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Abstract

The relation between the solutions of the full Kostant Toda lattice and the discrete
Korteweg-de Vries equation is analyzed. A method for constructing solutions of these
systems is given. As a consequence of the matricial interpretation of this method,
the transform of Darboux is extended for general Hessenberg banded matrices.
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1 Introduction

In [9] and [10] the construction of a solution of the Toda lattice

ȧn = bn � bn�1

ḃn = bn(an+1 � an)

9
>=

>;
, n 2 N , (1)

from another given solution was studied. Both solutions of (1) were linked to
each other by a Backlünd transformation, also called Miura transformation,
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given by

bn = �2n�2n+1 , an = �2n�1 + �2n + C

b̃n = �2n+1�2n+2 , ãn = �2n + �2n+1 + C

9
>=

>;

where {�n} is a solution of the Volterra lattice

�̇n = �n (�n+1 � �n�1) . (2)

Here and in the following, the dot means di↵erentiation with respect to t 2 R.
However, we suppress the explicit t-dependence for brevity.

In [2], the first and the second authors generalized the analysis given in [10]
to the kind of Toda and Volterra lattice studied in [1]. As a particular case,
the results obtained in [2] extend the corresponding of [10] to the case of Toda
lattices where an(t) and bn(t) are complex functions of t 2 R. Now, our goal is
to extend the results of [2] and [10] to the complex full Kostant-Toda lattice,
which is given by

ȧ

(1)
n = a

(2)
n � a

(2)
n�1

ȧ
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>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

, n 2 N . (3)

In the sequel, for each n 2 N we assume that a

(i)
n , i = 1, 2, . . . , p , in (3)

are continuous functions with complex values defined in the open interval In

such that
N\

n=1

In 6= ; , for all N 2 N . (4)

It is easy to check that these equations can be formally written in a Lax
pair form J̇ = [J, J�], where [M, N ] = MN � NM is the commutator of the
operators M and N , and J, J� are the operators whose matricial representation
is given, respectively, by the banded matrices

J =

0

BBBBBBBBBBBB@

a

(1)
1 1

a

(2)
1 a

(1)
2 1

...
...

. . . . . .

a

(p)
1 a

(p�1)
2 · · · a

(1)
p 1

. . . . . . . . . . . .

1

CCCCCCCCCCCCA

, J� =

0

BBBBBBBBBBBB@

0

a

(2)
1 0
...

...
. . .

a

(p)
1 a

(p�1)
2 · · · 0
. . . . . . . . .

1

CCCCCCCCCCCCA

, (5)
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and where J� is the lower triangular part of J .

In this paper we don’t distinguish between each operator and its matricial
representation. Moreover, we underline the formal sense of the Lax pair ex-
pression. In fact, it could be that there is no open interval where all the entries
of J are defined.

Definition 1 We say that J is a solution of (3) if its entries verify (3)-(4).

An important tool in the study of these systems is the sequence of polynomials
Pn(z) = Pn(t, z) associated with the matrix J , i.e., the polynomials defined
by the following recurrence relation, given for n = 0, 1, . . . by

p�1X

i=1

a

(p�i+1)
n�p+i+1Pn�p+i(z) + (a(1)

n+1 � z)Pn(z) + Pn+1(z) = 0

P0(z) = 1 , P�1(z) = · · · = P�p+1(z) = 0 .

9
>>>=

>>>;
(6)

We will use the following well-known fact,

Pn(z) = det (zIn � Jn) , n 2 N . (7)

Here and in the sequel we denote by An the finite matrix formed with the first
n rows and n columns of each infinite matrix A.

