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Abstract

The chapter proposes a generalized control algorithm that can reject the disturbances
associated with microgrid transition operation to facilitate smooth microgrid transition
operation. Firstly, the literature review of the state-of-the-art gives a deep analysis of the
disturbances associated with microgrid transition operation and it reveals that the same
controller should be adopted in the inverter control layer to prevent some harmful
transients during transition. Then, a generalized voltage control algorithm in inverter
control layer that can achieve smooth transition of microgrid is developed including the
formulation of the problem, description of the design methodology and design pro-
cedures, and analytical study. The salient feature of the developed generalized voltage
control algorithm is that the disturbances associated with microgrid transition are fully
cancelled by using inverse dynamic model, and the inverter control layer can be seen as
a bypass for the application layer. The practical feasibility of the proposed control
algorithm is demonstrated by implementing and testing in a signal level hardware-
in-the-loop (HIL) platform.

Keywords: microgrid transition operation, inverter control, inverse dynamic model,
voltage control

1. Introduction

According to a survey performed by Microgrid Knowledge, electric reliability is the number

one reason customers install microgrids, thanks to their ability to provide uninterrupted

power supply (in particular, for critical loads) when the utility is lost. For this reason, a

microgrid should be controlled to operate both in grid-connected and in islanded mode, as

well as to transit seamlessly between the two [1–3]. In the transition between grid-connected

and islanded mode, two types of disturbances are expected to occur and therefore the control-

ler of the inverter may have to deal with (1) frequency disturbances related to a sudden change

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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of the angle/frequency reference for the inverter control, and (2) current and voltage distur-

bances associated with switching between different operating modes [4]. Therefore, the

inverter controller should reduce the impact from those disturbances to acceptable limits, or,

at best case, eliminate them completely.

For the first type of disturbance, the seamless transfer techniques focus on the application layer

and the essential effort is to improve power angle/voltage transients during transition. Thanks

to the smooth modifications of the references (i.e. frequency, voltage and current) for the

inverter layer (voltage and current controller), smooth transition operation can be achieved.

As for the second type of disturbance, extensive research works have been undertaken in the

inverter controller to improve the disturbance rejection performance. However, the impact

from the disturbances can only be reduced and the robustness of these controllers is not

guaranteed during the transition of different operating modes.

Motivated by the research gap, a novel inverter control algorithm is developed based on the

inverse dynamic model of the LC filter and the inverter, transforming the closed loop transfer

function of the inverter control level into the ‘unitary gain’. The inverter controller with the

unitary gain property automatically eliminates the second type of disturbance during the

microgrid transition operation; therefore, smooth transition operation is achieved.

Figure 1. Modified control structure for DGs in microgrid operating in different modes.
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2. A generalized control architecture for DGs in microgrid

The control structure for DG interface in microgrids is mapped in Figure 1 according to the

IEEE Std. 1676, compatible with all the microgrid operation modes [5]. The highest layer, the

system control layer, is implemented in microgrid central controller (energy management

system (EMS)). The lower layers are locally applied in decentralized controller of each DG unit.

The main task of the system control layer is to manage the operation modes (grid-forming, grid-

feeding and grid-supporting mode) of DGs in microgrid based on the network characteristic and

distribution network operator (DNO)’s request and then to send the corresponding reference

signals and control commands to the application and the inverter control layers. The application

control layer generates a specific voltage reference for the inverter layer according to the chosen

operation. The inverter control layer executes the commands to fulfil the task set by the system

control layer, and it hosts the proposed generalized voltage controller, designed to reject the

current/voltage disturbances associated with microgrid transition operation. The functions of the

hardware control layer of inverter can reference the IEEE Std. 1676 for PEBB system.

3. Key challenge and a promising solution: an intelligent control

algorithm in inverter control layer

As stated in Section 1, the key challenge in designing a controller to reject the harmful voltage

and current transients caused by the shift of microgrid operation mode is in the design of the

inverter layer control algorithm. Microgrids in islanded mode and grid-connected mode appli-

cations have been considered in the past separately from the point of view of control design in

the inverter control layer. This control strategy causes unnecessary harmful transients in the

control system [5, 6]. Moreover, the commonly adopted control algorithm in inverter control

layer has a non-negligible drawback: if the voltage is controlled, the system performance is

sensitive to the output current of the LC/LCL filter and the output impedance (gain of the

output current) of the inverter, which act as disturbances to the output voltage [7]. The same

applies to the current control if the control variable is the output current of the LC/LCL filter.

Therefore, a promising solution to solve the issues in the existing control methods is direct

voltage control method adopted in the inverter control layer, and a good disturbance rejection

strategy should be considered to fully cancel the disturbances in the inverter control layer. As

the disturbances in the inverter control system can be measured, full feedforward compensa-

tion through inverse dynamic model can be applied to totally cancel the disturbances: a

detailed methodology and principles are explained in the following section.

3.1. Principle of inverse dynamic model

The basic structure of a single-input/single-output plant using the inverse dynamic model

feedforward is shown in Figure 2. The plant input u is composed of two parts: the feedback

control input ud and the inverse dynamic model uf. The inverse dynamic model Gi(s) is used in

the feedforward path of the controller to compute the desired actuator inputs uf to the plant.
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The feedback control C(s) eliminates the tracking error. The feedforward control and feedback

control can be designed separately, which follows the design concept of the two-degree-of-

freedom control.

