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Abstract

The poor clinical translation of oncological nanomedicine products is one of the greatest 
challenges faced by research today. The use of reductionist in vitro models of human can-
cer and non-predictive animal models is generally considered as one of the main causes of 
such very low translation rate. The integration of three-dimensional (3D) tumour spher-
oids in the early stages of the preclinical screening pipeline could significantly facilitate 
the translation of nanomedicine candidates into clinical practice, by allowing for a more 
reliable prediction of their efficacy and safety in humans. To lead a successful integration 
of 3D spheroids, protocols that satisfy issues of ease-of-use, reproducibility and com-
patibility with conventional and high-throughput assays, without losing the advantages 
offered by two-dimensional (2D) cell systems, are still needed. To address such need, 
protocols for the formation and characterisation of scaffold-free 3D tumour spheroids of 
human adenocarcinoma cells were developed and optimised in this study for their appli-
cation in nanomedicine safety testing. The protocols reported in this chapter provide the 
ground on how 3D tumour spheroids could be implemented to design nanomedicine 
products and speed up experimental cancer research, eliminating those candidates that 
are likely to be ineffective or unsafe in human at early development stages.

Keywords: 3D tumour spheroids, lung cancer, drug discovery, nanomedicine, safety

1. Introduction

Due to the lack of effective treatment schemes and the high mortality associated with 
many malignancies, the efforts of the pharmaceutical industry have recently focused on 
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 developing new target-oriented nanomedicine products for improving the cancer patients’ 

survival rate [1].

In parallel to novel targeted anticancer drugs (e.g. imatinib, trastuzumab, crizotinib and 

vemurafenib) [2], various nanomedicine products [3, 4] have been approved for clinical use in 

recent times, for more effective and safer cancer treatment. Nevertheless, the attrition rate of 
more than 90% for new drug candidates entering clinical trials is raising increasing concern 

[5–7]. One of the major reasons for drugs failure, accounting for around 60% of failed clini-

cal trials, is the lack of efficacy in humans [8–10], albeit the therapeutic effect was robustly 
demonstrated earlier in preclinical studies. The translation rate of nanomedicine products 

into real clinical anticancer treatments is also worryingly low [3, 11]. Limitations in the pre-

clinical toolbox currently used in the drug discovery pipeline are believed to be one of the 

major causes for such growing failures and poor translation [5, 12–14]. For example, doubts 

as to the relevance of animal models in preclinical studies have been raised: various system-

atic reviews [15–21] describe in fact the inadequateness of animal research for the efficacy 
assessments of new drug candidates. Conventional two-dimensional (2D) in vitro models are 

likewise considered as highly reductionist [22], endangering the relevance of the preclinical 

efficacy data collected [5]. Thus, the integration of new preclinical models in the drug devel-

opment pipeline is urgently needed.

In order to downtrend the raising failure rates in clinical trials, to increase successful clini-

cal translation with reduced R&D costs and animal experimentation, and ultimately to find 
new and safe cancer therapies (Figure 1), preclinical models must better reflect human in vivo 

conditions. This will assist the clear identification of compounds that have the potential to tar-

get specifically and selectively those receptors, markers or cellular behaviours characteristic 
of malignant cells, allowing for newly identified compounds and nanomedicine products to 
benefit from enhanced efficacy.

There is overwhelming evidence that in vitro three-dimensional (3D) tumour spheroids 

(i.e. microscale 3D spherical cultures of living cancer cells cultured under non-adher-

ent conditions [23] can provide predictive information on drug efficacy and safety in 
a smart, cost- and time-effective manner [24]. 3D tumour spheroids can be formed by 

either self-assembling or by forcing cells to grow as cell clusters starting from single cell 

 suspensions [25]. Conventional methods for spheroid formation include hanging drops, 

culture of cells on non-adherent surfaces, spinner flask cultures and rotary cell culture 
systems [26].

It has been demonstrated that 3D tumour spheroids more accurately reflect the responses 
of human tumours than simple 2D cell cultures [27], in particular with respect to drug 

sensitivity [28, 29] and nanomedicine efficacy [30]. Some targeted compounds have already 

proven to be more effective in 3D spheroids than in 2D cultures [31, 32]. In general, how-

ever, tumour cells cultured in 3D exhibit significantly increased drug resistance compared 
to those grown in 2D monolayer cultures. For example, in spheroid models of colorectal 
cancer [33] and pancreatic cancer [34], a reduction in the responsiveness to antitumour 
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agents was observed as a function of multicellular 3D architecture. Multicellular drug 

 resistance is not a new concept and has been studied for the past three decades [35–42]. It is 

associated with the ability of 3D tumour spheroids from human cancer cell lines to mimic 

cell dormancy [43, 44]. Cell dormancy originates from the fact that cancer cells in poorly 

vascularised tumour regions need to adapt to an unfavourable metabolic microenviron-

ment [45], stopping cell cycle progression and becoming dormant. This can confer cancer 

cells the resistance to drug treatment in humans [46–48]. 3D tumour spheroids can also 

reproduce cell-cell interactions between cancer cells and/or cancer cells and stroma [49–51]. 

These interactions strongly influence tumour cells [52] in relation to growth [53], metastasis 

[53] and response to radio-/chemo-therapy [54]. Various studies have shown in fact that 

radio- and chemo-resistance of cancer cells is associated with cell-cell adhesion [55]: the 

term ‘cell adhesion-mediated drug resistance’ (CAM-DR) has been used to describe this 

resistance phenomenon [56, 57].

Figure 1. Scheme of the drug development pipeline (A) currently in use and (B) envisaged via the implementation of 

new and more predictive preclinical models. (A) Once active compounds have been identified through the process 
of drug discovery, preclinical research (in vitro studies on cultured cells and in vivo studies on animals) are carried 

out, followed by clinical trials (on humans). Drug development is costly, in particular when carrying out in vivo 

and clinical studies. The current drug development pipeline leads to only one successful market product over 

5000–10,000 active compounds identified. (B) Advanced preclinical models capable of predicting drug failures 
earlier in the ‘proof-of-principle’ stage, prior to entering costly in vivo and clinical studies, will decrease the 

overall costs of drug development. Studies on 3D tumour spheroids may help significantly, filtering out as early 
as possible compounds that may not be successful in in vivo and clinical studies, thus decreasing the total cost 

of drug development and increasing the success rate of active compounds in reaching the market as effective 
chemotherapeutic agents.
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For the purpose of translating oncological nanomedicine products, assessing the ability of the 

nanocarrier to penetrate into the tumour tissue is essential. 3D tumour spheroids do indeed 

offer a more predictive in vitro model for assessing this aspect [58–65]. Such in vitro models 

have also been extensively used in the last years to evaluate the efficacy [62, 66–72] and safety/

toxicity [73–76] of various nanomedicine products with oncological applications, as well as to 

assess the effect of nanomaterials’ physico-chemical properties on their ability to act as nano-

carriers of anticancer agents [77–83].

Finally, the use of 3D tumour spheroids considerably limits the ethical issues associated with 

the use of animal preclinical models, in agreement with the ‘3Rs (Reduction, Refinement, 
Replacement) principle’ of Russell and Burch in animal research [84].

In light of these considerations, 3D tumour spheroids represent (i) a more predictive 

and accurate preclinical model and (ii) a key milestone towards a faster and sustain-

able development of effective nanomedicine products. Consequently, research efforts 

have recently focused towards adopting 3D tumour spheroids into test platforms, and 

3D tumour spheroids has been proposed as ‘standard-to-be’ for the development and 

optimisation of new chemotherapeutic agents [85, 86]. From the pharmaceutical industry 

prospective, it has been also widely accepted that incorporation of 3D tumour spheroids 

into the drug development pipeline can help selecting the most promising drug candi-

dates prior to clinical trials and to determine future-oriented treatment modalities [14, 

87]. What still remains unclear is how to produce such in vitro models with a significantly 

higher degree of equivalence to their in vivo counterparts, while making them techni-

cally feasible for industrial-scale reliable testing [88]. Indeed, this technological gap has 

highly hindered the implementation of 3D tumour spheroids as testing platform by the 

pharmaceutical and nanomedicine industries. Our study aims at addressing this gap by 

reporting standardised protocols for the formation, characterisation and application of 

scaffold-free 3D tumour spheroids. Non-small cell lung cancer (NSCLC) was chosen as 
target cancer type because several therapeutic drugs intended for use in this malignancy 

have recently failed to show major benefit in clinical trials, despite promising preclinical 

data [89, 90].