For each p 2 N, the system

�̇n = �n

0

@
p�1X

i=1

�n+i �
p�1X

i=1

�n�i

1

A
, n 2 N , (8)

called discrete Korteweg-de Vries equations, is an extension of the Volterra
lattices (2) studied in [9] and [10] (see also [6]). As in (3)-(4), for each n 2 N
we assume that the functions of (8) continuous and defined in an open set On

such that
N\

n=1

On 6= ; , for all N 2 N . (9)

The system (8) can be rewritten in Lax pair form, �̇ = [�, �p
�] , where � is

given by

� =

0

BBBBBBBBBBBB@

0 1
...

. . . . . .

0 · · · 0 1

�1 0 · · · 0
. . .

. . . . . . . . .

1

CCCCCCCCCCCCA

,

being �1 in the p-th row, and �p
� is the lower triangular part of �p.
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In a di↵erent context, and considering � as a bounded matrix, this lattice was
analyzed for the case p = 3 in [3].

Definition 2 We say that � is a solution of (8) if the sequence {�n} ver-
ify (8)-(9).

For the sake of simplicity, in this work, we only consider a four banded matrix J

corresponding to p = 3 in (3)-(5), but the method can be extended to higher
order banded matrices J , as we explain in Section 4. In our particular case (3)
becomes the following system,

ȧn = bn � bn�1

ḃn = bn(an+1 � an) + cn � cn�1

ċn = cn(an+2 � an)

9
>>>>>=

>>>>>;

, n 2 N , (10)

where we assume cn 6= 0 for each n 2 N. Now, the recurrence relation (6) is
for n = 0, 1, . . ., given by

cn�1Pn�2(z) + bnPn�1(z) + (an+1 � z)Pn(z) + Pn+1(z) = 0

P0(z) = 1 , P�1(z) = P�2(z) = 0

9
>=

>;
(11)

and the matrices J, J� are, respectively,

J =

0

BBBBBBBB@

a1 1

b1 a2 1

c1 b2 a3
. . .

. . . . . . . . .

1

CCCCCCCCA

, J� =

0

BBBBBBBB@

0

b1 0

c1 b2 0
. . . . . . . . .

1

CCCCCCCCA

. (12)

We deal with solutions J of (10), i.e., matrices J as in (12) with entries
an , bn , cn , defined in In for each n 2 N , verifying (10) and such that (4)
holds for each N 2 N (see Definition 1). Consequently, for each of these solu-
tions, the polynomial Pn in (11) is defined in

Tn
j=1 Ij .

We have the matrix

� =

0

BBBBBBBB@

0 1

0 0 1

�1 0 0
. . .

. . . . . . . . .

1

CCCCCCCCA

(13)

and (8) becomes

�̇n = �n (�n+1 + �n+2 � �n�1 � �n�2) , n 2 N . (14)
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Next we have our main result, where we obtain one solution of (14) and two
new solutions of (10) from a given solution of (10). This theorem extends the
corresponding results of [9, Theorem 1] and [10, Section 2].

Theorem 1 Let J be a solution of (10) and let C 2 C be such that det(Jn �
CIn) 6= 0 , for all n 2 N . Then there exist two solutions J

(1)
, J

(2) of (10)
given by

J

(i) =

0

BBBBBBBB@

a

(i)
1 1

b

(i)
1 a

(i)
2 1

c

(i)
1 b

(i)
2 a

(i)
3

. . .

. . . . . . . . .

1

CCCCCCCCA

, i = 1, 2 , (15)

and there exists a solution � of (14) given by (13) such that the following
relations are verified for each n 2 N.

an = �3n�4 + �3n�3 + �3n�2 + C

bn = �3n�3�3n�1 + �3n�2�3n�1 + �3n�2�3n

cn = �3n�2�3n�3n+2

9
>>>>>=

>>>>>;

(16)

a

(1)
n = �3n�3 + �3n�2 + �3n�1 + C

b

(1)
n = �3n�2�3n + �3n�1�3n + �3n�1�3n+1

c

(1)
n = �3n�1�3n+1�3n+3

9
>>>>>=

>>>>>;