The transfer function of the above system is given by

y

y�
¼

GðsÞGiðsÞ þ GðsÞCðsÞ

1þ GðsÞCðsÞ
ð1Þ

If an accurate inverse model of the plant is obtained (Gi(s)�G-1(s)) and in a proper form, then

the transfer function of the controlled system has a unitary gain for all frequencies. Thus, all

the internal disturbances imposed upon the controlled output are fully cancelled.

3.2. Control strategy in the inverter control layer

Different control strategies in the application layer regulate different outputs of the DG (e.g.

desirable active and reactive power generation, voltage and frequency regulation, and maxi-

mum active power injection). Essentially, these control strategies translate the various outputs

into references for the injected current or the terminal voltage in the inverter control layer. To

achieve universality, a new inverter control algorithm is required to control either one of these

variables in a flexible way. As the impedance between the DG and the grid is a known

parameter and the main grid voltage is an external measurable variable, the injected DG

current can be indirectly regulated by controlling the terminal voltage [5]. Thus, universality

is attained by introducing a voltage-based control algorithm into the inverter control layer.

By integrating disturbance rejection and universality of the control algorithm in the inverter

control layer, a control algorithm based on the inverse dynamic model method is developed [5].

The control structure of this algorithm is presented in Figure 3. As seen in the figure, the

control algorithm includes double loops: outer voltage and inner current loop. The inverse

dynamic model 1 shows the analytical relationship between the inverter output voltage vo and

the inverter current ii and also illustrates the input-output relationship between them. To

compel the control system to achieve the target output vo*, the corresponding control input iiff*

needs to be brutally imposed on the system. Incorporating the additional feedback control

Figure 2. Control structure with inverse plant model in the feedforward path.
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block 1, the closed loop transfer function of the outer loop is ‘unitary gain’. The inner current

loop respects the same design strategy and achieves also the closed loop transfer function with

‘unitary gain’.

4. Design of the inverter layer control algorithm

The design of the generalized voltage control algorithm in the inverter control layer is based on

the model of the LC filter and the inverter (the inverter is treated as a gain ‘1’). Figure 4 shows

the circuit diagram of the DG interface and LC filter together with the simplified structure of

the control algorithm in the inverter control layer. All the variables are represented in synchronous

frame and the dynamics of the LC filter are formulated in Eqs. (2)–(5):

diid
dt

¼ �
Rf

Lf
iid þ

1

Lf
ðvid � vodÞ þ ωoiiq ð2Þ

diiq

dt
¼ �

Rf

Lf
iiq þ

1

Lf
ðviq � voqÞ � ωoiid ð3Þ

dvod
dt

¼ �
1

Cf
ðiid � iodÞ þ Rc

diid
dt

� ωoiiq

� �

� Rc
diod
dt

� ωoioq

� �

þ ωovoq ð4Þ

dvoq

dt
¼ �

1

Cf
ðiiq � ioqÞ þ Rc

diiq

dt
þ ωoiid

� �

� Rc

dioq

dt
þ ωoiod

� �

� ωovod ð5Þ

where iid, iiq ,iod, ioq are the inverter currents and inverter output currents in the dq frame,

respectively, and vid, viq, vod ,voq are the inverter voltages and inverter terminal voltages in the dq

frame, respectively. Rf, Lf, Cf and Rc are the per-phase resistance, inductance and capacitance of

the LC filter.

By using Laplace transformation, we obtain the transfer functions for the inverter current and

inverter terminal voltage:

Figure 3. Control structure of the developed intelligent control algorithm using inverse dynamic model.
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iid ¼
1

sLf þ Rf
ðvid � vod þ ωoLf iiqÞ ð6Þ

iiq ¼
1

sLf þ Rf
ðviq � voq � ωoLf iidÞ ð7Þ

vod ¼
1

sLf
þ Rc

� �

ðiid � iodÞ � ωo
Rc

s
ðiiq � ioqÞ þ

ωo

s
voq ð8Þ

voq ¼
1

sLf
þ Rc

� �

ðiiq � ioqÞ þ ωo
Rc

s
ðiid � iodÞ �

ωo

s
vod ð9Þ

It becomes evident that the system described above is highly coupled. For instance, the currents

are functions of both voltages and the coupling terms of voltage, the latter of which interferes with

voltage as well. The block in Figure 5 shows the coupled system and resistance of the LC filter.

The dynamics of the LC filter can be expressed as one equation for the inverter current and one

for the terminal voltage for each component. This structure suggests a cascaded control struc-

ture for the inverter control containing one inner current loop and one outer voltage loop. In

the controller design, the inverter current ii and the output voltage vo are the controlled vari-

ables for current controller and voltage controller, respectively. The choice of the voltage loop

as outer loop is a natural consequence of the fact that the inverter output voltage is the filter’s

outermost variable. The general idea is to force the controlled variables to quickly follow the

reference signal and to be robust against disturbances and coupling terms. At the same time, in

order to achieve maximum transparency to higher control levels, the proposed controller is

designed in such a way that both the current closed loop and voltage closed loop have a

unitary transfer function. Therefore, all effects of disturbances are removed and the inverter is

Figure 4. Circuit diagram and control structure of the inverter control layer.
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theoretically transformed into a virtual bypass to the current or voltage reference signal. Once

this is achieved, the whole inverter can be operated as a perfectly controllable voltage source.