2. Relevance of standardised testing in nanotoxicology

There is overwhelming evidence that in vitro 3D tumour spheroids more accurately predict 

the drug sensitivity of human tumours than conventional 2D cultures. In the market, there 
are several products available for spheroids preparation; however, for many of them opera-

tors are left with the burden to optimise the working protocols to their specific needs. The 
protocols described herein provide technical solutions for the formation of scaffold-free 3D 
spheroids and for the characterisation of their architecture and protein marker expression. To 

support the identification of candidates with clinical potential, protocols are provided for the 
collection of quantitative data on the efficacy and safety of drug nanocarriers (nanomedicine). 
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No further optimisation is needed, with the additional advantage of their full compatibility 
with contemporary high-throughput technologies.

3. Experimental details

3.1. Reagents

Reagents used in this study were chosen due to their wide availability worldwide. Please 

note that these can be purchased from other distributors and manufacturers than those listed 

here, except if differently specified. TryplE™ solution, rhodamine phalloidin, Hoechst 33342 
counterstain, Mouse Anti-Human β-catenin primary IgG, Alexa Fluor 568-conjugated Goat 
anti-Mouse secondary IgG, FITC-conjugated Mouse Anti-Human Occludin IgG, Alexa Fluor 
488-conjugated Monoclonal Mouse Anti-Human Connexin-43 IgG, Live/Dead Cytotoxicity 
kit for mammalian cells and 0.4% Trypan Blue Solution (all from Invitrogen Ltd) were pur-

chased from Bio-Sciences Ltd (Ireland). Phosphate-buffered saline (PBS) tablets, 37% para-

formaldehyde (PFA) solution, glutaraldehyde (GA), bovine serum albumin (BSA), Triton 
X-100, hexamethyldisilazane (HMDS) and absolute ethanol (EtOH) were obtained from 
Sigma-Aldrich (Ireland). VECTASHIELD transparent mounting medium was purchased 
from Vector Laboratories Inc. (CA, USA). Sheep Anti-Human Fibronectin Antigen Affinity-
purified Polyclonal primary IgG, NorthernLights™ 557-conjugated Anti-Sheep secondary 
IgG, Goat Anti-Human Vimentin Antigen Affinity-purified Polyclonal primary IgG, and 
NorthernLights™ 557-conjugated Anti-Goat secondary IgG were purchased from R&D 
Systems (Ireland). FITC-conjugated Mouse Anti-Human E-cadherin IgG and BD Cycletest™ 
Plus DNA Reagent Kit was supplied by BD Biosciences (Oxford, UK). Connexin 43 antibody 
and E-cadherin (24E10) rabbit mAb used for Western blot experiments were purchased from 
Cell Signalling Technology (Brennan and Company, Ireland).

3.2. Cell culture

Human alveolar adenocarcinoma cells (A549 cell line) (ATCC® CCL-185™) and human lung 
fibroblasts (MRC-5 cell line) (ATCC® CCL-171™) were obtained from the American Tissue 
Culture Collection (LGC standards, Middlesex, UK). A549 and MRC-5 cells were cultured 
in Ham’s F12K medium supplemented with 2nM L-glutamine (Gibco, Invitrogen Ltd, Bio-
Sciences Ltd, Ireland), 1% penicillin/streptomycin (Gibco, Invitrogen Ltd, Bio-Sciences Ltd, 
Ireland) and 10% foetal bovine serum (FBS) (Sigma-Aldrich, Ireland).

Cell culture flasks, 24-well low-cell binding plates (Nunc™) and 96-well ultra-low attach-

ment (ULA) plates (Corning Costar) were purchased from Fisher Scientific (Ireland). Happy 
Cell™ ASM medium and 96-well low-cell binding plates (Biocroi Ltd) were kindly donated 
by Biocroi Ltd (Ireland). Happy Cell™ ASM medium is a polymer-based suspension media 
of low viscosity that enables the 3D culture of cells [91]. 96-well flat-bottom, non-treated 
plates (BD Falcon™) and 96-well U-bottom, non-treated plates (BD Falcon™) were purchased 
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from BD Biosciences (Oxford, UK). Four-well Millicell EZ slides were supplied by Millipore 
(Ireland).

3.3. Equipment

A Zeiss 510 meta laser scanning confocal microscope (LSCM) equipped with a Zeiss LSM 
5 software and Zeiss Orion Plus He-ion microscope (both from Carl Zeiss, Germany) were 
used for imaging the 3D tumour spheroids. A Countess™ cell counter (Invitrogen, UK) was 
used for trypan blue exclusion assay, while BD Accuri C6 flow cytometer (Becton Dickinson 
Biosciences, UK) was used for high-throughput assays. The Volocity 3D Image Analysis 
Software (PerkinElmer Inc., MA, USA) was used for surface rendering of Z-stack images and 
co-localization studies. Flow cytometry was carried out by means of BD Accuri™ C6 flow 
cytometer (BD Biosciences, Oxford, UK).

4. Technical protocols and considerations

This study describes the protocols for the formation, characterisation and use of 3D tumour 

spheroids as in vitro models for testing nanomedicine products. These protocols, which are 

simple, validated and reproducible, can be grouped into three main categories (highlighted in 

blue boxes in Figure 2): (1) protocols for the formation of 3D tumour spheroids, (2) protocols 
for analytical techniques and (3) protocols for specialised applications.

4.1. Formation of 3D tumour spheroids

One aspect commonly missing in all commercially available products for the formation of 

scaffold-free 3D tumour spheroids is the description of achievable spheroid size. In addition 
to this, not all available methodologies produce an abundance of 3D spheroids, and often 

the in vitro models formed have different dimension and shape. The direct consequence is 
that 3D tumour spheroids are often not comparable among studies, as they are formed of 

cells in different proliferative and metabolic states, raising serious concerns about the repro-

ducibility of data produced. A recent study has in fact showed that a number of morphol-

ogy parameters (including volume and shape) affect the response of spheroids to treatment 
[92]. Such lack of reproducibility is hindering the use of 3D tumour spheroids in preclinical 

tests.

A protocol was developed in this study allowing for the formation of scaffold-free, non-adher-

ent 3D tumour spheroids of A549 cells with or without the use of a reference commercial 

product (Happy Cell™ ASM) in combination with various commercially available multi-well 
plates. Our protocol allowed forming 3D models with well-defined and highly reproducible 
size in a range between 200 μm and 2 mm. In particular, our 3D tumour spheroids mimicked 
the size of early stage NSCLC at clinical stages 0–I, where the tumour mass has dimensions 
below 3 cm.
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4.1.1. Formation of 3D tumour models of A549 cells

3D tumour spheroids of A549 cells were prepared as described here below.

A. Preparing Happy Cell™ ASM for use:

• Dilute F12K/DMEM Happy Cell™ ASM 2× (commercial product) in Ham’s F12K media 
(supplemented with 2nM L-glutamine, 1% penicillin-streptomycin and 10% foetal bovine 

serum (FBS)) in 1:9 ratio, thus obtaining Happy Cell™ ASM 1×.

Figure 2. Scheme composing the main application of the protocols developed in this study. Protocols are grouped into 

three main categories. In some cases, sub-categories can be identified. The protocols developed were validated for their 
function through experiments analyzing various cellular parameters, by means of standard well-established techniques.
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B. Preparing multi-well plates for cell seeding:

• Aliquot Happy Cell™ ASM 1× in a 24-well plate (500 μl/well) or in a 96-well plate  
(200 μl/well). If using multi-well ultra-low attachment (ULA) plates, the use of Happy 
Cell™ ASM can be avoided. An equal amount of supplemented media should be ali-
quoted in its place.

• If preparation of cell suspension is delayed, incubate plates at 37°C, 5% CO2 until use.

C. Cell seeding:

• Maintain cell line as adherent monolayer cultures in T75 cell culture flasks in Ham’s F12K 
media supplemented with 2 nM L-glutamine, 1% penicillin-streptomycin and 10% FBS. 

Incubate at 5% CO2 at 37°C.

• Rinse the cells with phosphate buffered saline (PBS) and add 2 mL of TrypLE™ to detach 
adherent A549 cells (at 80% confluence) from the culture flask.

• Incubate at 37°C for 3–5 min.

• Neutralise TrypLE™ with 6 mL fresh supplemented Ham’s F12K media and centrifuge the 
cells suspension at 5000 rpm for 4 min.

• Aliquot the cell suspension in 1.5 mL Eppendorf tubes (1 mL cells suspension/tube). For the 
applications described within this exercise, an initial cell seeding density of 1 × 106 cells/mL 

in supplemented Ham’s F12K media is recommended.

• Centrifugation step: centrifuge the cell suspensions (7200 rpm, 1 min). A cells pellet should 
form at the bottom of the microtube.

• Carefully aspirate one cells pellet at a time with a sterile, plastic 1000 μL syringe tip.