(17)

a

(2)
n = �3n�2 + �3n�1 + �3n + C

b

(2)
n = �3n�1�3n+1 + �3n�3n+1 + �3n�3n+2

c

(2)
n = �3n�3n+2�3n+4

9
>>>>>=

>>>>>;

, (18)

where we assume �m = 0 for m  0.
Moreover, for t0 2 R verifying the following conditions (19)-(20) we have that
{�n} is the unique sequence verifying (16) such that (17) and (18) define two
solutions of (10):

(1) If b1 6= 0 then

�2 6=
�b1

C � a1
(19)

(2) For each n = 2, 3, . . . such that �n := cn�1Pn�2(C) + bnPn�1(C) 6= 0 ,

5



we have

P1(C)�2 6= �b1 +
c1P0(C)P2(C)

� �2 +
. . .

+
cn�2Pn�3(C)Pn�1(C)

��n�1 +
cn�1Pn�2(C)Pn(C)

��n

. (20)

We underline that (19)-(20) are referred to t = t0.

As a consequence of Theorem 1, in the next result we determine the relation
between the solutions of (10) and the solutions of (14).

Theorem 2 Let J , � be as in (12)-(13) verifying (16) and let C 2 C be such
that det(Jn � CIn) 6= 0 , 8n 2 N. Then � is a solution of (14) if, and only
if, J is a solution of (10) and �2(t) is the solution of the following initial value
problem,

ẏ(t) = y(t)(a2 � a1 � y(t))

y(t0) = �2(t0)

9
>=

>;
,

with �2(t0) verifying (19)-(20).

An important tool in the proof of Theorem 1 is the concept of L U -factori-
zation for banded matrices (see [7]). Moreover, it is relevant the fact that
some triangular matrices can be factorized using some more simple matrices
as factors. This is showed in the following result, of independent interest.
Despite of this it can be extended to arbitrary values p 2 N. For the sake
of simplicity we assume p = 3. We underline that this result is verified by
matrices whose entries do not depend, in general, on t 2 R.

Theorem 3 We consider the following lower triangular matrix with complex
entries,

L =

0

BBBBBBBB@

1

`1,1 1

`2,1 `2,2 1
. . . . . . . . .

1

CCCCCCCCA

(21)

such that `j+1,j 6= 0 for each j 2 N. Then there exist two lower triangular

6



matrices

L

(i) =

0

BBBBBBBB@

1

�i+1 1

�i+4 1
. . . . . .

1

CCCCCCCCA

, i = 1, 2 , (22)

such that
L = L

(1)
L

(2)
. (23)

Moreover, for each fixed �2 2 C , with �2 6= 0 , verifying the following condi-
tions (24)-(25), the factorization (23) is unique:

(1) If `1,1 6= 0 then
�2 6= `1,1 (24)

(2) For each n = 2, 3, . . . such that `n,n 6= 0 we have

�2 6= `1,1 �
`2,1

`2,2 � . . .
� `n�1,n�2

`n�1,n�1 �
`n,n�1

`n,n

. (25)

That is, if we have (23) and e
L

(i)
, i = 1, 2 , are two lower triangular matrices

like (22) such that the entries in the first column and second row of eL(1) and
L

(1) are �2 verifying (24)-(25) and L = e
L

(1) e
L

(2), then e
L

(i) = L

(i)
, i = 1, 2 .

Section 2 and Section 3 are devoted to prove, respectively, Theorem 1 and
Theorem 2. The proof of Theorem 3 and an extension to four banded ma-
trices of the concept of Darboux transformation are given in Section 4. Also
a matricial interpretation of Theorem 1 and Theorem 2 is given in this last
section.

2 Proof of Theorem 1

Since J is a solution of (10), for each n 2 N the functions an , bn , cn , verify-
ing (4) are defined in In. Let C 2 C be such that det(Jn � CIn) 6= 0 for all
n 2 N.