Figure 6 illustrates the abstract control structure of a controlled variable in d axis (iid and vod)

containing all the blocks: the inverse dynamics feedforward control, feedforward control of

disturbance, feedback control and decoupling effects. There are two different implementations

as shown in Figure 6: the parallel and the series connection of the FF and FB blocks. As the

series implementation results in more complex internal dynamics and it is more vulnerable to

measurement noises, both current and voltage control have been implemented using the

parallel connection. An important assumption made is that we neglected the dynamics of the

inverter, thus making the inverter act as bypass (v�
i
¼ vi) as well. This approximation is valid

since advanced synchronized sampling techniques can reduce the time-delay of inverter digi-

tal implementation to 0:25Tsampling [8]; thus, the inverter can be approximated as a unitary gain

without delay. If the control for inverter could be successfully implemented according to the

strategy shown in Figure 6 (top), the inverter’s control algorithm would yield the closed loop

system displayed in the block diagram shown in Figure 4.

Figure 4 shows the simplified control block of the cascaded voltage and current controller in

inverter control layer, which is in line with the structure illustrated in Figure 3. The outer

voltage loop has two components: FBVC and FFVC denote feedback voltage control and

feedforward voltage control, respectively. The inner current loop consists of two components:

FBCC and FFCC, standing for feedback current control and feedforward current control,

respectively. The feedforward control is a crucial element in this control system, which

contains the inverse dynamic model of the LC-filter shown in Eqs. (2)–(5) and its main effect is

Figure 5. Block diagram of dynamics of the LC filter.
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to perform ideal compensation of the filter’s dynamics within each loop. A deeper insight into

the feedforward control indicates that there are three components in each loop. The first

component consists of the decoupling elements; these remove the coupling between the d and

q variables. The second is the disturbance compensation; this eliminates the effect of measur-

able variables acting as disturbances to each loop (including an active damping function based

on back electromotive force (EMF)-decoupling). Finally, the third component counteracts the

dynamics of the control path, transforming the dynamics of the controlled variable into a

virtual bypass for the reference value [9, 10].

4.1. Inner current loop controller

The inner current control loop is seen as a bypass in the perspective of the outer voltage control

loop. Accordingly, the following relationship should hold:

Figure 6. Abstract structure of the proposed control algorithm and its components. Parallel (top) and serial (bottom)

connection of feedback and feedforward control.
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iid ¼ i�id, iiq ¼ i�iq ð10Þ

In order to achieve this, the feedforward component of the current control simply inverts the

dynamics described in Eqs. (6) and (7) and then we obtain the following control law for the

feedforward component viff
*:

v�if f d ¼ ðsLf þ Rf Þi
�
id � ωoLf iiq þ vod ð11Þ

v�if f q ¼ ðsLf þ Rf Þi
�
iq þ ωoLf iid þ voq ð12Þ

These equations could already be used directly as the control law for current control. They

include the inverse dynamic feedforward term for the reference current signal. This

feedforward term compensates the inverter disturbances including the terminal voltage and

coupling elements.

Nonetheless, the first term in Eq. (11) and (12) contains a component with differential behaviour

(denoted by the Laplace operator). It is not recommended to employ this control law in the inner

control loops which could directly amplify and feed the high-order harmonics in the inverter

system which in the end results in undesirable low-order harmonics. In the worst case, this

derivative term could lead to unacceptable THD or even instabilities to the control system.

Furthermore, the equations must include a feedback term to cancel the deviation between the

actual output and the reference current. A P-control is parallel connected to the feedforward

control. The use of a P-control instead of a PI-control can be explained by the fact that the steady-

state error in the inner loop is automatically sensed and compensated by the outer control loop

with the cascaded structure. The feedback controls of the inner current loop are given by

v�if bd ¼ KCPði
�
id � iidÞ , v

�
if bq ¼ KCPði

�
iq � iiqÞ ð13Þ

Therefore, after deleting the derivative element in the feedforward original control law, the

updated control law for the current control including the P-control is given by

v�id ¼ v�if f d þ v�if bd , v�iq ¼ v�if f q þ v�if bq ð14Þ

where Kcp is the proportional gain of the feedback control.

The transfer function for the inner loop can be obtained by substituting Eq. (14) into Eq. (6) and

(7), and then we obtain

iid ¼
Rf þ Kcp

s � Lf þ Rf þ Kcp
i�id, iiq ¼

Rf þ Kcp

s � Lf þ Rf þ Kcp
i�iq ð15Þ

4.2. Outer voltage loop controller

In an analogous manner, the closed loop of the voltage controller can be designed as a bypass

for the application layer controller as well. Therefore, the closed loop transfer function of the

voltage controller is expressed in the form of ‘unitary gain’ shown as follows:
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vod ¼ v�od, voq ¼ v�oq ð16Þ

