
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322431811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 4

High‐Pressure Torsion: Experiments and Modeling

Marina Borodachenkova, Wei Wen and
António Manuel de Bastos Pereira

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69173

Abstract

The high-pressure torsion (HPT) process has been the subject of many investigations as
a new method of processing for nanostructured materials due to its ability to develop
nanostructures with high-angle grain boundaries. This chapter examines the various
publications describing the experimental studies of the effect of HPT on the mechanical
behaviors and alterations of microstructural features in applications to various pure and
alloyed metals. Moreover, an overview of the modeling approaches developed through
the last decade, considering the main advantages/limitations, is analyzed.
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1. Introduction

The grain size is one of the essential factors controlling the mechanical and physical properties of

polycrystals. It is well known that the strength of polycrystalline materials can be improved by

reducing the grain size. Materials with fine microstructure usually possess extraordinary proper-

ties, including high strength, good toughness, and long fatigue life [1]. For this reason, producing

metals with a very small grain size has attracted wide interest recently. To achieve materials with

ultrafine-grained (UFG) structures and superior mechanical properties, severe plastic deformation

(SPD) has emerged as the fundamental process, as pointed out in review articles byMazilkin et al.

[2] and Zhu et al. [3].

Synthesis of ultrafine-grained (UFG) materials by severe plastic deformation (SPD) refers to

various experimental metal forming procedures that may be applied to impose very high strains

on materials leading to exceptional grain refinement. One of the most important features of SPD

processing is that the shape of the sample is retained by using special tool geometries, which:

1. Prevents the free flow of the material and thereby produces a significant hydrostatic

pressure.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Allows imposing strain without any significant change in the overall dimensions of the

sample. Therefore, it is possible to repeat SPD process on the sample to achieve extreme

large strain.

In the early studies of UFG microstructure formation during SPD, two processing methods have

been investigated more intensively: equal channel angular pressing (ECAP) and high-pressure

torsion (HPT). These methods have been applied to a wide range of materials: pure metals,

alloys, composites, and ceramics. Compared to ECAP, HPT is especially effective to introduce

extremely large shear strain which triggers strong grain refinement. In the present chapter, the

evolution of the microstructural and mechanical properties during HPT is summarized. Follow-

ing that, the overview of the modeling approaches applied to predict the microstructure evolu-

tion and the stress-strain distribution during HPT is presented.

2. The HPT procedure

A brief introduction of the HPT procedure is presented in this section. More detailed descriptions

are available in the literature [2, 3]. The principle of the modern HPT process is illustrated

schematically in Figure 1 [4]. A specimen is held between the plunger and the support and is

strained in torsion under the applied pressure (P) in the order of several GPa (1–10 GPa). A lower

holder rotates and deforms the specimen by the contact surface friction forces so that deformation

proceeds under a quasi-hydrostatic pressure. In practice, there are two main types of HPT pro-

cessing depending on the shape of the anvils: the unconstrained (Figure 2a) and the constrained

(Figure 2b and c) HPT. In unconstrained HPT, samples are placed between two anvils and

subjected to HPT processing. In such a case, the sample material is free to flow outward when the

Figure 1. A schematic view of the HPT setup.
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high pressure is applied. Samples are thus much thinner after HPT processing [6]. In constrained

HPT, samples are placed into the cavity of the lower anvil or both anvils [6], which can prevent

material flowing outward. Therefore, the thickness reduction is not evident during HPT. Normally,

the constrained HPT is a more common method since this designing is conducted with a more

effective back-pressure to the samples [7–9]. However, it is generally difficult to achieve an ideal-

ized constrained condition. The experiments are often performed under a quasi-constrained condi-

tion where there is at least some limited outward flow between the anvils.

For an infinitely small rotation, dθ, and a displacement, dl, it follows from Figure 3 that where

r is the radius of the disk, the incremental shear strain, dγ, is given by:

dγ ¼
dl

h
¼

rdθ

h
ð1Þ

where h is the disk thickness.

By further assuming that the thickness of the disk is independent of the rotation angle θ, it

follows from formal integration that since θ ¼ 2πN, the total shear strain, γ, can be expressed as:

γ ¼
2πNr

h
ð2Þ

Figure 2. A schematic view of the sample dimension and the parameters used to estimate the imposed strain in HPT.