• Inoculate the cells pellet on the Happy Cell™ ASM 1× (or supplemented media) previously 
aliquoted in multi-well plates (1 cells pellet/well).

• Incubate for 4 days at 37°C and 5% CO2. This culture time (spheroid growth phase) is com-

parable to those reported in the scientific literature [93].

Our experimental data indicated that three main parameters are key in defining the final 
size of the 3D tumour spheroids formed following our protocol. These are (i) competitive 

cell adhesion and cell monolayer formation (the stronger is the cell adhesion to the culture 

substrate, the smaller are the 3D tumour spheroids formed); (ii) initial cell aggregation 

(the higher cell aggregation is when seeding the cells, the bigger are the 3D tumour spher-

oids formed) and (iii) the spheroid-liquid surface tension (the lower is the viscosity of the 

spheroid’s surrounding environment, the bigger the spheroids will grow in size). In the 

next sections, detailed evidence on the importance of such parameters is presented and 

supported by experimental data.
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4.1.1.1. Competitive cell adhesion and cell monolayer formation: selecting the appropriate  

multi-well plate

Commercially available multi-well plates are available in a variety of formats. In deciding 

which multi-well plate format to use, the application intended for 3D tumour spheroids 

should be considered carefully.

The overall tumour response to chemotherapeutic treatments is in fact affected by a multitude 
of factors, among which is the tumour size. Tumour size is known to strongly affect the diffu-

sion and penetration of molecular and nano-enabled chemotherapeutic treatments decreasing 

their efficacy [94]. By varying their size, 3D tumour spheroids are thus amenable to therapy-

related studies with different emphasis, ranging from studies focusing either on the investiga-

tion of the micro-environmental regulation of tumour cell physiology or on the therapeutic 

efficacy of drugs in authentic pathophysiological milieu conditions. Spheroid size needs 
therefore to be precisely defined when integrating 3D cell models in drug-testing strategies.

Several commercially available multi-well cell culture plates compatible with high-through-

put assays have been tested within this study. In order to perform a comparative assessment 

of the most suitable multi-well plates for spheroid formation, identical spheroid preparation 

reagents were used in all relevant experiments. Thus, 3D tumour spheroids were always 

formed in Happy Cell™ ASM, in combination with various commercially available multi-
well plates. The growth of 3D tumour spheroids was monitored by light microscopy for all 

the tested multi-well plate formats. Table 1 reports the size distributions of the spheroids 

obtained in the various plate formats investigated, whereas representative light microscopy 

images of the 3D tumour spheroids formed are shown in Figure 3. Light microscopy imaging 

showed that 3D tumour spheroids formed in 24-well low-cell binding plates and ULA plates 
were bigger and more compact, and therefore, more mechanically robust.

4.1.1.2. Initial cell aggregation: the influence of centrifugation on the size of 3D tumour spheroids

Next important feature to consider is how cell aggregation during seeding influences the 
final size of the 3D tumour spheroids formed. A parallel set of experiments, where cells were 
seeded avoiding any centrifugation prior to plating, demonstrated the strong influence of this 
step in defining the final size of the spheroids, except when using 96-well low-cell binding 
plate. The main outcomes of our experiments (in terms of tumour size) are summarised in 

Table 2. Our results demonstrated that, for obtaining spheroids of size above 1 mm after 4 

days in culture, the centrifugation step described in the protocol was necessary.

4.1.1.3. Spheroid-liquid surface tension

As stated above, the viscosity of the spheroid’s surrounding environment influences the final 
size of the in vitro model. Our experimental data showed that the dilution factor of Happy 
Cell™ ASM in supplemented cell culture media contributed to defining the final size of the 
3D tumour spheroids formed (Table 3). In detail, increasing the viscosity of the surrounding 
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environment by reducing the dilution of Happy Cell™ ASM to a 1:1 (Happy Cell™ ASM: sup-

plemented media) ratio caused a reduction in tumour spheroids size, except in ULA plates. 

Thus, our results suggested that, for obtaining spheroids of size above 1 mm, a 1:9 (Happy 
Cell™ ASM: supplemented media) ratio or the use of ULA multi-well plates (in combination 
or without Happy Cell™ ASM) is recommended.

4.1.2. Formation of 3D co-culture tumour models

3D co-culture tumour models including heterotypic cellular components (also referred to 

as multicellular spheroid (MCS) models or multicellular 3D tumour spheroids) play a criti-

cal role in recreating the tumour microenvironment in vitro. The tumour microenvironment 

plays a critical role in cancer cell differentiation, and greatly impacts therapeutic efficiency 
of chemotherapeutic drugs. Co-culture 3D tumour models represent therefore one of the 

most promising in vitro systems for predictive testing of compound efficacy in oncology [94]. 

Thus, in this study, we developed protocols allowing the formation of a 3D co-culture tumour 

model that aims to analyse the interplay of NSCLC cells and the healthy surrounding con-

nective tissue. In detail, our model comprised 3D tumour spheroids of lung cancer epithelial 

Multi-well plate format Spheroid size 

(mm)

Notes

Number of 

wells

Well shape Well surface 

material

Supplier

4 Flat-bottom Glass Millipore Not formed • High cell adhesion

• Not suitable

24 Flat-bottom Low-cell binding 

polystyrene

Nunc™ 1.5 ± 0.5 • Optimal substrate

• No cell adhesion

• Mechanically robust spheroids

96 Flat-bottom Low-cell binding 

polystyrene

Biocroi Ltd 0.18 ± 0.11 • Partial cell adhesion

ULA polystyrene Corning Costar 0.85 ± 0.55 • Optimal substrate

• No cell adhesion

• Mechanically robust spheroids

• 3D spheroids size without 

Happy Cell™ ASM: 0.3–1.3 
mm

Non-treated 
polystyrene

BD Falcon™ 0.4 ± 0.1 • Partial cell adhesion

U-bottom Non-treated 
polystyrene

BD Falcon™ 0.35 ± 0.25

Tumour spheroids were grown in Happy Cell™ ASM at a 1:9 (Happy Cell™ ASM: supplemented media) dilution 
ratio. With exemption of 96-well plates from Biocroi Ltd., all multi-well plate formats tested are gold-standard cell 

culture substrates available from conventional suppliers. Cell culture plates provided by Biocroi Ltd. are included for 

comparison, as a recommended substrate for spheroids growth in Happy Cell™ ASM.

Table 1. Multi-well plate formats tested and main experimental outcomes in respect to the size of 3D tumour spheroids 

formed.
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Figure 3. Comparison of 3D tumour spheroids size formed in various multi-well plate formats: (A) 96-well low-cell 

binding plate; (B) 24-well low-cell binding plate; (C–D) 96-well non-treated plate with (C) flat-bottom or (D) U-bottom 
wells; and (E) 96-well ULA plate. Tumour spheroids were grown in Happy Cell™ ASM at a 1:9 (Happy Cell™ ASM: 
supplemented media) dilution ratio.

Multi-well plate format Spheroid size 

(mm)

Consequences of lack of 

centrifugation step
Number of 

wells

Well shape Well surface 

material

Supplier

4 Flat-bottom Glass Millipore Not formed • None

24 Flat-bottom Low-cell binding 

polystyrene

Nunc™ 0.75 ± 0.5 • Decreased spheroids size

96 Flat-bottom Low-cell binding 

polystyrene

Biocroi Ltd 0.14 ± 0.06 • No significant changes in 
spheroids size

ULA polystyrene Corning Costar 0.23 ± 0.16 • Decreased spheroids size

Non-treated 
polystyrene

BD Falcon™ 0.15 ± 0.05 • Decreased spheroids size

U-bottom Non-treated 
polystyrene

0.08 ± 0.02

Spheroids were grown in Happy Cell™ ASM at a 1:9 (Happy Cell™ ASM: supplemented media) dilution ratio. 
Conclusions on the consequences associated to the lack of the centrifugation step on the spheroids size are drawn based 

on the comparison to the spheroid sizes values reported in Table 1.

Table 2. Influence of centrifugation step on the final size of the 3D tumour spheroids formed in the various multi-well 
culture plates tested.
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(A549) cells cultured on a 2D monolayer of healthy stromal fibroblasts (MRC-5 cells). 3D co-
culture tumour models were prepared as described below.

A. Formation of a fibroblast monolayer:

• Maintain MRC-5 cell line as adherent monolayer culture in T75 cell culture flasks in Eagle’s 

Minimum Essential Medium (EMEM) media supplemented with 1% penicillin-streptomy-

cin and 10% FBS, at 5% CO2 at 37°C.

• Rinse the cells with PBS and add 2 mL of TrypLE™ to detach adherent MRC-5 cells (at 80% 
confluence) from the culture flask.

• Incubate at 37°C for 3–5 min.