Therefore, the same strategy will be applied in the design of the voltage control law. The

control algorithm is obtained by substituting Eqs. (4) and (5) into Eq. (16) and rearranging in

terms of the reference for the inverter current. As shown in Figures 3 and 4, the voltage

controller includes both feedforward control and feedback control. The control laws of the

outer voltage loop are formulated as follows:

i�if f d ¼
s � Cf

1þ s � Cf � Rc
v�od �

Cf

1þ s � Cf � Rc
voq þ ωo

CfRc

1þ s � Cf � Rc
iiq � ωo

CfRc

1þ s � Cf � Rc
iod þ iod

ð17Þ

i�if f q ¼
s � Cf

1þ s � Cf � Rc
v�oq þ ωo

Cf

1þ s � Cf � Rc
vod � ωo

CfRc

1þ s � Cf � Rc
iid þ ωo

CfRc

1þ s � Cf � Rc
iod þ ioq

ð18Þ

i�if bd ¼
s � Kvp þ Kvi

s
ðv�od � vodÞ, i

�
if bq ¼

s � Kvp þ Kvi

s
ðv�oq � voqÞ ð19Þ

where Kvp and Kvi are the proportional and integral gains of the voltage feedback control,

respectively. The reference current generated by the voltage controller is given by

i�vcd ¼ i�if f d þ i�if bd, i
�
vcq ¼ i�if f q þ i�if bq ð20Þ

4.3. Unitary transfer function compensation

Based on Eqs. (16)–(20), the transfer function of the voltage controller is unitary, whereas the

transfer functions of the current controller are given by Eq. (15).

In order to improve the system’s stability and dynamic performance, it is necessary to make

the inner current loop appear as a unitary gain from the perspective of the outer voltage loop.

A derivative compensation is used between the voltage controller and the current controller

to make the current transfer function also equal to unitary gain. The transfer functions

of the derivative compensation are obtained by inverting the inner loop transfer functions

represented in Eq. (15)

i�id
i�ivd

¼
i�iq

i�ivq
¼

s � Lf þ Rf þ Kcp

Rf þ Kcp
¼ DðsÞ ð21Þ

By substituting Eq. (15) into Eq. (21), the transfer function of the current controller is equal

to the unitary gain. In digital implementation, the derivative compensation should operate at

the same bandwidth as the voltage control. As we have Rf þ Kcp ≫ Lf , we have i�id i�ivd and

i�iq i�ivq. The derivative term would not cause significant distortion in case there is nonlinear

load connected.

Development and Integration of Microgrids88



5. Analysis of the voltage control algorithm in the inverter control layer

5.1. Analytical verification of the closed loop transfer function

Analytical verification is provided here to derive the closed loop transfer function of the

inverter control layer, and to prove that the design target is satisfied. A simplified structure of

the double-loop controller is presented in Figure 7.W1 represents the control plant of the inner

loop and its formula is shown in Eq. (6) and (7). W2 represents the control plant of the outer

loop and its formula is shown in Eq. (8) and (9). Only derivation process in d-coordinate is

presented and it is shown in Figure 8. Following the steps listed in Figure 8, we can obtain the

closed loop transfer as designed, vodðsÞ ¼ v�
od
ðsÞ.

Figure 7. Simplified structure of the control algorithm in the inverter layer.

Figure 8. The derivation process of the closed loop transfer function.
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5.2. Sensitivity analysis

The developed voltage control algorithm in the inverter layer is model-based control method,

which requires very accurate modelling of the control plant together with correct parameters.

If there is mismatch between the estimated plant parameter and the real one, the reverse model

would not perfectly compensate for the plant’s dynamics and transform the open loop into a

unitary gain. As a result, disturbance terms would appear in the closed loop transfer function,

which degrades the steady-state and transient performance. In this sensitivity analysis, how

the stability and control performance of the proposed controller is affected by the variations of

the control plant parameters (e.g. Cf and Lf) is investigated.

Assuming that the capacitance of the physical plant is Cf and the estimated capacitance of the

inverse dynamic model for the control system is C´
f, we can derive the following closed loop

transfer function:

vod ¼ v�od þ

C0
f

Cf
� 1

� �

s

ðC0
f þ KvpC

0
fRcÞs2 þ ðKvp þ KviC

0
fRcÞsþ Kvi

ðiid � iodÞ ð22Þ

From Eq. (22), it can be seen that the output vod is a function of the reference input v*od and the

disturbance iid-iod. The system stability is not degraded by variations of Cf as that the poles

of the transfer function for the disturbance iid-iod are always in the left-half-plane regardless of

variations of Cf. The closed loop performance is evaluated by the magnitude bode diagram

of the transfer function for the disturbance for different Cf values, as shown in Figure 9. It can
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Figure 9. Gain magnitude curve of disturbance (iid-iod) caused by Cf variation.
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be observed that the effect of modelling mismatch caused by variations of Cf is very small since

the gain magnitude is below �15 dB for all frequencies.