Figure 3. A schematic view of the (a) unconstrained and (b and c) constrained HPT processing conditions.
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where N is the number of rotations. The equivalent Von Mises strain is calculated using a

commonly used relationship:

ε ¼ γ
ffiffiffi

3
p ð3Þ

Theoretically, the imposed strain during HPT is given by Eq. (2). As a result of this expression,

the strain is equal to zero at the center of the sample and increases linearly until reaching a

maximum near the edges. Thus, the microstructure produced by HPT is heterogeneous. Some

authors reported that the microhardness also varies significantly along the radius of disks

processed by HPT [10–12].

Nevertheless, it is possible to obtain homogeneous structures along disk diameter by increas-

ing the number of revolutions [4, 13]. For example, in the work of Xu et al. [14], high purity

aluminum disks were processed by HPT at room temperature under pressures of 1.25, 2.5, and

6 GPa for 1, 3, and 5 turns. It has been reported that at the early stages of deformation, the

hardness at the disk center is higher than that at the edges, and the hardness becomes homo-

geneous with high level of deformation. This kind of material response has been observed for a

material where recovery is rapid, as in the pure aluminum used in this investigation. By

contrast, for a material where recovery is slow, the hardness is initially lower in the center,

but gradually the microstructure evolves into a homogeneous condition.

In the work of Kawasaki et al. [15], processing by high-pressure torsion has been conducted

through 1/4, 1, and 5 turns, and detailed microhardness measurements were recorded on high

purity (99.99%) aluminum. The hardness is initially high in the centers of the HPT disks but it

decreases with torsional straining to become reasonably homogeneous.

3. Influence of HPTon the mechanical and microstructural properties

The HPT process has been the subject of many investigations due to its ability to develop

homogeneous nanostructures with high-angle grain boundaries [16]. The mechanical behavior

and microstructural feature evolutions have been extensively studied for a wide range of pure

metals and alloys [4, 5, 13, 17–28]. In this section, the overview of the nanosized microstructure

formation and the improvements in the mechanical properties during HPT are discussed.

3.1. Grain refinement

A tremendous amount of experimental works has been published on grain refinement by HPT.

It has been reported that there is an ultimate minimum grain size that can be achieved by HPT.

The results of the grain refinement for various metals and alloys during HPT are summarized

in Table 1. As it can be seen, refinement ratio varies from 100 to 1800.

Despite the intensive empirical studies on the formation of the ultrafine-grained microstruc-

tures, only several studies have attempted to understand the mechanisms of the grain
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refinement. Most of the theories are based on the idea that a high dislocation density is

introduced in the material due to heavy straining and later the dislocations rearrange into

ultrafine grain structures, as illustrated in Figure 4. In addition to the dislocation mechanisms

for ultrafine-grained microstructure formation, some other mechanisms of the grain refine-

ment have been described in the literature. For example, Isik et al. [41] reported that, in the case

of Co-Cr-Mo alloy, the deformation-induced phase transformation (γ ! ε) contributes to grain

refinement via the formation of ε platelets which subdivide the γ grains. Borodachenkova et al.

[42] demonstrated that in Al-Zn alloy, the intense dislocation pinning between Zn precipitates

within Al grains produces an effective division of the grains and accelerates the grain refine-

ment process. The work of Liu et al. [43] indicated that the microtwins can further promote

division and break down the grains into subgrains.

Metal/alloys Initial grain

size (µm)

Saturated grain

size (nm)

Yield stress

(MPa)

Pressure

(GPa)

Number

of rotations

References

Commercial 7075 Al alloy 26 1000 6 10 [29]

Commercial pure Ti 2–10 30 – 5 5 [30]

High purity (99.99%) Ni 100 170 Hv

¼ 3.2 GPa

6 5 [4]

Al-7075 alloy Extruded lengths

up to �450 μm

and widths of

�8 μm

500 (disk center) Hv�230 6 10 [31]

250 (disk edge)

Cu-0.1 wt% Zr 20 270 (disk center) – 6 10 [32]

230 (disk edge)

Al-1% Mg 400 230 Hv�110 6 10 [33]

High purity copper 40 200–250 Hv�140 6 10 [34]

Al-5 wt% Fe alloy (metastable

supersaturated solid solution)

150 5 [35]

Armco-iron 99.95% 40 100 Hv¼4.6 GPa 7 5 [36]