As we have explained in the above section, in the sequel we assume that each
polynomial Pn = Pn(t, z) is defined for t 2 Sm :=

Tm
j=1 Ij . In particular,

det(Jn �CIn) 6= 0 means that C is not a zero of Pn(t, z) for each fixed t 2 Sn

(see (7)).
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It is well known that, under these conditions, for each m 2 N there exist a lower
triangular matrix Lm = Lm(t) and an upper triangular matrix Um = Um(t),
being both matrices of order m, such that

Jm � CIm = LmUm (26)

(see for instance [5, Theorem 1, pag. 35]). Moreover, for each fixed m 2 N
the main section of order m of Lm+1 (respectively, Um+1) is given by Lm

(respectively, Um). In this sense we can write

J � CI = L U , (27)

understanding that (26) is verified for all m 2 N in some open set Sm. With
our restrictions, L can be assumed a banded matrix like (21) and U is a two
banded matrix,

U =

0

BBBBB@

�1 1

�4 1
. . . . . .

1

CCCCCA
. (28)

Our first purpose is to define the sequence {�n(t)} , n 2 N . First of all, we
shall define the sequence {�3n+1(t)} and, consequently, the matrix U .

Another way to write the recurrence relation (11) is

(Jn � zIn)

0

BBBBBBBB@

P0(z)

P1(z)
...

Pn�1(z)

1

CCCCCCCCA

=

0

BBBBBBBB@

0
...

0

�Pn(z)

1

CCCCCCCCA

, n 2 N . (29)

Then, using (26) and (29) for z = C we have

Un

0

BBBBBBBB@

P0(C)

P1(C)
...

Pn�1(C)

1

CCCCCCCCA

= (Ln)�1

0

BBBBBBBB@

0
...

0

�Pn(C)

1

CCCCCCCCA

, n 2 N , (30)

being (Ln)�1 a lower triangular matrix whose diagonal entries are equal to 1.
Comparing the entries corresponding to the last row in both sides of (30) we
arrive to �3n�2Pn�1(C) + Pn(C) = 0, which is verified for any n 2 N. This is,

�3n+1 = �Pn+1(C)

Pn(C)
, n � 0 , (31)
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where (31) determines the matrix U gives in (28).

With the aim to determine L we fix n 2 {�1, 0, 1, . . .} and we obtain the row
n + 2 in both sides of (27) (see (21)). Then

an+2 � C = `n+1,n+1 + �3n+4 (32)

bn+1 = `n+1,n + `n+1,n+1�3n+1 (33)

cn = `n+1,n�3n�2 (34)

where we assume �m = bm = cm = `m+1,m = `m,m = 0 for m  0. Since (34)
and (31) we obtain

`n+1,n = �cnPn�1(C)

Pn(C)
, n 2 N . (35)

Moreover, from (32) and again (31),

`n,n = an+1 � C +
Pn+1(C)

Pn(C)
, n 2 N . (36)

On the other hand, we consider the next initial value problem,

ẋ(t) = (a1(t)� a2(t)) x(t) + 1

x(t0) = x0

9
>=

>;
. (37)

The unique solution of (37) is

x(t) = e

�
R t

t0
(a2�a1)ds

Z t

t0
e

R s

t0
(a2�a1)d⇠

ds + x0

�
,

and it is easy to check that y = 1/x is a solution of

ẏ(t) = y(t)(a2 � a1 � y(t)) . (38)

Due the continuity of x(t), if x0 6= 0 then there exists some interval I , t0 2 I ,
such that x(t) 6= 0 for all t 2 I . Therefore we can obtain the solution of (38)
in I with the initial condition y(t0) = 1/x(t0).