If the inductance of the real plant is Lf and the inductance of the inverse dynamic model is L´f,

the transfer function of the inner current loop is given by

iid ¼
L0 f sþ Rf þ Kcp

Lf sþ Rf þ Kcp
i�id þ

ωoðLf � L0f Þ

Lf sþ Rf þ Kcp
iiq ð23Þ

and the derivative compensation term is

D0ðsÞ ¼
i�i
i�vc

¼
sL0f þ Rf þ Kcp

Rf þ Kcp
ð24Þ

Therefore, the closed loop transfer function of the whole system is given by

vod ¼
AðsÞ þ BðsÞ

1þ BðsÞ
v�od �

ð1þ sCfRcÞð1� AðsÞÞ

sCf ð1þ BðsÞÞ
iod þ

ωoð1þ sCfRcÞðLf � L0 f Þ

sCf ð1þ BðsÞÞðLf sþ Rf þ KcpÞ
iiq ð25Þ

where AðsÞ ¼
ðRfþKcpþsLf Þ

2

ðRfþKcpþsLf ÞðRfþKcpÞ
, BðsÞ ¼

1þsCfRc

sCf
AðsÞ

KvpsþKvi

s .

The stability of the system is studied by checking the position of the poles of each input

expressed in Eq. (25) (vod
*, iod, iiq) when Lf varies from 80 to 120% of L´f. The results show that

all the components have the same dominant poles (�409) with variations of Lf. Consequently,

the stability of system is not degraded with mismatches between Lf and L´f. The closed loop

performance of the system is analysed with the bode plots for each individual input in Eq. (25).

It can be observed in Figure 10(a) that the gain for the reference tracking at the fundamental

frequency is equal to the unitary gain. The magnitude of the disturbance caused by the output

current iod is very low over the frequency range of interest, so that it has little influence on the

system’s performance. The magnitude of the disturbance caused by the coupling component iiq
is also quite low and almost negligible over the frequency range of interest.

The sensitivity study to variations of Cf and Lf indicates that the stability of the system will not

be degraded. However, variations of plant parameter make the system unable to suppress
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completely all disturbances and degrade the system’s reference tracking and disturbance

rejection performance. The performance loss, however, is small and acceptable for practical

applications.

5.3. Comparison with the conventional voltage controller

For comparison purpose, analysis is also carried out with the cascaded voltage controller

proposed in Refs. [2, 6], which is a popularly employed controller in academic and industry.

The structure of this conventional voltage controller is shown in [4]. This conventional control-

ler requires the same number of sensors as the proposed controller. The analysis starts from the

inner loop current controller. Based on vi ¼ v�i , we obtain the following equation (only equa-

tion in d-axis is shown here):

ðsLf þ Rf Þiid � ωoLf iiq þ vod ¼ Kcpði
�
id � iidÞ � ωoLf iiq þ vod ð26Þ

After rearranging the above equation, we obtain the closed loop transfer function of the inner

loop

iid
i�id

¼
Kcp

sLf þ Rf þ Kcp
! iid ¼ i�id

Kcp

sLf þ Rf þ Kcp
ð27Þ

According to the control law for the outer voltage loop, we have

i�id ¼
Kvp þ sKvi

s
ðv�od � vodÞ � ωoCf voq þ iod ð28Þ

Substituting Eq. (28) into Eq. (27), we obtain the following equation:

iid ¼
Kvp þ sKvi

s
ðv�od � vodÞ � ωoCf voq þ iod

� �

Kcp

sLf þ Rf þ Kcp
ð29Þ

Based on the dynamic model of the outer voltage loop, we have the following equation:

iid ¼ sCf vod þ iod � ωoCf voq ð30Þ

Following the same logic as the inner loop, we have the following equation:

Kvp þ sKvi

s
ðv�od � vodÞ � ωoCf voq þ iod

� �

Kcp

sLf þ Rf þ Kcp
¼ sCf vod þ iod � ωoCf voq ð31Þ

By rearranging the equation, we obtain the closed loop transfer function for the entire system

vod ¼
B1

A1
v�od þ

C1

A1
iod þ

D1

A1
voq ð32Þ
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where A1 ¼ CfLf s
3 þ Cf ðRf þ KcpÞs

2 þ KcpKvpsþ KcpKvi, B1 ¼ KcpKvpsþ KcpKvi, C1 ¼ �Lf s
2þ

Kcp

sLfþRfþKcp
Kcp � Rf � Kcp

� �

s and D1 ¼ ωoLfCf s
3 þ ωoRfCf s

2.

As seen from Eq. (32), the output voltage vod is a function of the reference input v�od and two

disturbance inputs iod and voq. The two disturbance inputs result in static error and harmonics

distortion in the output voltage. Figure 11 shows the bode plot of the gain of each input.

Figure 11(a) displays the bode diagram of output voltage to voltage reference closed loop

transfer function. It demonstrates that the output voltage can track the reference very well at

the fundamental frequency. However, it may amplify the harmonics with frequency around

550 Hz if there are harmonics in the reference voltage. This may happen due to the voltage

reference in some applications generated based on some measured variables and power refer-

ences rather than a fixed value. If there are distortions in the grid, the measured variables can

be distorted and then the generated voltage reference can be distorted as well. The gain of iod
represents the equivalent harmonic impedance which indicates the main reason of the steady-

state error in tracking the target reference. The bode diagram shown in Figure 11(b) indicates

that the harmonics with frequency around 550 Hz (resonance peak) in the output current will

be significantly amplified and results in large distortion in the output voltage. The decoupling

Figure 11. Analytical study of the conventional double-loop voltage controller. (a) Bode plot of the gain of vod . (b) Bode

plot of the gain of iod. (c) Bode plot of the gain of voq. (d) Equivalent circuit of the closed loop system.
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term of the output voltage voq has negligible impact on the output voltage as seen from

Figure 11(c). Hence, the output voltage of inverter can be treated as a voltage source series

connected with output impedance, which is represented in Figure 5.9(d). GðsÞ is equal to B1

A1
and

ZðsÞ is equal to �C1

A1
. In order to achieve fast dynamic response and eliminate steady-state error

and voltage distortions, the output impedance should be as small as possible [2, 11].