• Neutralise TrypLE™ with 6 mL fresh supplemented EMEM media and centrifuge the cells 
suspension at 5000 rpm for 4 min.

• Using cell seeding density of 1 × 106 cells/mL in supplemented EMEM media, plate the cells 
in four-well chambered Millicell EZ slides (final volume: 500 μL/well).

• Incubate for 2/3 days at 37°C and 5% CO2, until cell monolayer confluence is achieved.

B. Seeding of 3D tumour spheroids:

• With a sterile, plastic 1000 μL syringe tip, carefully aspirate the 3D tumours spheroids pre-

viously grown from A549 cells for 4 days with or without Happy Cell™ ASM 1×.

Multi-well plate format Spheroid size 

(mm)

Influence of increased viscosity 
of environment

Number of 

wells

Well shape Well surface 

material

Supplier

4 Flat-bottom Glass Millipore Not formed • None

24 Flat-bottom Low-cell binding 

polystyrene

Nunc™ 1.05 ± 0.15 • Decreased spheroids size

96 Flat-bottom Low-cell binding 

polystyrene

Biocroi Ltd 0.15 ± 0.05 • No significant changes in 
spheroids size

ULA polystyrene Corning 

Costar

1.25 ± 0.75 • Decreased spheroids size

Non-treated 
polystyrene

BD Falcon™ 0.15 ± 0.05 • Decreased spheroids size

U-bottom Non-treated 
polystyrene

0.2 ± 0.1

The experimental outcomes (in terms of tumour size) are here reported for spheroids grown in Happy Cell™ ASM at a 
1:1 (Happy Cell™ ASM: supplemented media) dilution ratio. The influence of the increased viscosity of the environment 
on the spheroids size are evaluated based on the comparison to the spheroid sizes values reported in Table 1.

Table 3. Influence of the viscosity of the surrounding environment on the final size of the 3D tumour spheroids formed.
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• Inoculate the 3D tumour spheroids on the fibroblast monolayers. It is recommend to use 
a mixture of supplemented Ham’s F12K and EMEM media (ratio 1:1) as culture media for 
the co-culture 3D tumour models.

• Incubate for 24 h at 37°C and 5% CO2 to allow the formation of cell-cell adhesions.

Figure 4 shows representative laser scanning confocal microscopy (LSCM) images of the fully 

formed 3D co-culture tumour models. For specific LSCM staining and imaging protocols 
please refer to the appropriate sections of this manuscript.

4.2. Protocol for analytical techniques

A wide variety of techniques can be used to study 3D tumour spheroids characteristics. A 

comprehensive description of such techniques can be found in recently published reviews 

[26, 95]. The protocols that we describe within this section provide practical guidelines for 

the application of some of these techniques, allowing for the analytical characterisation of 

3D tumour spheroids and 3D co-culture tumour models. These protocols were optimised on 

3D tumour spheroids grown in 96-well ULA plates (with or without Happy Cell™ ASM), as 
these proven to be the most mechanically robust cultures formed. Robustness of 3D tumour 

spheroids was assessed as for their capability to maintain their shape and size under mechani-

cal stress (e.g. agitation or transfer with a pipette). Conventional two-dimensional (2D) cell 
monolayers (grown onto glass substrates according to cell supplier guidelines) were used as 

controls during the validation of our protocols for scaffold-free 3D spheroids.

4.2.1. Cellular imaging

A complete characterisation of the spheroid architecture and protein markers expression in 

the 3D tumour models used in preclinical studies is crucial for extrapolating and interpreting 

Figure 4. Representative LSCM images of a 3D co-culture tumour model stained for F-actin (rhodamine phalloidin; 

1:40 dilution; in red) and nuclei (Hoechst; 1:400 dilution; in blue). MRC-5 cells were also stained with 20 μM Cell 
Tracker Green CMFDA (in green) for 45 min (37°C and 5% CO2) prior to seeding the 3D spheroids, to allow their easy 

identification in the co-culture model. Images were collected in (A–B) single-plane or (C) Z-stack mode with an oil-
immersion 63× objective lens. (C) 3D rendering of Z-stack images obtained with the 3D function of Zeiss ZEN software 
(Carl Zeiss, Germany) (114 sections, total height: 102 μm). (A–C) Scale bars: 10 μm.
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valuable data on the efficacy of the molecular or nano-enabled chemotherapeutic agent under 
investigation. Because scaffold-free 3D tumour spheroids are grown in liquid media and do 
not adhere to a substrate, such cell models are difficult to image due to the Brownian motion 
in the culture plates. Thus, the first challenge in imaging scaffold-free tumour spheroids is to 
stabilise the 3D cell structures, without disrupting their architecture and markers expression, 

to allow high-quality images to be captured and analysed.

In this study, protocols are described for monitoring and analysing fixed, physically intact 
spheroid cultures. By applying these protocols it is possible to implement a suite of conven-

tional and advanced imaging technologies, such as LSCM and He-ion microscopy (HIM) to 
characterise: (i) cells’ shape and organisation of their cytoskeleton; (ii) phenotype of the cells 

forming the 3D tumour spheroids and (iii) the degree of tumour differentiation.

Essential steps needed for preparing 3D tumour spheroids for conventional or advanced 
imaging analysis are described below.

A. Harvesting:

• At the chosen time point, harvest cells by gentle aspiration of 100 μL/well media. This op-

eration cannot be performed with vacuum pipettes, to avoid accidental aspiration of the 3D 
tumour spheroids formed.

B. Fixation:

• Add 200 μL/well of fixative and incubate at room temperature.

• Special considerations: fixation of 3D tumour spheroids can be achieved by a chemical 
approach. Fixation is usually the first stage in a multistep process to prepare a sample 
for microscopy or other analysis. It is important, when selecting a fixative to have clearly 
set in mind the final purpose of the analysis, which must be considered and matched 
by the requirements for the analytical technique. Some fixatives are suitable for general 
structure analysis, others for immunocytochemistry. Survival of tissue antigens for im-

munochemical staining depends on the type and concentration of fixative, on fixation 
time and on the size of the tissue specimen to be fixed. In relation to the suite of conven-

tional and advanced imaging technologies discussed in this study, it is recommended 

the use of 4% paraformaldehyde (PFA) as fixative for conventional imaging techniques 
(e.g. LSCM), with an incubation time of 10 min at room temperature. If immunocyto-

chemistry is performed, the selection of the fixative solution should be in accordance 
with the manufacturer’s instructions for the antibodies used. Finally, for advanced im-

aging analysis (e.g. HIM), immersion in 2.5% glutaraldehyde (GA) for 30 min at room 
temperature (25°C) is recommended. Incubation overnight at 4°C is also suitable. Avoid 
longer incubation time, as formaldehyde-derived products can cause cells shrinkage 

overtime.

• Gently aspirate 200 μL/well.
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C. Washing:

• Wash with 200 μL/well PBS by gently adding and then removing the solution to/from the 
wells.

• Agitation or shacking is to be avoided during this phase to not shear the 3D spheroids from 

the bottom of the well.

D. Mounting:

• Gently aspirate the 3D tumour spheroids with a 1000 μL tip and transfer them on micro-

scope glass slides.

• Mount the glass slide in transparent mounting medium prior to LSCM analysis—when 

covering with a glass coverslip, take care not to create air bubbles, then seal with nail var-

nish or tape. If using nail varnish, leave to dry for at least 30 min at room temperature in 

the dark before imaging.

E. Storage:

• The stability of the 3D spheroids has been tested at regular intervals: fixed spheroids can be 
stored in sterile PBS at 4°C up to 1 month.

• Glass slides can be stored in the dark at 4°C up to few months.

4.2.1.1. Conventional microscopy

When viewing an unstained 3D tumour spheroid under brightfield illumination, the com-

bined density and thickness of the 3D culture prevents the clear visualisation of individual 

cells (as seen in Figure 3E). However, fluorescent staining and immunocytochemistry cou-

pled with LSCM can be successfully used to image 3D tumour spheroids at the individual cell 

level. LSCM relies in fact on the combination of point illumination and a pinhole to eliminate 

most of the out-of-focus light signal and allows for reconstruction of 3D volumes, making it 

ideal to image thick samples, such as 3D tumour spheroids.

Here we describe the protocols for the visualisation of various cell markers within 3D tumour 
spheroids by fluorescent staining or immunocytochemistry. For best results we recommend 
to acquire Z-stack images by LSCM with intervals in the range between 0.8 and 1.2 μm. Note 
that spheroids thickness might in some cases exceed the Z-stack capacity of some models of 
confocal microscopes. Please also note that successful LSCM imaging requires the careful 

optimization of microscope set-ups. Specific filters, detectors and pinhole size for imaging 
the specimens might need to be optimised according to the specifications of the microscope 
and fluorescent dyes used. Long-term exposure of dyes to fluorescent light can lead to pho-

tobleaching, so ensuring that shutters closed in between image acquisitions can reduce this 
problem.
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3D tumour spheroids of A549 cells can be stained with fluorescent probes or by immunocyto-

chemistry as described below.