Mg-3%, Al-1% Zn 150–200 150–200 Hv�110 2.5 15 [37]

Pure Al (99.7%) 200–500 800 Hv�600MPa 1 8 [17]

Pure tantalum (99.9%) 60 160 Hv�400 6 10 [38]

σy

¼ 1300MPa

Pure Ti (99.99%) 10 150 Hv�248 2 5 [39]

Pure Zr (99.9%) 30 100 Hv�380 6 20 [22]

σy

¼ 1150MPa

Pure hafnium (99.99%) 180 Hv�360 4 10 [40]

Table 1. The grain refinement during HPT for various metals/alloys.
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3.2. Improvements in mechanical properties

As it has been widely reported, HPT processing leads to strong grain refinement, and

according to the well-known Hall-Petch relation, the material strength is inversely propor-

tional to the grain size. However, the recent works reported that HPT might lead to strain

softening and grain refinement simultaneously for pure metals as well as for the alloys. For

example, in the work of Ito et al. [44], the purity of Al can evidently influence the material

hardness. With increasing Al purity, the grain size dependence of hardness becomes less

significant. For ultrahigh pure 6NAl, the hardness variations with respect to the grain size

follow an inverse Hall-Petch relationship. The hardness in the HPT-processed state becomes

lower, although the grain size (�20 μm) is smaller than the non-deformed state (larger than

1 mm). The main reason for the observed behavior is that the high-angle grain boundaries act

mainly as dislocation sinks (the dislocations moved fast and disappeared in high-angle grain

boundaries) in ultrahigh pure Al.

Earlier, Ito and Horita [24] investigated the evolution of the mechanical behavior of pure

aluminum during the HPT process. The initial grain size before HPT was 250 μm. After one

rotation under hydrostatic pressure of 6 GPa, the average grain size was reduced to approx-

imately several microns. The results show that the hardness of pure Al initially increases

with increasing strain and then decreases to a saturation value. Based on the transmission

electron microscopy (TEM) observations, the following explanation for the softening behav-

ior has been suggested: in the region where the hardness increases, the dislocation accumu-

lation and the subgrain boundary formation occur. The increase in hardness is attributed to

Figure 4. A schematic view of grain refinement during HPT, describing sequentially the processes of (a) the generation/

accumulation of dislocations, (b) the formation of subgrain boundaries, (c) the increase in the misorientation angle, and

(d) the division of grains into subgrains.
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High-pressure torsion Superplasticity References

Alloy D (µm) dsat (nm) N P (GPa) Tt (K) _ε (s�1) Lmax (%)

Ti-6Al-7Nb 5 100 5 6 1073K (�0.58Tm) 2�10�3 930% [48]

Mg-8%wt Li 500 5 3 298 1�10�3 310 [49]

323 400

343 780

423 1010

473 1330

Al-2024 �33 �240 5 6 573 2�10�2 520 [50]

1�10�2 470

5�10�3 580

2�10�3 460

1�10�3 350

Al-2024 �33 �240 5 6 623 2�10�2 410 [50]

1�10�2 710

5�10�3 470

2�10�3 640

1�10�3 650

Al-2024 �33 �240 5 6 723 2�10�2 220 [50]

1�10�2 370

5�10�3 170

2�10�3 380

1�10�3 430

Mg-9% Al-1% Zn 30 1500 10 3 573 1�10�1 410 [51]

1�10�2 860

1�10�3 1050

1�10�4 1308

Al-7075þ10% vol Al2O3

metal matrix composite

8 300 20 6 623 1�10�1 305 [52]

1�10�2 595

1�10�3 345

Ti-6Al-4V 9.5 77�15 20 6 673 5�10�3 540 [53]

1�10�3 540

5�10�4 440

1�10�4 790

Table 2. The superplasticity properties after HPT processing.
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an increase in dislocation density which causes more chances of the mutual interaction of

dislocations within grains and of blocking of dislocation motion by the presence of subgrain

boundaries. Later, the dislocation density in the subgrains starts to decrease due to the

dislocation annihilation at subgrain boundaries. Meanwhile, this annihilation leads to an

increase in the misorientation angles, which will further promote the dislocation absorption at

the boundaries [24]. This is the reason why the misorientation increases with straining, and more

grains are surrounded by higher-angle boundaries. Finally, hardness saturates at a constant level

when the dislocation accumulation is balanced with the dislocation absorption at high-angle

boundaries. Pang et al. [45] observed that the HPT processing leads to strain softening for the

Cu-Al alloys with SFE higher than 28 mJ/m2, in which dynamic recovery is more noticeable

during plastic deformation. For alloys with the lower SFE of 6 mJ/m2, the strain softening has

been restrained, and strain hardening played a dominant role in the deformation process.