For the proposed voltage controller, the output impedance is equal to ‘zero’ which therefore

predicts superior control performance compared to the conventional voltage controller. For

instance, the tracking error for steady-state and transient moment is forced to be ‘zero’ in a

symmetric and non-distorted grid. However, the proposed control method contains derivative

part in the current reference generation which affects not only the feedforward term of the

current controller but also the feedback controller. In fact, the analysis shown in Ref. [5] proves

that the proposed method has good robustness against harmonic distortion.

6. Results and discussion

The variation of the developed control algorithm was conducted by simulating a microgrid

with two inverter-interfaced DGs whose specifications are described in Ref. [5]. Figure 12

shows the topology of the microgrid for the case study. In the application layer, the voltage

reference generation algorithms for the three operating modes are running parallel to prevent

the latter to start from scratch after every transition. Before connection/disconnection

microgrid to the main grid, the angle difference between grid-forming and grid-supporting/

grid feeding (θinv-θg) is compared to guarantee small phase/frequency deviations.

The European Standard EN 50160 defines standard operating conditions of frequency and

voltage for islanded and interconnected power systems [12] . Assuming that the nominal

root-mean-square (RMS) voltage is 230 V, the RMS value of voltage for interconnected systems

should maintain between 207 and 253 V (�10%), whereas for islanded systems, it should be

between 195.5 and 253 V (�15%). In terms of frequency, for interconnected systems, it should

remain in the range of 49.5 and 50.5 Hz (�1%), and in the range of 49 and 51 Hz for islanded

systems (�2%). These standard operating limits are used to evaluate the work in this chapter.

Figure 12. Microgrid configuration used as a case study [5].
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6.1. Simulation results

6.1.1. Grid-supporting to grid-forming mode

When a fault is detected in the main grid during the grid-supporting operation, it requests

the microgrid to disconnect from the main grid. In this scenario, the transient behaviour of the

DGs controlled with the developed algorithm is investigated. The maximum amounts of active

power injections of the DGs running in grid-supporting mode are 20 kW for DG#1 and 15 kW

for DG#2. The two DGs are connected to the main grid at 0.6 s to prevent the transients from

the black start and phase-lock-loop (PLL) is used to synchronize each DG with the grid before

connection. From 0 to 0.6 s, the controllers of DGs are pending to run in grid-supporting mode

while the references Pmax are set to be ‘zero’. The DGs work in grid-supporting mode from 0.6

to 3.8 s, then they switch to grid-forming mode after the microgrid disconnects from the main

grid. The transient behaviours of the DGs are presented in Figure 13.

Figure 13(a) indicates that the two DGs can inject maximum amount of active power (20 and

15 kW, respectively) in the grid-supporting mode, and achieve accurate power sharing (15 kW)

in the grid-forming mode. The output voltages of both DGs during operating mode transition,

as illustrated in Figure 13(b), indicate that the two DGs exhibit neither overshooting nor

harmful transient in voltage, and that both rapidly arrive at the steady state. Figure 13(c)

Figure 13. Transient performance from grid-supporting mode to grid-forming mode. (a) Active and reactive power of

DGs. (b) Output voltage of DGs during mode change. (c) Zoomed-in plot of output voltage of DGs at transient moment.

(d) DG#1: reference signal (red), actual output (blue) of voltage controller and current controller in d -q frame. | RMS

voltage and frequency of DGs.
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shows the zoomed-in plot of output voltage of DGs at the transition moment (3.8 s); negligi-

ble transients are observed for both DGs at the transition moment. Thus, very smooth

transition performances are achieved as expected. The frequency of DGs shown in Figure 13

(e) also indicates the smooth transition process. The tracking performance of the inner and

outer loop of DG#1 is presented in Figure 13(d). The upper graph of Figure 13(e) illustrates

that the voltages of both DGs lie inside the satisfactory limits in both grid-supporting and

grid-forming mode. Moreover, the transient voltages remain within the required operating

limits of the islanded microgrid. The lower graph of Figure 13(e) illustrates the frequency at

the moment of transition. In less than 0.2 s, the two DGs accomplish accurate power sharing

and arrive at the identical frequency of 49.76 Hz, which lies within the required operating

limits. Furthermore, the largest frequency variation of the two DGs at the moment of transi-

tion is 49.52 Hz, which does not violate the operating range of EN 50160. The results show

that the controlled variables can perfectly track their respective reference with zero steady-

state error during steady state and transient. This is consistent with the specification set in

Section 4 that the transfer functions of the inner and outer loops are both equivalent to the

unitary gain.