A. Fluorescent staining of fixed 3D tumour spheroids:

• Add staining solution (100 μL/well) to the specimens.

• Incubated for 4 h at room temperature in the dark.

• Wash with 200 μL/well PBS by gently adding and then removing the solution to/from the 
wells. Repeat the washing step twice.

B. Immunocytochemistry of fixed 3D tumour spheroids

• If a cell permeabilization step is needed, incubate overnight at 4°C with 0.1% Triton X-100 

(200 μL/well). The long incubation time is needed to allow the solution to perfuse into the 
inner core of the 3D tumour spheroids. Note that if using methanol/acetone fixation, no 
permeabilization step is required.

• Wash with 200 μL/well PBS by gently adding, and then removing the solution to/from the 
wells.

• Add 200 μL/well blocking buffer (1% BSA) and incubate overnight at 4°C, for avoiding the 
antibody unspecific binding. It is recommended that for each antibody used, the original 
manufacturers’ instructions regarding blocking reagents must be followed.

• Remove the blocking buffer by gently aspirating 200 μL/well and wash with PBS as previ-
ously described (washing step).

• Add the primary antibody (100 μL/well) previously prepared in 0.1% Triton X-100 solution.

• Incubate for 4 h at room temperature. If the antibody is already conjugated to a fluoro-

phore, protect from light.

• Repeat the washing step twice.

• If an unconjugated primary antibody was used, add the secondary (labelled) antibody  

(100 μL/well) and incubate for 4 h at room temperature in the dark.

• Repeat the washing step twice.

4.2.1.1.1. Experimental validation: cell shape and cell cytoskeleton organisation—F-actin staining

Our protocol for fluorescent staining proved to be useful in quantifying the effect of the 
surrounding environment when culturing cells in 3D. Similarly to signalling molecules, 

the mechanical stimuli applied by the surrounding environment to cells induce subcellular 

and cellular events, such as cytoskeleton remodelling and cell shape changes [96, 97]. 3D 

tumour spheroids were formed without Happy Cell™ ASM in 96-well ULA plates, stained 
for F-actin (which is one of the main components of cells’ cytoskeleton) and analysed by 

LSCM. Representative LSCM images of 3D tumour spheroids are shown in Figure 5. A549 
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cells grown in 2D on glass substrates and stained for F-actin were used as control. Our proto-

col allowed determining that, when grown in scaffold-free 3D tumour spheroids, A549 cells 
showed a round cell shape and expressed cortical F-actin; in contrast, 2D cell cultures showed 
a cytoskeleton organised in cytoplasmic F-actin stress fibres.

4.2.1.1.2. Experimental validation: cell phenotype—expression of mesenchymal and epithelial  

markers

The microenvironment is known to influence the conversion of epithelial cells into mesen-

chymal cells in in vitro systems [98, 99] by a process called epithelial-to-mesenchymal transi-

tion (EMT). EMT is a critical series of events that switch early stage carcinomas into invasive 
malignancies. EMT is associated with the loss of epithelial cell markers and the acquisition of 
mesenchymal features [100, 101].

By applying our protocol for immunocytochemistry, 3D tumour spheroids formed in 96-well 

ULA plates were assessed for the expression of two mesenchymal markers: vimentin and fibro-

nectin. Figure 6 shows some representative results. In clinical trials, vimentin expression is used 

as a clinical marker of the response of NSCLC to chemotherapeutic agents [102], since increased 

expression of this protein gives an indication of tumour progression. In parallel, fibronectin 
expression is increased in NSCLC, enhancing the cells’ invasiveness and conferring them resis-

tance to apoptosis-inducing chemotherapeutic agents. Thus, the detection of these markers was 

selected during validation experiments as it finds a useful application in the preclinical drug 
efficacy-screening pipeline. Our immunocytochemistry could, for example, be used for charac-

terising spheroids cultured at different time points or formed by different protocols, allowing 
for the selection of the most relevant in vitro model to be used in preclinical tests. The expres-

sion levels to be mimicked should be assessed based on patient-based, clinically relevant data.

Our immunocytochemistry protocol was also found to be applicable for the evaluation of the 

expression of cleaved E-cadherin and β-catenin and for the investigation of their localization 
in the cell body (Figure 7A–F). Cells with epithelial phenotypes form adherent junctions. In 

such junctions, β-catenin binds to the cytoplasmic tail of the protein E-cadherin. During EMT, 

Figure 5. LSCM images of A549 cells cultured in (A) 2D and (B–D) 3D. Cells were stained with rhodamine phalloidin 
(1:40 dilution) to detect F-actin filaments (in red) and Hoechst (1:400 dilution) as nuclear counterstain (in blue). Images 
were collected in (A, C) single-plane or (B, D) Z-stack mode with a 20× (scale bar: 20 μm) or an oil-immersion 63× 
(scale bars: 10 μm) objective lens. (D) Projection of Z-stack images obtained with the projection function of Zeiss LSM 5 
software (61 sections, total height: 48 μm).
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the intracellular fragment of E-cadherin (called cleaved E-cadherin) translocates into the cell 
nucleus. This results in the abolishment of the E-cadherin-mediated sequestering of β-catenin 
in the cytoplasm and the translocation of β-catenin to the cell nucleus. Co-localization stud-

ies were possible on an example set of LSCM images acquired from specimens prepared as 

described above. Such studies showed that cleaved E-cadherin and β-catenin were mainly 
localised in the cells’ nuclei when A549 cells were cultured as 3D tumour spheroids in 96-well 

ULA plates without Happy Cell™ ASM (Figure 7J).

Tight junctions (TJs) are also involved in cell adhesion and lung cancer development [103]. In 

particular, occludin plays a critical role in defining the cellular phenotypes in solid tumours 
[104]: while epithelial cell phenotypes express occludin, cells with mesenchymal phenotypes 

downregulate occludin expression, resulting in enhanced cellular invasiveness and motility 

and thus promoting tumorigenic and metastatic properties of tumour cells [101]. Figure 8 

shows representative LSCM images demonstrating that the immunocytochemistry protocol 

described in this study allowed evaluating the expression of occluding in 3D tumour spheroids.

Figure 6. LSCM images of (A, E) 2D cell cultures and (B–D, F–H) 3D tumour spheroids stained for (A–D) fibronectin and 
(E–H) vimentin (both in red). 3D tumour spheroids were formed in ULA plates (B, C, F, G) with or (D, H) without Happy 
Cell™ ASM. For fibronectin detection, cells were stained with Sheep Anti-Human Fibronectin Antigen Affinity-purified 
Polyclonal primary IgG (1:20 dilution) and NorthernLights™ 557-conjugated Anti-Sheep secondary IgG (1:200 dilution) 
was used as secondary antibody. For vimentin immunocytochemistry, cells were stained with Goat Anti-Human 
Vimentin Antigen Affinity-purified Polyclonal primary IgG (1:20 dilution) and NorthernLights™ 557-conjugated Anti-
Goat secondary IgG (1:200 dilution) was used as secondary antibody. Nuclei were counterstained with Hoechst (1:400 
dilution) (in blue). (A, E) In 2D cell cultures, fibronectin showed a dotted pattern, while vimentin appeared as robust 
stress fibres. (B–D, F–H) Cells in 3D tumour spheroids showed cytoplasmic expression of vimentin and fibronectin, 
with reduced expression in centrally located cells (spheroid core). (B, F) Projection of Z-stack images obtained with the 
projection function of Zeiss LSM5 software (19 sections, total height: 46.77 μm). (B, F) White boxes highlight the region 
of the 3D tumour spheroids magnified in image (C) and (G), respectively. Scale bars: (B, F) 20 μm (20× objective lens) and 
(A, C–E, G, H) 10 μm (63× objective lens).
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Figure 7. LSCM images of (A-C) 2D cell cultures and (D–F) 3D tumour spheroids stained for cleaved E-cadherin (in 
green), β-catenin (in red) and nuclei (in blue). 3D tumour spheroids were formed in ULA plates without Happy Cell™ 
ASM. A549 cells were stained with FITC-conjugated Mouse Anti-Human E-cadherin IgG (1:70 dilution), Mouse Anti-
Human β-catenin primary IgG (1:50 dilution) and Hoechst nuclear counterstain (1:400 dilution). As secondary antibody, 
Alexa Fluor 568-conjugated Goat anti-Mouse secondary IgG (1:1000 dilution) was used. (C) White arrows highlight 
nuclear translocation of β-catenin. (C, F) Projection of Z-stack images obtained with the projection function of Zeiss 
LSM 5 software (54 sections, total height: 57.32 μm). Scale bars: 10 μm (63× objective lens). (G–I) Volume rendering of 
representative Z-stack LSCM images of 3D tumour spheroids and (J) co-localization studies. (G–I) Volume rendering 
was obtained with the Volocity software. Scale bar: 1 unit = 12 μm.
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4.2.1.1.3. Experimental validation: tumour differentiation—expression of Connexin-43 (Cx-43)

Cx43 represents one of the predominant gap junction proteins; its down-regulation is associ-

ated to poorly differentiated NSCLC, as showed in vitro and in human tissue [105]. Thus, Cx43 

is a cellular marker of the tumour differentiation. Figure 8 shows representative micrographs 

of fixed 3D tumour spheroids labelled with an anti-Cx43 antibody following our protocol 
described above (Figure 9).