Mazilkin et al. [2, 46] demonstrated that the HPT of the Al-Zn (10/20/30%wt) and Al-Mg

(5/10%wt) alloys leads to a strong grain refinement (from 15 µm to 370 nm) and decomposition

of supersaturated solid solution of Zn and Mg in Al. The decomposition of supersaturated

solid solution results in material softening.

3.3. Low-temperature superplasticity

Superplasticity refers to the capability of a polycrystalline metal to perform an elongation of at

least 400% in tension load and with an associated value for the strain rate sensitivity. It is well

established that the superplastic properties are related to grain refinement of materials [47].

Necessary conditions for the superplasticity are (1) stable fine-grained microstructure (grain

size less than 10 µm) and (2) temperature higher than half of the melting temperature. HPT

processing is an effective method for grain refinement to the submicrometer or even nanometer

level. It is also widely reported that the enhanced superplastic properties have been obtained

by HPT processing at relatively low temperatures. The recent results for the superplasticity

properties after HPT are summarized in Table 2 (D—initial grain size, dsat—saturated grain

size, N-—number of rotations, P—applied pressure during HPT processing, Tt—testing tem-

perature, Tm—melting point, _ε—strain rate, and Lmax—maximum elongation).

4. Modeling

Despite the large quantity of studies performed on HPT, most of them are only dedicated to

microstructural and mechanical characterization. Recently, some researchers attempted to develop

dislocation-based models to capture microstructural evolutions and the resulting changes in

properties under large strain. Some other models, which are rooted in the finite-element method,

mainly focus on the description of the stress/strain distribution and evolution along the sample

radius, using a more empirical approach to describe the mechanical response without getting

into the details of the micromechanisms. This section aims to provide an overview of the

modeling approaches developed in the last decade, with a discussion of their main advantages/

limitations.
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4.1. Microstructure-based approaches

The microstructure-based models, describing the grain refinement due to large strain (particu-

larly under HPT), are usually based on the notion that the dislocation cell walls, which form in

the early step of the deformation, transform gradually to high-angle grain boundaries. This

type of models are commonly based on the approach of Kocks andMecking [54], which describes

the deformation behaviors of pure metals and alloys via a single internal variable, namely, the

total dislocation density ρtotal. Estrin [55] proposed a constitutive model to express the harden-

ing behaviors of cell-forming crystalline materials at large strains. A dislocation structure that

is developed under torsion deformation can be considered as cellular, with subgrain bound-

aries containing a high dislocation density separating subgrain interiors where the dislocation

density is significantly lower. The volume fraction of the walls f w is calculated using the

following expression:

f w ¼ 2ωd� ω2

d2
ð4Þ

where ω is the wall thickness and d is the subgrain size, which is proportional to the average

dislocation interspacing, (∝ 1=
ffiffiffiffiffiffiffiffiffi

ρtotal
p

). The total dislocation density is determined as:

ρtotal ¼ f wρw þ 1� f w
� �

ρc ð5Þ

where ρc is the dislocation density in the cell interior dislocation density, whereas ρw is the

dislocation density in the cell walls.

The macroscopic stress τ is considered as the sum of the stresses within the walls and cell

interiors:

τ ¼ f wτw þ 1� f w
� �

τc ð6Þ

To validate this model, it has been applied to predict the torsion deformation of pure copper.

The predicted hardening curve is compared with experimental results on copper torsion, and a

good agreement between theory and experiment is achieved. Since other mechanisms are not

accounted for, this model is restricted to the material in which the dislocation hardening is the

dominant mechanism.