6.1.2. Grid-supporting to grid-forming mode

In this test scenario, the two DGs are switched intentionally from grid-forming mode to grid-

feeding mode at 2 s, when the phase differences of voltages between the main grid and the

DGs are lower than 0.5 rad. In grid-feeding mode, the received active and reactive power

references from the system control layer are 15 kW and 200 Var for DG#1, and 15 kW and 300

Var for DG#2. Figure 14 shows the simulation results. Figure 14(a) illustrates the process of

the inverters synchronizing with the grid. As it can be seen, the voltages of DG#1 and DG#2

can be synchronized with the grid voltage very rapidly and with small negligible transient

after the switch is reconnected, thanks to fast dynamics and good disturbance rejection perfor-

mance of the proposed method. Figure 14(c) presents the performance of the developed outer

voltage and inner current controller. We can observe that each of the actual output variables

follows the corresponding reference target perfectly; this confirms the validity of the design

laid out in Section 4. The output current of DG#1 presented in Figure 14(e) shows the smooth

transient performance of the microgrid.

The same test is investigated with the conventional method shown in Ref. [5] for comparing

the controller performances (performance in steady state and transient state) with the devel-

oped control method. Figure 14 shows the simulation results. Figure 14(b) illustrates that

though DG#1 is able to synchronize with the main grid very rapidly, larger transient is

exhibited; Figure 14(d) demonstrates that there are some tracking errors with respect to the

reference and real output, and large transient currents shown at the transition moment, and

Figure 14(f) further shows the undesirable transient current as well. Compared with the

results in Figure 14(b), (d) and (f), the proposed method has smaller transient current during

transition and better tracking and disturbance rejection performances.

The DG’s output voltages in RMS values are shown at the top and the frequency is shown at

the bottom of Figure 15. As seen from Figure 15, the RMS values of voltage and the frequencies
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of the DGs are near their nominal values pre- and post transition. As per the standard EN

50160, the DGs´ voltage and frequency both lie within the satisfactory operating ranges.

6.2. Experimental results

All simulations are performed in a hardware-in-the-loop (HIL) platform, and practical

implementations such as delays caused by digital sampling, computation time and inverter

switching are included. The structure including system layer, application layer, inverter con-

trol layer and switching layer is presented in Figure 16.

The microgrid with two inverter-interfaced DGs and the main grid model is built in a real-time

digital simulator (RTDS). The application and inverter layer control algorithms have been

programmed using Texas Instrument TMS28335 DSP. Each inverter is controlled using one

DSP. There is a conditioning interface between RTDS and DSP to scale the output voltage level

of RTDS (�5 V) to the output voltage level of DSP (0–3.3 V), and vice versa. The system layer

controller is implemented in a Xilinx ML507 board; the board directly communicates with a

RTDS gigahertz processor card through fibre optics to obtain measurements and transmit the

Figure 14. Transient performance from grid-forming mode to grid-feeding mode: proposed method (left column) and

conventional method (right column). (a, b) Up: Grid voltage (blue) and inverter voltage (red) Down: Error between grid

and inverter voltage. (c, d) DG#1: Reference signal (red), actual output (blue) of voltage controller and current controller in

d-q frame. (e, f) Output current of DG#1.
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PCC circuit breaker control signal to RTDS. A control algorithm in the system layer, consisting of

operating mode management and control reference generation, is implemented in ML507, and

the operation mode signal and power references are sent to DSPs via serial peripheral interface.

The algorithms implemented in the application layer are grid-forming (top), grid-feeding (mid-

dle) and grid-supporting (bottom), respectively, and the output is the voltage reference for the

inverter layer. The schematic diagram and setup of HIL platform are presented in Figure 17. In

this signal HIL platform, both the ML507 board and DSP board are controlled under test. The

oscilloscope panels related show 5 V for 400-V voltage and 5 V for 50-A current.

6.2.1. Transition from grid-supporting to grid-forming mode

The two DGs begin in grid-supporting mode (the command signal sent from ML507 to RTDS

is ‘1’ and from ML507 to DSPs is ‘10’). The algorithm of grid-supporting mode in application

Figure 15. DGs’ output voltage RMS values and frequencies.

Figure 16. The structure of the universal control algorithm for flexible microgrid operation.
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layer is selected and the voltage reference is passed to the inverter control layer. After letting

the system run for a pre-defined time, the microgrid is intentionally switched to islanding

mode by transmitting ‘00’ to DSPs and ‘0’ to RTDS from ML507. Then, the grid-forming mode

in the application layer algorithm is selected to produce the voltage reference for the inverter

control layer, and a new angle θinv for Park transformation is also transmitted to the inverter

control layer. Figure 18 presents details of the DGs’ performance, showing the responses of the

voltage and current during the transition between the two operating modes [5].

No transient change is shown in the voltage waveform and only very slight transients are

exhibited in the current waveform. The calculated frequencies of both DGs are approximately

50 Hz in grid-supporting mode and 49.7 Hz in grid-forming mode, with the largest deviation

during transition being 0.35 Hz. The calculated RMS values of voltage remain within the

acceptable range around the rated value of 230 V during the transition process, with negligible

deviations. Therefore, the expected smooth transition from grid-supporting mode to grid-

forming mode is achieved with the proposed control algorithm, and the operating range of

DGs´ frequencies and voltages is within the range as per EN 50160.