Figure 8. LSCM images of (A) 2D cell cultures and (B–C) 3D tumour spheroids stained for occludin with FITC-conjugated 
Mouse Anti-Human Occludin IgG (1:50 dilution) (in green) and for nuclei with Hoechst (1:400 dilution) (in blue). 3D 
tumour spheroids were formed in ULA plates, without Happy Cell™ ASM. (A, C) Projection of Z-stack images were 
obtained with the projection function of Zeiss LSM 5 software (77 sections, total height: 76 μm). (A–C) Scale bars: 10 μm 
(63× objective lens).

Figure 9. LSCM images of (A) 2D cell cultures and (B–C) 3D tumour spheroids stained with Alexa Fluor 488-conjugated 
Monoclonal Mouse Anti-Human Connexin-43 IgG (1:50 dilution) and Hoechst nuclear counterstain (1:400 dilution). 
3D tumour spheroids were formed in ULA plates, without Happy Cell™ ASM. Arrows highlight (A) expression 
of connnexin-43 plaques in 2D cell cultures and (B) cortical expression of connexin-43 in 3D tumour spheroids. (C) 
Projection of Z-stack images were obtained with the projection function of Zeiss LSM5 software (46 sections, total height: 
58.5 μm). (A–C) Scale bars: 10 μm (63× magnification).
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4.2.1.2. Advanced microscopy

The protocol presented within this section contains a series of detailed steps that allow exam-

ining the morphology of cultured cells subsequent to 3D growth by advanced microscopy, 

such as, for example, scanning electron microscopy (SEM) or He-ion microscopy (HIM).

It is widely accepted that the preparation methods of biological specimens for SEM/HIM 
imaging can introduce artefacts. To avoid this and to preserve the cells’ architecture, we rec-

ommend employing a drying method using hexamethyldisilazane (HMDS). HMDS repre-

sents a cost- and time-efficient alternative to critical point drying (CPD) in the preparation of 
cells for electron microscopy imaging [106, 107].

A. Dehydration of fixed 3D tumour spheroids:

• Following fixation, immerse samples in PBS to remove excess fixative for 10 min—all steps 
are carried out at room temperature.

• Gently aspirate the 3D tumour spheroids with a 1000 μL tip and transfer them on microscope 
glass slides previously marked with a liquid-repellent slide marker pen for staining procedures.

Please note: the use of a 1000 μL tip is necessary to avoid perturbation of the original 3D 
spheroids architecture.

• Add an excess of 30% ethanol (EtOH) to samples, and leave them to equilibrate for 10 min.

• Discard excess liquid. Excess solutions should be discarded by gentle pipetting (avoid vacu-

um-pipetting) out the liquids, making sure that 3D tumour spheroids (visible by naked eye 
as small white spots after addition of EtOH) are not accidentally aspirated during this step.

• Repeat previous steps with 50, 70 and 90% EtOH, and leave to equilibrate for 10 min for 
each solution—discard solutions after each incubation.

• Add an excess of absolute EtOH and leave to equilibrate for 20 min—discard excess liquid. 
Repeat this step twice, discarding the solution after each incubation.

B. Chemical drying of dehydrated 3D tumour spheroids:

• Add an excess of 30% HDMS and leave to equilibrate for 5 min. Handle HDMS with care. 
HDMS is a flammable liquid and vapour. It is harmful if swallowed, inhaled or absorbed 
through skin. It causes severe irritation or burns to skin, eyes and respiratory tract. Avoid 

contact with eyes and skin. Avoid breathing vapours. Wear goggles, gloves and protec-

tive clothing. Use only with adequate ventilation. Wash hands thoroughly after handling. 

Avoid prolonged or repeated exposure.

• Discard excess solution.

• Add an excess of 60% HDMS and leave to equilibrate for 5 min.

• After discarding the solution, add an excess of pure HDMS and equilibrate for 10 min.

• Remove excess liquid and dry in a chemical fumehood overnight.
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4.2.1.2.1. Experimental validation: imaging of 3D architecture, cell membrane texture and cell shape 

by HIM

He-ion microscopy (HIM) is an advanced imaging technique in which a focused beam of He+ 

ions is directed onto the sample surface, which liberates secondary electrons that are collected 

forming detailed images of the sample surface topography [108]. In biomedical sciences, HIM 
offers various advantages over conventional SEM imaging, such as a high spatial resolution 
(with better material contrast and improved depth of focus) and the ability to image uncoated, 
non-conductive samples without the deposition of a metal (or other conductive) overcoat 

[109, 110], which can indeed reduce and/or completely mask cell surface details [111]. This 

opens up a whole new range of surface details in biological specimens that can be examined 

rapidly and with less risk of artefacts. HIM accuracy can be indeed exploited to image the 
shape, membrane texture, membranous projections and 3D architecture of 3D tumour spher-

oids with unsurpassed image quality and detail.

Our protocol for advanced microscopy was found valuable for capturing HIM images of 3D 
tumour spheroids formed without Happy Cell™ ASM in 96-well ULA plates (Figure 10).

4.2.2. Molecular analysis

Because of the central role of proteins in understanding cancer cells responses, it is often 

valuable to be able to extract, purify and quantify the expression of specific proteins. Thus, 
we developed an easy-to-use protocol outlining the steps necessary for the extraction of total 

protein from 3D tumour spheroids.

A. Collect 3D tumour spheroids:

• Aspirate growth media and 3D tumour spheroids formed with a 1000 μL pipette from each 
well and collect them in a 20 mL tube.

Please note the use of a 1000 μL tip is necessary to avoid perturbation of the original 3D 
spheroids architecture

• Centrifuge at 5000 rpm at room temperature (25°C) for 20 min.

B. Total protein extraction:

• Aspirate the supernatant and re-suspend the cell-pellet with 1.5 mL of PBS.

• Centrifuge at 5000 rpm at room temperature (25°C) for 20 min.

• Aspirate the supernatant and re-suspend the cell-pellet in lysis buffer.

• After addition of the lysis buffer, mix energetically to favour disaggregation of 3D tumour 
spheroid-pellet.

• Proceed with standard immunoblotting.
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4.2.2.1. Experimental validation: Western Blot of cell junctions

Validation data were obtained using our protocol to extract protein from 3D tumour models 

cultured in Happy Cell™ ASM in Nunc® low-cell binding plates (24-well format), as con-

firmation of the molecular fingerprinting of the 3D tumour spheroids. Western blotting, a 
gold-standard technique in protein detection and quantification, was used for evaluating 
the expression in 3D tumour spheroids of (i) adherent junctions (namely, full-length pro-

tein E-cadherin and β-catenin) and (ii) TJs, such as occluding, zonula occludens-1 (ZO-1) and 
ZO-3. Cell lysis and Western blotting were performed following previously optimised in-
house published protocols [112]. The results obtained (shown in Figure 11) demonstrated 

the expression of full-length E-cadherin and β-catenin. It should be noted that cells cultured 
in 3D spheroids showed nuclear translocation of cleaved E-cadherin (Figure 7) as well as 

Figure 10. HIM images of A549 cells forming 3D tumour spheroids in ULA plates. The three-dimensional architecture 
of the spheroids can be appreciated at low magnification (A–B), while the presence of unique membrane ruffles and a 
multitude of filopodia and lamellipodia on the cells surface can be detected when imaging at high magnifications (C–D). 
Samples were imaged using an accelerating voltage of 30 kV. The working distance was 8 mm and a 10 μm aperture. 
The probe current was between 0.5 and 1.5 pA. Images were acquired by collecting the secondary electrons emitted 
by the interaction between the He-ion beam and the specimen with an Everhart-Thornley detector (part of the He-ion 
microscope system). The image signal was acquired in a 32- or 64-line integration to each contributing line of the image. 
Scale bars: (A) 10 μm, (B) 5 μm, (C) 2 μm and (D) 0.5 μm.
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the expression of full-length E-cadherin (Figure 11): co-expression of these two forms of the 

E-cadherin protein is in fact possible during intermediate steps of the EMT process. In addi-
tion, Western blot showed that occluding and ZO-1 were expressed, whereas ZO-3 was not. 
For forming functional TJs, the transmembrane components of occludin need to interact with 

at least one ZO protein [113]. Our results seemed to suggest therefore that functional TJs 

might have been formed in 3D tumour spheroids.