If we take �2 := y, from (38) we arrive to (14) for n = 2. In this way, we have
defined

�2 =
1

x

=
e

R t

t0
(a2�a1)ds

R t
t0 e

R s

t0
(a2�a1)d⇠

ds + x(t0)

with an appropriate value of x(t0) 6= 0.
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In the sequel we assume �2(t0) = 1/x0 verifying the conditions (24)-(25) of
Theorem 3 for the matrix L(t0). Obviously, this is possible because there is
only a countable set of complex numbers on the right hand side of (25). Then,
from this theorem we obtain

L(t0) = L

(1)(t0)L
(2)(t0) ,

being L

(i)(t0) , i = 1, 2 , as in (22). Due to this factorization we can express
the entries of L(t0) in terms of the sequences {�3n+2(t0)} , {�3n+3(t0)} . This is,

�3n+2(t0)�3n(t0) = `n+1,n(t0)

�3n�1(t0) + �3n(t0) = `n,n(t0)

9
>=

>;
, n = 1, 2, . . . .

Let N 2 N be fixed. Since the continuity of the solutions of (10) given by J

we know that there exists an open set, which we again denote SN , such that
SN ✓ I and (24)-(25) hold for t 2 SN and n = 1, 2, . . . , N , being t0 2 SN .
Then we assume that the entries an, bn, cn of J , and also the polynomials, are
defined in SN for n  N . We shall obtain the new solutions of (10) and (14)
in SN for n  N .

We have defined {�3n+1(t)} in (31). Moreover we know the existence of L

(i)(t) ,
t 2 SN , i = 1, 2 , as in Theorem 3. This define the sequence �n(t) for n =
1, 2, . . . , 3N + 2 verifying

�3n+2�3n = �cnPn�1(C)

Pn(C)
, n = 1, 2, . . . N , (39)

�3n�1 + �3n = �cn�1Pn�2(C) + bnPn�1(C)

Pn(C)
, n = 1, 2, . . . N. (40)

for t 2 SN (see (35) and (36)). Moreover, an immediate consequence of (31)
and (39) is �n(t) 6= 0 , n = 1, 2, . . . , 3N + 2 in this open set SN .

We shall prove that these functions �1, . . . , �3N+2 are solutions of (14) for
t 2 IN . Taking n = 1 in (40),

�2 + �3 = � b1

P1(C)

and taking n = 0 , n = 1 , respectively in (31) we see

�1 = �P1(C) , �4 = a2 � C + b1/P1(C) . (41)

Then
�4 = a2 � a1 � (C � a1)� �2 � �3 .

Therefore �3 + �4 � �1 = a2 � a1 � �2 and we arrive to (14) for n = 2.
For n = 1, (14) is directly checked taking derivatives in (41) because ȧ1 = b1

10



(see (10)). Now, taking derivatives in �3 = `1,1��2 and taking into account (14)
for n = 2 and `1,1 = �3 (�4 + �5 � �1) we arrive to (14) for n = 3. That is, (14)
holds for n = 1, 2, 3.

The next auxiliary result is an immediate consequence of [4, Theorem 1]. It
will be used to prove that �(t) is a solution of (14).

Lemma 1 If J(t) is a solution of (10) then we have for all n = 0, 1, . . .,

Ṗn = �cn�1Pn�2 � bnPn�1 .

In fact, in a little more general way, it is easy to prove by induction the
following result.

Lemma 2 If J(t) is a solution of (3) then we have for all n = 0, 1, . . .,

Ṗn = �a

(p)
n�p+2Pn�p+1 � · · ·� a

(3)
n�1Pn�2 � a

(2)
n Pn�1 .

In [4] we show that these equations for Pn are the key to understand the Full
Kostant-Toda system. In fact these equations for Pn substitute the spectrum
time invariance of J pointed out in [8].

Since (31), (40), for n  N and Lemma 1 we have

�̇3n+1 =
d

dt

 

�Pn+1(C)

Pn(C)

!

=
Pn+1(C)

Pn(C)

Ṗn+1(C)Pn(C)� Pn+1(C)Ṗn(C)

Pn(C)Pn+1(C)

= �Pn+1(C)

Pn(C)

 

�cnPn�1(C) + bn+1Pn(C)

Pn+1(C)
+

cn�1Pn�2(C) + bnPn�1(C)

Pn(C)

!