Zhang et al. [56] has developed a microstructural model that is based on the evolution of

geometrically necessary dislocations (GND) and statistically stored dislocations (SSD) that

incorporate grain refinement. The total strength of commercially pure aluminum is given as:

σy ¼ σ0 þ Δσgb þMðΔτdis þ ΔτssÞ ð7Þ

where σ0 denotes the strength of annealed aluminum and Δσgb, Δτss, and Δτdis are the contri-

butions due to the grain boundary strengthening, the solid solution hardening, and the dislo-

cations hardening, respectively. The total dislocation density is the sum of the GND and SSD

densities. At the center of the disk, the strain should be zero and hence the SSD density (ρSSD)
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is expected to be zero. However, the strain gradient is substantial and GNDs will be generated.

The density of GNDs depends only on the strain gradient and the magnitude of Burger's vector

(b) but is irrelevant to the alloying contents. In an idealized cylindrical coordinate, the strain

gradient during HPT has only a radial component. Thus, the total amount of GNDs generated

per unit volume is given by:

ρGND,g ¼
1

b

dγ

dr
¼

2πNb

h
ð8Þ

The density of SSDs can be expressed by:

ρSSD,g ¼ ε
KA

Mμbα

� �2

ð9Þ

where KA is an alloy-dependent factor and μ denotes the shear modulus. The grain boundary

strengthening is assumed to be inversely proportional to the average grain size:

σgb ¼ μb
1

D

� �

ð10Þ

Themean grain size,D, can be predicted assuming that the average grain boundarymisorientation

angle, θ, is determined by the dislocation density within the cell wall ρGB; α is a constant. This

approach then provides the following relation:

D ¼ 4:365
θ

ρGBb
ð11Þ

Model predictions for Al-1050A alloy are given in Table 3. The modeling results show an

excellent correspondence between measured and predicted average Vickers microhardness

(determined as HV ¼ σy=2:9) at the center of Al-1050A samples processed by m-HPT for

different turns. A key element of this model is the assumption that at very high strains, the

dislocation density reaches a saturation value. However, the existing models are not capable to

connect the flow stress with the observed microstructure evolution.

Turns Δτdis, MPa Δσgb, MPa σy, MPa (predicted) HV , MPa (predicted) HV , MPa (measured)

0 19 0.4 77 27 30

0.5 28 0.4 101 35 36

1 35 0.4 120 41 41

3 45 4 148 51 49

5 45 7 151 52 52

10 45 10 154 53 54

Table 3. Measured average Vickers microhardness (HV ) in the center of disk compared with model predictions for HV

and the different strengthening components [56].
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Recently, Borodachenkova et al. [42] developed a microstructure-based model which allows

more detailed analysis of the relative contributions of microstructure hardening mecha-

nisms to the specific softening behavior in Al-30wt% Zn alloys during HPT. The experimen-

tal data indicated that the HPT processing leads to a strong softening process at the

beginning of plastic deformation before the saturation stage is achieved. The softening is

controlled by multiple mechanisms occurring simultaneously during the deformation,

which are categorized in Borodachenkova et al. [42] as solid solution decomposition (τss),

Orowan mechanism (τOrowan), and dislocation strengthening (τdis ). The total material

strength is expressed as:

τ� τss ¼ τOrowan þ τdis ð12Þ

Orowan mechanism refers to the strengthening due to the precipitates which act as impene-

trable obstacles to the mobile dislocations. When a dislocation is pinned at Zn precipitates, it

can still bow out between the precipitates and continue to glide if the driving stress is suffi-

cient. The required stress for the bypass is related to the interspacing (ω) and size of the

precipitates (dp). In Al-Zn alloy, Zn precipitates are formed intensively in the Al grain and

grain boundaries at the initial stage of deformation. With increasing strain, the Zn precipitates

grow in size due to the diffusion of Zn atoms. Besides, the dislocations pinned at the Zn

precipitates tend to transfer gradually into highly misoriented grain boundaries. At large

strain, the bulk of Al grains is almost free of precipitates. In this case, theoretically τOrowan

should increase rapidly at the beginning and vanish gradually. To express this process accu-

rately, an empirical factor kor is introduced in the classic Orowan mechanism law [57]:

τOrowan ¼ kor

0:85μbln
dp

b

� �

2π ω� dp
� � ð13Þ

kor is imposed to be linearly increased to 1 and then reduced to 0 as a function of strain

depending on the experimental observations.