4.3. Protocol for the evaluation of biological responses in 3D tumour spheroids

Exposure of 3D tumour spheroids formed with our protocol to drugs or nanomedicine can-

didates resulted very simple, as the spheroids could be exposed to the tested compounds/

nanocarriers by their direct addition in the media, as conventionally used in 2D cell culturing 
protocols. In order to quantify the cellular responses to the drugs/nanocarriers tested, we 

developed protocols based on commercially available assays that are routinely applied to 

monitor intracellular activity in 2D monolayer cell cultures.

Various techniques are used to characterise the effect of anticancer agents on 3D tumour 
spheroids, as described in a recently published review [95]. In general, monitoring of spher-

oid integrity by phase contrast imaging is still the most popular technique to evaluate the 

cytotoxic effects of drugs. Spheroid growth delay, a classical analytical endpoint, is most 
frequently calculated as the difference between treated and untreated spheroids to reach a 
particular volume and has recently been proposed for standardised spheroid screening [114]. 

However, with respect to clinical relevance, loss of spheroid integrity may not result from 
total tumour cells destruction, as spheroid integrity does not necessarily reflect the presence 

Figure 11. Western blot of (A) β-catenin (92 kDa), (B) Connexin-43 (19, 31 and 59 kDa), (C) ZO-3 (140 kDa) and ZO-1 
(220 kDa), (D) full-length protein E-cadherin (135 kDa), (E) occludin (65 kDa), and relative bands intensities normalised 
on the β-actin bands intensity. 2D cultures and 3D tumour spheroids were lysed following the protocol described—the 
lysates were resolved by SDS-PAGE and after Western blotting were probed for the various proteins.
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of viable cells. Therefore, quantification of cell survival after treatment is desirable. Our proto-

cols for conventional and high-throughput assays can be used for visualising and monitoring 

the viability of the cell population in the spheroids. Thus, they allow for the investigation of 

(i) the therapeutic efficacy of tested chemotherapeutic agents, (ii) the toxicity of nanocarriers 
and/or (iii) the efficiency in delivering anticancer treatments by means of nanocarriers.

4.3.1. Conventional assays

Standardised protocols, which do not require further optimization depending on the rate of 

cell growth or the cell culturing substrate used, are described in detail for the live/dead cyto-

toxicity and trypan blue exclusion assays in the following sections.

A. Live/dead cytotoxicity assay in 3D tumour spheroids:

• At the desired time point, harvest cells by gentle pipetting 100 μL/well media. This opera-

tion cannot be performed with vacuum pipettes, to avoid accidental aspiration of the 3D 
tumour spheroids formed.

• Add the pre-warmed staining solution (100 μL/well) to the wells. Staining solution is pre-

pared as recommended in the supplier’s protocol.

• Incubate for 45 min at room temperature in the dark.

• Gently aspirate the 3D tumour spheroids with a 1000 μL tip and proceed to analysis. Please 
note: the use of a 1000 μL tip is necessary to avoid any potential perturbation in the spatial 
localization of live/dead cells.

• Please note that it is not possible to carry out analysis on stored specimens.

B. Trypan blue exclusion assay in 3D tumour spheroids:

• Aspirate growth media and 3D tumour spheroids from each well with a 1000 μL pipette 
and collect them in a 20 mL tube. Please note the use of a 1000 μL tip is necessary to avoid 
perturbation of the original 3D spheroids architecture, triggering any potential cell death.

• Centrifuge at 3000 rpm at room temperature (25°C) for 5 min.

• Aspirate the supernatant and re-suspend the cells with 1 mL of PBS.

• Add 100 μL of trypan blue solution (0.4%) to 1 mL of cells.

• After addition of the trypan blue solution, mix energetically to favour disaggregation of 3D 

tumour spheroids.

• Load a haemocytometer or a cell counter slide with the stained cell suspension.

• Immediately count the number of blue stained cells and the number of unstained cells un-

der a low magnification microscope or with an automatic cell counter.

• To calculate the percentage (%) of live cells use Eq. (1):
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  % live cells =  [1 −   number of stained cells  _________________________________  
number of total cells

  ]  × 100  (1)

4.3.1.1. Experimental validation: therapeutic efficacy of Paclitaxel in 3D tumour spheroids

In the validation of our protocol, the live/dead cytotoxicity assay was integrated with LSCM. 

3D tumour spheroids were formed without Happy Cell™ ASM in 96-well ULA plates. 3D 
tumour spheroids were then exposed to Paclitaxel (0.03 mM) for 24 and 72 h, and the percent-
age of live cells was compared to the paired negative (untreated cells) and positive controls 

(cells treated with 70% MeOH for 30 min at 37°C). Representative LSCM images of 3D tumour 
spheroids stained with the devised protocol for live/dead cytotoxicity assay are shown in 

Figure 12. Analysis of LSCM images demonstrates a small (but not significant) increase in 
the proportion of dead cells when 3D tumour spheroids were exposed to Paclitaxel for 24 h, 
while the size of the spheroids appeared reduced following exposure at both time points. The 

treatment with 70% MeOH provided the expected positive control outcome.

Further to this, the viability of 3D tumour spheroids exposed to Paclitaxel (0.03 mM) for 24 
and 72 h was evaluated by means of the trypan blue exclusion assay protocol. Quantitative 
data are reported in Figure 13 as the average ± standard deviation (n

replicates
 ≥ 2). Exposure to 

Paclitaxel for 24 h resulted in a significant reduction in cell viability in 3D tumour spheroids, 
although cell viability increased after 72 h treatment. This result might be related to the well-
known ability of 3D tumour spheroids to mimic drug resistance phenomena [115, 116], which 

has been observed in vivo. As expected, treatment with 70% MeOH resulted in a significant 
reduction of live cells as positive control sample.

4.3.1.2. Experimental validation: cytotoxicity of nanocarriers in 3D tumour spheroids and therapeutic 

efficacy of anticancer agents delivered by nanocarriers

3D tumour spheroids were formed without Happy Cell™ ASM in 96-well ULA plates and 
exposed to gold nanoboxes (Au-1) and its nanomedicine form consisting of a multi-layered 

nanomaterial made of the same gold core (Au-1) coated with Paclitaxel-encapsulated gela-

tine (Au-2). Full characterisation of these nanomaterials is provided in a previous publica-

tion of the authors [117]. 3D tumour spheroids were exposed to Au-1 and Au-2 for 24 or 
72 h. The experimental design included a negative control (untreated cells) and a positive 
control (cells treated with 70% MeOH for 30 min at 37°C). Representative LSCM images of 
3D tumour spheroids stained with the live/dead cytotoxicity assay protocol are shown in 

Figure 14. Analysis of such images allowed concluding that Au-1 did not produce any sig-

nificant variation in the cell viability following 24 and 72 h exposure, whereas 72 h exposure 
to Au-2 resulted in a reduction of the total amount of live cells in the 3D tumour spheroids.

Trypan blue exclusion assay was carried out in parallel experiments, where 3D tumour spher-

oids formed in 96-well ULA plates were exposed to Au-1 for 24 and 72 h. The quantitative 
results are reported in Figure 15 as average ± standard deviation (n

replicates
 ≥ 2). The assay con-

firmed that such nanocarriers did not cause any cytotoxicity when incubated with 3D tumour 
spheroids for 72 h.
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4.3.2. High-throughput assays

The setup based on high-throughput flow cytometry is described below. This setup could be 
easily integrated into a standard large-scale drug-testing routine. The setup requires a small 

number of spheroids and a limited amount of drug/nanomedicine candidate, and it can inte-

grate many analytical endpoints. Since spheroid dissociation is carried out during the sample 

preparation steps, this assay is suitable for all spheroid size ranges that may be examined 

when comparing treated and untreated spheroids.

Figure 12. LSCM images of 3D tumour spheroids stained for live (calcein AM; 1:500 dilution; in green) and dead 

(ethidium homodimer-1; 1:300 dilution; in red) cells after 24 and 72 h exposure to Paclitaxel (0.03 mM). Negative 
(untreated 3D tumour spheroids) and positive (3D tumour spheroids treated with 70% MeOH for 30 min) controls are 
also reported. Scale bars: 10 μm (63× objective lens).
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A. Sample preparation:

• At the desired time point, aspirate growth media and 3D tumour spheroids from each well 

with a 1000 μL pipette and collect them in a 20 mL tube.