= �3n+1 (�3n+2 + �3n+3 � �3n � �3n�1) , n  N , t 2 IN .

Then (14) is verified for the subsequence {�3n+1} of {�n} .

Now we proceed by induction, assuming proved (14) for n = 1, 2, . . . , 3k ,
k < N . From (39)-(40), for n  N , and (32)-(36), for n 2 N, we arrive to the
expression of an and bn in (16) for n  N + 1, as well as the expression of cn

for n  N . Then
�3k+2 =

ck

�3k�2�3k
.

Taking derivatives and taking into account (10) for n = k and (14) for n =
3k� 2, 3k, we arrive to (14) for n = 3k + 2. Now, using the expression of ak+2

in (16), and taking into account that k + 2  N + 1,

�3k+3 = ak+2 � �3k+2 � �3k+4 � C .
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Taking derivatives in the above expression, using (10) for n = k+2 and (14) for
n = 3k+2, 3k+4 = 3(k+1)+1, and also the expression of bn , n = k+1, k+2 ,
in (16), we arrive to (14) for n = 3k + 3, as we wanted to show.

For each fixed N 2 N we have defined �n in SN for n = 1, 2, . . . , 3N + 2. Then
we have defined the solution � of (14).

Remark 1 We underline that the existence of a solution �(t) of (14) verify-
ing (16) is independent on the solutions J

(i)(t) , i = 1, 2 , of (10). We obtain
�(t) by constructing the sequence {�n} with additional conditions for �2. We
will use this fact in the proof of Theorem 2.

Now, we define the matrices J

(i)
, i = 1, 2 , as in (15), where the sequences

{a(i)
n , b

(i)
n } , n 2 N , i = 1, 2 , are given in (17)-(18). It is easy to see, after some

direct computations, that these sequences verify (10), i.e., are solutions of the
full Kostant-Toda lattice.

Finally, we show the uniqueness of the sequence {�n} in the given conditions.

Assume that {e�n} is another sequence verifying (16) such that (19)-(20) hold
in t = t0. Taking n = 1 in (16) we see e�1 = �1 = a1. Moreover, from (16)
and (11),

e
�3n�5e�3n�3e�3n�1Pn�2(C) + (e�3n�3e�3n�1 + e

�3n�2e�3n�1 + e
�3n�2e�3n) Pn�1(C)

+ (e�3n�1 + e
�3n + e

�3n+1) Pn(C) + Pn+1(C) = 0 .

We can reorder the above expression as

e
�3n�3e�3n�1 (e�3n�5Pn�2(C) + Pn�1(C)) +

(e�3n�1 + e
�3n) (e�3n�2Pn�1(C) + Pn(C)) + (e�3n+1Pn(C) + Pn+1(C)) = 0 . (42)

Taking ↵�2 = 0 , ↵�1 = 1 and ↵n = e
�3n+1Pn(C) + Pn+1(C) , n = 0, 1, . . . , we

can write (42) as

e
�3n�3e�3n�1↵n�2 + (e�3n�1 + e

�3n) ↵n�1 + ↵n = 0 , n = 0, 1, . . .

↵�2 = 0 , ↵�1 = 1

9
>=

>;
.

Because the unique solution of the above recurrence relation is ↵n = 0 , n =
0, 1, . . . , from the definition given for ↵n we arrive to

e
�3n+1 = �Pn+1(C)

Pn(C)
= �3n+1 , n = 0, 1, . . . . (43)

Using (43) and (16),

e
�3n�1 + e

�3n = an+1 +
Pn+1(C)

Pn(C)
� C ,

12



and so (see (11)),

e
�3n�1 + e

�3n = �cn�1Pn�2(C) + bnPn�1(C)

Pn(C)
, n = 1, 2, . . . .

