exercise, particu-

larly resistance exercise, can improve muscle mass and strength in the elderly [64, 65] and 

obese elderly [58]. Individuals with higher initial adiposity experience less improvement in 

both muscle strength and physical function [66]. Moreover, the addition of caloric restric-

tion during resistance training improves mobility and does not compromise other functional 

adaptations to resistance training [66]. Resistance training also can increase circulating irisin 
[67] and improve cognitive performance [62]. In addition, physical exercise and caloric restric-

tion can benefit age-related insulin resistance, reduced mitochondrial biogenesis, and failure 
of autophagy [68]. However, it is undesirable to use caloric restriction alone in sarcopenic 
elderly, which results in further loss of lean tissue mass. The oldest olds also with anabolic 
resistance and frailty find it difficult to perform resistance exercise to achieve benefit effects.

Dietary interventions including protein intake, antioxidants, and vitamin D fortification may 
benefit the conditions of sarcopenia and frailty. Protein supplies the amino acids, especially 
leucine, which may activate the signaling pathways required for muscle synthesis. Vitamin 
D deficiency is common in individuals with sarcopenia, frailty, and cognitive impairment. 
However, the effects of both protein supplementation and vitamin D intervention on muscle 
strength and physical performance have mixed results [69]. Although individuals with higher 

overall antioxidant status have better physical function, such as walking speed [70], antioxidant 
interventions might not attenuate, and even aggravate sarcopenia due to the health-promoting 
action of reactive oxygen spices [71].

There are no licensed treatments for sarcopenia and frailty. Pharmacological agents proposed 

and focused by investigators, with potential for treating sarcopenia include the myostatin sig-

naling pathway and hormone replacement therapy (Table 1), currently are at various stages of 
development [72]. Myostatin, the family member of TGF-β, is a skeletal muscle-specific myo-

kine. Myostain binding with activin type IIB receptor inhibits myoblast proliferation, muscle 
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strength, and mass by negative regulation of mTOR signaling [73]. Myostatin inhibition by 
activin receptor trap or inhibitor and myostatin antibody might be useful agent for the treat-

ment of human muscle degenerative diseases (Table 1) [72]. Testosterone supplementation 

is another major focus for drug discovery of sarcopenia. Testosterone could increase both 

muscle mass and strength in men but are linked to adverse cardiovascular events with short 

durations of therapy [74, 75]. In order to decrease the side effects of testosterone, the selective 
androgen receptor molecules, including steroids and nonsteroids, have been developed, and 
some are at phase 3 (Table 1). Tirasemtiv is a fast skeletal troponin activator that sensitizes the 

sarcomere to calcium and amplifies the function of muscle in neuromuscular diseases, such as 
Amyotrophic Lateral Sclerosis and myasthenia gravis (Table 1) [76, 77].

Age is the greatest risk factor for nearly every major cause of mortality in developed nations 

[78] and the profound effect of aging on sarcopenia, frailty, and cognitive impairment is often 
overlooked. A number of aging-associated molecular signals might be the potential target 

in the prevention and treatment of sarcopenia, frailty, and cognitive impairment. Genetic or 
pharmacological regulation of NAD+/Sirt1, sestrins/AMPK/PGC1α, IGF-1/Akt/mTOR, TGF-
β, myostatin, activins, GDFs /SMAD2/3, BMPs/SMAD1/5/8 signal molecules, myokine irisin 
and FGF21, the antagonist of myokine myostatin propeptide follistatin or follistatin-like 3, and 
urocortins can not only improve muscle mass and/or function but also delay frailty and age-

related diseases [31, 54, 68]. Besides dietary restriction and exercise, geroscience interventions 
with translational potential include mTOR inhibitors, metformin and acarbose, NAD precur-

sors and sirtuin activators, modifiers of senescence and telomere dysfunction, hormonal and 

Mechanism of action Drug name Drug developer Indication sought Study phase

I. Myostatin antagonists

Activin receptor trap ACE-031 Acceleron Duchenne muscular 
dystrophy

Phase 3 (trial 

terminated early)

Myostatin antibody REGN-1033 Regeneron/Sanofi Sarcopenia Phase 2

LY-2495655 Eli Lilly Hip arthroplasty 
Elderly Fallers

Cancer cachexia

Phase 2

PF-06252616 Pfizer Inclusion body 

myositis

Phase 1

Activin receptor 

inhibitor

Bimagrumab 
(BMY338)

Novartis Sarcopenia

Hip fracture
Cancer and COPD 
cachexia

Phases 2 and 3

Phase 2

II. Selective androgen 

receptor

modulators

Enobasarm (ostarine) GTx Cancer cachexia Phase 3 (did not meet 

primary

endpoint)

III. Skeletal troponin 

activators

Tirasemtiv

CK-2017357
Cytokinetics Amyotrophic lateral 

sclerosis myasthenia 

gravis

Phases 2 and 3

Table 1. Pharmacological agents in development with potential for treating sarcopenia [72].
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circulating factors, and mitochondrial-targeted therapeutics [78]. Phytochemicals obviously 

are ideal geroscience interventions with translational potential. They not only have multiple 

target molecules in many aging-related signalling pathways, such as sestrins/AMPK/PGC1α, 
IGF-1/Akt/mTOR, against chronic inflammation and oxidative stress but also have systemic 
influence with low side effects, including skeletal muscle and other domains of frailty [79, 80].

4. Conclusion and perspective

Sarcopenia is one of the important causes of physical frailty. Frailty contains different phe-

notypes, such as physical frailty and cognitive frailty or multiple domains in frailty index. 
Skeletal muscle influences body metabolism, systemic aging, accelerates physical frailty, 
cognitive impairment, and decrease healthy lifespan. Individuals with primary sarcopenia 
have an increase in the risk for frailty, cognitive impairment, and age-related diseases. Aging 
might be the common mechanism of sarcopenia, frailty, and cognitive impairment. Cognitive 
frailty is an important target of the prevention for both physical and cognitive disability [81]. 

Although some pharmacological agents are registered in different phases of clinical trials 
for sarcopenia intervention, no drug is really used for the clinical treatment of sarcopenia. 
Phytochemicals have effects on multiple targets of aging-related signaling pathways, and 
other targeted aging molecules, such as mTOR inhibitors, metformin and acarbose, NAD 
precursors, and sirtuin activators [78, 82], have preventive and therapeutic perspectives on 
sarcopenia, frailty, and age-related diseases.
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