The dislocation strengthening term τdis is expressed using the common Taylor law:

τdis ¼ αμb
ffiffiffi

ρ
p ð14Þ

where α is the dislocation-dislocation interaction strength parameter. The dislocation density

evolution is determined through the Kocks-Mecking-type equation. The dislocation mean free

path is a complex matter since it is controlled initially by the precipitates interspacing and,

after certain amount of strain, by the refined grain size. Its value is calculated through an

empirical law as a function of the strain.

Solute strengthening is related to the interactions between dislocations and solute atoms.

When a dislocation is traveling through a randomly distributed solute atom field (commonly

known as Cottrell atmosphere), it will suffer a drag force induced by the solute atoms. For the

dislocations pinned at obstacles, the diffusion of solute atoms into the dislocation core leads to

an increase in the binding energy between the dislocations and their current location. The
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effect of solute strengthening depends on the concentration of solute atoms. In Al-Zn, the

concentration of Zn atom keeps decreasing due to the precipitation process, which is the main

reason for the softening phenomenon. In the work of Borodachenkova et al. [42], the approach

of Mecking and Kocks [58] is modified to describe the solute strengthening:

τss ¼ k1 τ0 þ a0 cð Þ 1� kT

ΔG
ln

_γ0

_γ

� �2=3
 ! !

ð15Þ

where τ0 denotes the lattice friction, ΔG is the activation energy, and a0 is the value of thermal

stress at 0 K, dependent on the Zn concentration in Al grains (c). a0 can be written as [59]:

a0 ¼ τp þ
3Λ

2b3

ffiffiffi

2
p

Û
4

Aω0

 !1=3
ffiffi

c
p

ð16Þ

Here, τp is the Peierls stress, Û the characteristic interaction energy between a single solute and

a straight dislocation, ω0 the characteristic range for the interaction, and A the line tension

energy per unit length of dislocation. Comparison of the contributions of the hardening mecha-

nisms is presented in Figure 5, which concludes that the shear stress is mostly controlled by the

solid solution shear stress. The decomposition of super saturated solid solution plays a dominant

role in the material properties of Al-30 wt% Zn alloy.

Figure 5. The comparison of the contribution of different hardeningmechanisms predicted by themodel of Borodachenkova

et al. [42].
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4.2. Finite-element approaches

The microstructure-based models described in the previous section consider the detailed

evolution of the dislocation densities and other mechanisms such as the formation of second-

phase precipitates. However, this type of models usually deals with the mechanical behavior at

material point level. They cannot describe the heterogeneity of strain/microhardness distribu-

tions along the sample radius, which is quite evident during HPT. The finite-element method

(FEM) shows an obvious advantage on this matter.

Despite the considerable interest in HPT technique, there are only very limited studies that

focus on the heterogeneity of the plastic flow on the sample disk during the processing

operation. According to the previous works, the FEM has been an effective tool to study the

influence of the disk shape changes as well as the temperature evolutions occurring during

HPT processing.

Figueiredo et al. [60] examined the quasi-constrained HPT processing with disks located

within depressions on the inner anvil surfaces. The authors conducted the research using

DEFORM-3D 10.0 software (Scientific Forming Technologies Corp., Columbus, OH) consider-

ing isothermal conditions. The following simulation conditions were taken into account: the

applied pressures vary from 0.5 to 2.0 GPa, friction coefficients from 0 to 1 outside of the

depressions, and torsional strains up to 1.5 turns. The simulation results show that the mean

stresses vary linearly with the distance to the disk center. The authors reported that higher

compressive stresses are observed in the disk center and lower stresses at the edge. The com-

pressive mean stresses within the quasi-constrained volume decrease with the increasing extru-

sion of a ribbon of material between the anvils. The simulations indicate that the distribution

of effective strains inside the quasi-constrained volume of the anvils is comparable to the

prediction by ideal torsion according to Eqs. (2) and (3). The applied pressure and the friction

coefficient outside the quasi-constrained volume play a minor role in the distribution of

effective strain.