6.2.2. Transition between grid-forming and grid-feeding mode

Two scenarios are studied in this case: the transition from grid-forming to grid-feeding mode

requested by the DNO, and the opposite situation, the transition from grid-feeding mode to

grid-forming mode caused by intentional islanding of the microgrid. During the first transition,

the system controller sends operating mode signal ‘0’ to RTDS and ‘00’ to DSP, after which the

voltage reference from grid-forming mode and angle θinv is calculated and sent to the inverter

Figure 17. (a) Schematic diagram of the signal level HIL platform. (b) Set-up of HIL platform.

Figure 18. Transition from grid-supporting to grid-forming mode. (a) Voltage response during transition. (b) Current

response during transition.
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control layer. In addition, the difference in angle between the main grid voltage and DG#1

output voltage is compared. The microgrid will only be connected (reconnected) to the main

grid when an ‘enable’ signal (‘1’) is transmitted from the system controller to the main grid

(modelled and controlled in RTDS) and also the difference in angle is equal to or less than 0.5 rad.

When these conditions are met, the system layer controller transmits ‘1’ to RTDS, and ‘01’ and

power references to DSPs, which commands the inverters to operate in grid-feedingmode. Then,

after a pre-defined time, the system layer controller transfers intentionally the microgrid to

islanding mode, and the corresponding command signals are transmitted to DSPs and RTDS.

The control performance of the developed control algorithm is compared to the popularly used

control algorithm presented in Ref. [6]. To attain valid simulation results, the operating conditions

for the two algorithms are made identical. The microgrid is connected to the main grid when the

phase difference between the grid voltage and the voltage at the terminal of DG#1 is equal to or

less than 0.5 rad. Then, the two DGs transfer from grid-forming to grid-feeding mode [5]. After

certain time (235 s), the microgrid is disconnected from the main grid, switching the two DGs

back to grid-formingmode. The waveforms of voltage and current for both scenarios are different

during transition moment because the DSP boards don’t start to run at the same time after RTDS

is running. However, the switching conditions (e.g. phase difference between main grid voltage

and DG#1 output voltage) are maintained the same for both scenarios.

Figure 19(a) and (b) denotes that both control methods cause negligible distortion of the grid

voltage at the moment of transition. This is expected, since the main grid is strong. Figure 19(c)

and (d) shows a less distorted current waveform after transition when the proposed control

algorithm is applied.

Figure 20 illustrates that at the moment of disconnection, both control algorithms swiftly

generate a clean voltage waveform, with a marginally better performance than the conventional

Figure 19. Transition from grid-forming to grid-feeding mode. (a) Voltage response with the proposed method. (b)

Voltage response with the conventional method. (c) Current response with the proposed method. (d) Current response

with conventional method.
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method. In addition, the output currents of the developed control algorithm exhibit considerably

superior qualities with fewer overshoots and quicker dynamic responses.

The calculated RMS values of voltage and frequencies of the two DGs with the developed

control method during the transition process between grid-forming and grid-feeding modes

are summarized as follows: in transition from grid-forming to grid-feeding mode, the calcu-

lated frequencies of the two DGs are approximately 49.7 Hz in grid-forming mode and 50 Hz

in grid-supporting mode, with the largest deviation during transition being 0.45 Hz, from

DG#2 [5]. The calculated RMS values of voltage remain within the acceptable range around

the rated value of 230 V during the transition process, with the largest deviation being less

than 5 V, from DG#2; in the transition from grid-feeding to grid-forming mode, the calculated

RMS values of voltage and frequencies of the two DGs are within the acceptable operating

range. Note that the largest deviations of frequency and voltage are 0.6 Hz and 7.5 V, respec-

tively, from DG#1. The results indicate that the standard EN 50160 is respected and smooth

transition behaviours of DGs are achieved. A small test is performed to compare the computa-

tion time of the proposed method and conventional method. The results show that the total

sampling and calculation time is 48 μs for the proposed controller and 37 μs for the conven-

tional controller. This indicates that the control complexity of the proposed controller is com-

parable with that of the conventional controller. The sampling interval is 300 μs which is long

enough for both controllers to accomplish the sampling and computation.

7. Summary

The developed generalized control algorithm in the inverter control layer of DGs facilitates the

seamless transition of microgrids. This is obtained by designing the multi-loop controller in the

Figure 20. Transition from grid-feeding to grid-forming mode. (a) Voltage response with the proposed method. (b)

Voltage response with the conventional method. (c) Current response with the proposed method. (d) Current response

with conventional method.
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inverter control layer in such a way that the closed loop dynamics of the inverter together with

the LC filter present unitary gain. Thus, the current/voltage disturbances associated with the

mode transition are fully cancelled. The proposed voltage control algorithm and the conven-

tional double-loop voltage controller are compared with analytical study and experimental

implementation. The output (harmonic) impedance is the cause of the tracking error and

distortion caused by the output current. With the proposed voltage controller, the output

impedance is ‘zero’ which theoretically eliminates the tracking error and reduces/eliminates

the distortion (can only reduce the distortion in the practical implementation due to the

measurement noise, digital quantization errors, etc.). The work has shown that the developed

voltage control algorithm has superior control performance than the conventional controller,

and it is a high-performance controller, easy to be implemented in the practical application.
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