Now, if we take cn in (16) expressed in terms of {�̃n} using again (43) we
arrive to

e
�3n+2e�3n = �cnPn�1(C)

Pn(C)
.

That is, the sequence {e�n} also verifies (39)-(40) in some neighborhood of t0.

Moreover, if we assume that, using {e�n}, we can define in (17) a new solution
of (10), then

a

(1)
1 = e

�1 + e
�2 , a1 = e

�1 ,

and therefore e�2 = a

(1)
1 � a1 . Taking derivatives in this expression, and taking

into account (16)-(17), we arrive to

ė
�2 = e

�2(a2 � a1 � e
�2) .

That is, e�2 is a solution of (38). Then, with the initial condition e�2(t0) = �2(t0),
from the uniqueness of the solution of (37) we deduce e�2 = �2 for some interval
]t0�e�, t0+e�[ . We are assuming (19)-(20) for e�2 in t = t0, which is equivalent, in
our case, to (24)-(25). In the above construction of {�n} we also assumed (24)-
(25) for �2 in t = t0 and, under these conditions, we have obtained the unique
possible solution {�n} of (14) verifying (16) such that (17)-(18) define two new
solutions of (10). Then we deduce that {�̃n} and {�n} are the same solution
of (14). ⌅

3 Proof of Theorem 2

Firstly, in the required conditions assume that �(t) is a solution of (14). Taking
derivatives in (16) we see that J(t) is a solution of (10). Moreover, the condition
�̇2 = �2(a2 � a1 � �2) is given in (14) when n = 2.

Reciprocally, assume that J(t) is a solution of (10) such that �̇2 = �2(a2�a1�
�2) and �2(t0) verifies (19)-(20). From Theorem 1 we know that there exists a
solution {e�n} of (14) such that (16)-(18) hold. Then, being {�n} the sequence
of entries of �(t), for proving that �(t) is a solution of (14) it is enough to
show that {e�n} = {�n}. But this is deduced from the uniqueness of {e�n} when
we take e�2(t0) = �2(t0). ⌅

We underline that, in the proof of Theorem 1, the uniqueness of {�n} does
not depend on (17) and (18), being a consequence of (16) and the conditions
assumed for �2.
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4 Proof of Theorem 3: matricial interpretation of Theorem 1

We will find two sequences {�3n�1} , {�3n} , n 2 N , defining the matrices L

(1)

and L

(2) as in (22), such that (23) holds. That is, comparing both hand sides
in (23),

`j,j = �3j�1 + �3j

`j+1,j = �3j�3j+2

9
>=

>;
, j = 1, 2, . . . . (44)

Let �2 6= 0 , �2 2 C , be verifying (24)-(25). For j = 1 in (44) we want

`1,1 = �2 + �3

`2,1 = �3�5

9
>=

>;
. (45)

Hence, we can define �3 = `1,1 � �2. Obviously, if `1,1 = 0 then we have
�3 = ��2 6= 0, but if `1,1 6= 0 then from (24) we also arrive to �3 6= 0.
Therefore, we can also define �5 = `2,1/�3 , being �5 6= 0, and (45) is verified.

Assume that �3j , �3j+2 , j = 1, 2, . . . ,m , are not zero and defined as in (44).
Then we define

�3m+3 = `m+1,m+1 � �3m+2 (46)

and we arrive to the first part of (44) for j = m + 1.

If �3m+3 6= 0, then we can define

�3m+5 =
`m+2,m+1

�3m+3
,

and we have �3m+5 6= 0 . In this way we arrive to the second part of (44) for
j = m+1. Consequently, we would have defined the sequences {�3n�1} , {�3n}
such that (44) and (23) are verified. Therefore, it is enough to show �3m+3 6= 0,
in order to finish the proof of Theorem 3. Now, we will show that the following
expression for �2, take place

�2 = `1,1 �
`2,1

`2,2 � . . .
� `j,j�1

`j,j � �3j

, j = 1, 2, . . . , m + 1 , (47)

where we understand �2 = `1,1��3 in the case j = 1. Indeed, (47) is contained
in (44) for j = 1. If we assume that (47) holds true for j  m� 1, because we

14



are also assuming (44) with j  m, we have

�3j =
`j+1,j

�3j+2
. (48)

Moreover, since (46) we know that the first part of (44) is also verified in
m + 1. Then

�3j+2 = `j+1,j+1 � �3j+3 .