Later, Figueiredo et al. [61] studied the temperature distribution in quasi-constrained HPT. The

calculation results show that the temperature increase within the sample is directly propor-

tional to the material strength and the rotation speed. The temperature increasing rate varies

almost linearly with the flow stress of the disk and seems to be independent of the material

thermal properties. The study also indicates that a faster rotation speed leads to a higher

deformation rate and consequently a higher rate of heating. However, it has been pointed out

that the effect of the applied pressure in the HPT on the temperature increase is limited. Figuei-

redo et al. [61] predicted the evolution of the maximum temperature as a function of time in the

iron disk. The results show that the temperature increases from 20 to 54�C during 600 s under

1-GPa pressure. When a much higher pressure of 16 GPa is applied, temperature varies from 20 to

62�C during 600 s. The increase in applied pressure leads to an increase in temperature due to the

higher volume of material outflow between the anvils. The predicted temperature increase has

been validated by using the experimental measurements of the temperature recorded in the upper

anvil during HPT processing of Cu, Mo, and Al. The comparison of the calculated and the

measured results depending on the applied pressure and the rotation speed is summarized in

Table 4.
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Song et al. [62] performed a more detailed analysis regarding the influence of the friction on

the stress-strain distribution during HPT process. The results demonstrated that friction plays

a more important role in the torsion stage than in the compression stage. This chapter also

shows (see Figure 6) that the effect of the friction coefficient on the effective strain is more

significant toward the disk-edge region. The variations of effective strain as a function of the

friction coefficient for different locations in the workpiece are also shown in Figure 6 (right).

The authors declared that within the range of friction coefficient from 0.9 to 1.5, the effective

strain increases sharply, particularly in the medium and edge areas.

The effect of the friction coefficient on effective strain distribution on the HPT sample is obtained

in HPT-FEM simulations after 1 turn under 1-GPa pressure and 1 rpm rotation rate.

4.3. Coupling between micro-macro modeling and FEM

Lee et al. [63] embedded the dislocation density-based constitutive modeling a finite-element

code to study the behaviors of pure copper during HPT. The coupling between FEM and

microstructure-based constitutive model provides an excellent method for HPT-related

Material τ (GPa) ω (rpm) P (GPa) N¼1 N¼2 N¼3 N¼4

Cu 0.43 1 2 29.5 (26) 30.7 (28) 33.2 (31) 35.9 (33)

0.5 25.3 (24) 26.2 (25) 27.9 (26) 29.0 (27)

0.2 22.6 (21) 23.2 (22) 23.7 (23) 23.7 (23)

Mo 2.22 1 6 66.7 (51) 72.6 (65) 85.4 (87) 98.4 (100)

Al 0.21 5 5 45.7 (28) 47.9 (34) 51.3 (42) 55.5 (47)

0.2 19.9 (20) 20.3 (20) 20.6 (21) 20.6 (22)

Table 4. Summary of material flow stress (estimated from hardness), the HPT processing parameters, and the temperature

predicted at the workpiece (in �C). In parentheses, there are experimental measurements of the temperatures [61].

Figure 6. The effect of the friction coefficient on effective strain distribution on the HPT sample, obtained in HPT-FEM

simulations after 1 turn under 1-GPa pressure and 1-rpm rotation rate.
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predictions, which offers an adequate picture of the variation of the mechanistic parameters,

such as stress, strain, and strain rate, as well as the evolution of the microstructural quantities,

notably the dislocation density and the average grain size. In Lee et al. [63], the dislocation

density evolution is described by the approach of Estrin [55]. The dislocation density-based

constitutive model has been embedded in the rigid-plastic FEM package, DEFORM-3D ver. 6.1.

The stress and strain distribution during the HPT process has been analyzed, along with the

dislocation density evolution and the concomitant variation of the dislocation cell size. The

simulation results were compared with experimentally measured hardness and dislocation

density (in the cell interiors and cell walls).The initial dislocation densities in the cell interior are

2.5�1013 and 5.0�1013m�2. The gradient of the dislocation density is observed along the sample

diameter. After the compression stage, the dislocation densities increase and reach 7.27�1014m�2

in the center, 1.0�1015 m�2 in the middle, and 2.03�1015 m�2 at the edge region. After one anvil

turn, the dislocation densities further increase, and the magnitude is 3.3�1015 m�2 in the center,

4.70�1015 m�2 in the middle, and 7.25�1015 m�2 at the edge region. The difference in the value

of the dislocation density between the center and the edge has been explained by the fact that

the torsional strain is proportional to the distance from the center as given in Eq. (2). The

authors also compared the dislocation density predicted by FEM with the experimental data

synchrotron X-ray powder diffraction (XRD) analysis, and a good agreement is achieved.
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