From this and (48),

�3j =
`j+1,j

`j+1,j+1 � �3j+3
.

Substituting in (47) we obtain the desired expression for j + 1.

Now, if `m+1,m+1 = 0, taking into account (46) we have �3m+3 6= 0. On the
other hand, if `m+1,m+1 6= 0, then comparing (47) for j = m + 1 and (25) for
n = m + 1, we arrive to �3m+3 6= 0. ⌅

Theorem 3 provides the key to understanding the relation between Theorem 1
and the Darboux transformation. With the above notation, relations (16) can
be written as

J � CI = L

(1)
L

(2)
U .

Moreover (17)-(18) can be rewritten, respectively, as

J

(1) � CI = L

(2)
UL

(1)
, J

(2) � CI = UL

(1)
L

(2)
. (49)

In general, we do not have uniqueness for the matrices L

(1) and L

(2) such that
L = L

(1)
L

(2), but for each �2(t0) in the conditions of Theorem 3 determines
this factorization. In this way, Theorem 1 provides two new solutions (49)
of (10) given by the circular permutations of L

(1)
, L

(2)
, U . This fact extends

the results of [9] and [10], where the initial solution and the obtained solution
of (10) are related by the Darboux transformation (see [2]). That is, in the
case of a tridiagonal matrix J we have J � CI = L U , and the new solution
is given by J

(1) � CI = UL .

In the following, we extend the concept of Darboux transformation.

Definition 3 Let B = (bi,j) , i, j 2 N , be a lower Hessenberg banded matrix,

B =

0

BBBBBBBBBBBB@

b1,1 1

b2,1 b2,2 1
...

...
. . . . . .

bp,1 bp,2 · · · bp,p 1
. . . . . . . . . . . .

1

CCCCCCCCCCCCA

,
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verifying det(Bn) 6= 0 for any n 2 N. Let L , U be, respectively two lower
and upper triangular matrices, such that the entries in the diagonal of L are
`i,i = 1 and B = L U is the unique L U-factorization of B in these conditions.
Assume L = L

(1)
L

(2) · · ·L(p�1), where for i = 1, . . . , p� 1,

U =

0

BBBBBBBB@

�1 1

�p+1 1

�2p+1 1
. . . . . .

1

CCCCCCCCA

, L

(i) =

0

BBBBBBBB@

1

�i+1 1

�p+i+1 1
. . . . . .

1

CCCCCCCCA

. (50)

We say that any circular permutation of L

(1)
L

(2) · · ·L(p�1)
U is a Darboux

transformation of B.

With some more computations and the extension of the method used in Sec-
tion 3, Theorem 1 would be proved for arbitraries values of p. In this case we
have p � 1 new solutions J

(i) � CI , i = 1, 2, . . . , p � 1 , of (3) given by the
Darboux transformations of

J � CI = L

(1)
L

(2) · · ·L(p�1)
U , (51)

this is,

J

(i) � CI = L

(i+1) · · ·L(p�1)
UL

(1) · · ·L(i)
,

where U,L

(i)
, i = 1, 2, . . . , p � 1 , are given in (50) and the sequence {�n}

provides a solution of (8). If we fix the initial conditions �2(t0), . . . , �p�1(t0)
verifying the adequate restrictions, then {�n} is the unique sequence veri-
fying (51) such that the Darboux transformations of (51) define p � 1 new
solutions of (3).
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