• Centrifuge at 1650 rpm at room temperature (25°C) for 5 min.

B. Assay:

• Perform the cell staining with the kit chosen according to the manufacturer’s protocol, and 

run the sample in the flow cytometer.

Figure 13. Percentage (%) of live cells in 3D tumour spheroids grown in ULA plates without Happy Cell™ ASM 
and exposed to Paclitaxel (0.03 mM) for 24 and 72 h. Untreated (negative control or NT) and 70% MeOH-treated 
(positive control or PT) 3D tumour spheroids were also included in the experimental design. Stained and unstained 

cells were counted by a Countess™ cell counter. For the statistical analysis, a two-way analysis of variance (2-way 
ANOVA) followed by Bonferroni post-test analysis was carried out (GraphPad Prism 5 Software Inc., USA). p < 0.05 was 

considered statistically significant. The symbols (*) and (**) indicate p < 0.05 and p < 0.01, as compared to NT. The symbol 
(+) indicates p < 0.05 as compared to 24 h.

Figure 14. LSCM images of 3D tumour spheroids stained for live (calcein AM; 1:500 dilution; in green) and dead 

(ethidium homodimer-1; 1:300 dilution; in red) cells after 24 and 72 h exposure to a gold nanocarrier (Au-1) or Paclitaxel-
loaded, gelatine-coated gold nanocarriers (Au-2). Negative (untreated 3D tumour spheroids) and positive (3D tumour 
spheroids treated with 70% MeOH for 30 min) controls are also reported. Scale bars: 10 μm (63× objective lens).
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• Special considerations: please note that the assay kit used in this study does not require a 

step for disaggregating the 3D tumour spheroids in a single cell suspension, as lysis of cells 

is performed during the assay. An additional step might be required if a different kit is used.

4.3.2.1. Experimental validation: changes in cell cycle following exposure to Paclitaxel

Example data were obtained using the protocol described above to quantify the cell cycle 
changes in 3D tumour spheroids exposed to Paclitaxel (0.03 mM) for 24 h. Stained nuclei were 
visualised using the SSC-H vs FSC-H scatter plot and a gate (P1) was applied to exclude debris 
at lower scatter intensities. Aggregate exclusion gating (P2 in P1) via doublet discrimination 
was performed on the P1 population using the FL2-H vs FL2-A scatter. Finally, analysis of the 
cell cycle stage for G0/G1, S and G2/M phase was carried out by manual gating on the FL2-H 
histogram. A minimum of 10,000 events was collected in the (P2 in P1) gate and visualised on 
the FL2-H histogram. Data are presented in Figure 16 as percentage (%) cell population in (P2 
in P1) and expressed as average ± standard deviation (n

test
 = 2).

Figure 15. Percentage (%) of live cells in 3D tumour spheroids grown in ULA plates after exposure to gold nanoparticles 

for 24 and 72 h. Untreated (negative control or NT) and 70% MeOH-treated (positive control or PT) 3D tumour spheroids 
were also included in the experimental design. Stained and unstained cells were counted by a Countess™ cell counter. 
For the statistical analysis, a two-way ANOVA followed by Bonferroni post-test analysis was carried out (GraphPad 
Prism 5 Software Inc., USA). p < 0.05 was considered statistically significant. The symbols (*) and (**) indicate p < 0.05 

and p < 0.01 as compared to NT.

Figure 16. Percentage (%) of cell population in the G0/G1, S and G2/M phases after exposure to Paclitaxel (0.03 mM) for 24 h. 
cells were stained with the BD Cycletest™ Plus DNA Reagent Kit and analysed using BD Accuri™ C6 flow cytometer. Data 
are shown as average ± standard deviation (n

replicates
 = 2). For the statistical analysis, a two-way ANOVA followed by Bonferroni 

post-test analysis was carried out (GraphPad Prism 5 Software Inc., USA). p < 0.05 was considered statistically significant. The 
symbols (**) and (***) indicate significant changes (p < 0.01 and p < 0.001, respectively) compared to the G0/G1 phase.
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Our data showed an increase in the percentage cell population in G0/G1 phase after 24 h treat-
ment with Paclitaxel. This anticancer drug is known to inhibit the mitotic spindle formation, 

thus blocking the progression of mitosis and triggering apoptosis or reversion to the G-phase 
of the cell cycle without cell division. The results presented in Figure 16 reflect the mechanism 
of action of the drug under investigation, and validate the trypan blue exclusion assay results, 

showing an increased cell death following 24 h exposure to Paclitaxel (Figure 13).

5. Authors’ perspective

Since 2006, when a simple method to generate non-adherent 3D tumour spheroids for poten-

tial high-throughput toxicity analysis of drug compounds was firstly reported [118], several 

methods have been developed to generate scaffold-free 3D tumour spheroids for drug dis-

covery. These methods share the common feature of promoting cell-cell coupling by resisting 

cell-substrate interactions. They can be grouped into four main methodological categories: (i) 

hanging drop [85, 119, 120]; (ii) cell culture on non-adherent surfaces that effectively inhibits 
cellular attachment, such as (poly-HEMA)-coated plates [121, 122], low-binding plates [123, 

124], ultra-low attachment (ULA) plates [125] or micro-patterned plates [126, 127]; (iii) micro-

carrier systems [128] and (iv) rotation-based culturing techniques, such as spinner flasks [129] 

and rotary cell culture systems [130, 131]. Formation of scaffold-free heterotypic multicellular 
3D spheroids has likewise been extensively reported [132]. Nevertheless, when transferring 
drug testing to the third dimension, the limited ability to image, process and automate assays 

performance in 3D tumour spheroids still remains the main barrier for the adoption of these 

3D culture techniques for routine preclinical drug development studies [133].

To the best of our knowledge, the main commercial approaches to the automation of scaf-

fold-free 3D cell culturing techniques are InSphero GravityPLUS™ Hanging Drop system and 
GravityTRAP™ ULA plates, 3D Biomatrix’s Perfecta3D™ hanging drop multi-well plates, 
Global Cell Solutions magnetic microcarrier-based GEM™ and PolyGEM™ systems, and 
Happy Cell™ ASM. Although each method has certain advantages, the challenges that these 
approaches still pose for automation are well-documented [24]. In detail, limitations are posed 

to imaging due to Z-axis resolution, image depth and light scattering [134], although advances 

have been recently made in this field [135] by, for example, introducing additional post-pro-

cessing treatments of 3D spheroids with Scale reagent [136]. The main consequence is that 

most studies on 3D tumour spheroids are carried out at low resolution by light microscopy and 

immunohistochemistry, or at the single-cell level by multiphoton microscopy or spectroscopic 

imaging/mapping techniques [137]. These techniques however are not compatible with high-

throughput screening. In addition to these technical aspects, most of the commercially avail-

able products for scaffold-free 3D cell culture are not accompanied by technical documentation 
or peer-reviewed scientific publications describing the specific protocols that need to be used 
for drug discovery applications. For many of the products mentioned above, users and opera-

tors are left with the burden of re-optimising the working protocols to their specific needs. For 
instance, it is known that cells in Happy Cell™ ASM, a product used in this study, form discrete 
populations within the wells of 96-well low-cell binding plates provided by the same  supplier 
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and, during continued culture, they assemble into spheroids. However, no information is pro-

vided on: (i) the size of the 3D tumour spheroids formed in the multi-well plates supplied by 

Biocroi Ltd itself; (ii) the size of the 3D tumour spheroids obtained if using multi-well plates 

purchased from different commercial sources and compatible with high-throughput screening 
assays and (iii) how to standardise and homogenise the size of 3D tumour spheroids. Similarly, 

according to the manufacturer, protocols for the formation, maintenance and harvesting of 

3D tumour spheroids formed in 3D Biomatrix’s Perfecta3D™ hanging drop multi-well plates 
should be optimised by each user[138–140]. Such uncertainties are indeed strongly hindering 

the integration of 3D culturing technologies into the pharmaceutical industry practice.

The aim of this study was to develop practical and technical solutions filling such gaps of 
standardisation, focusing on screening applications that are achievable without expensive 

robotic equipment and that could be employed in many research labs. Happy Cell™ ASM 
was selected as the least characterised product, whereas low-binding/ULA multi-well plates 

were chosen as they are the most common substrates currently used for forming 3D tumour 

spheroids. Human adenocarcinoma cells (A549 cell line) were selected as a relevant model for 
developing technical protocols with translational potential in the drug development pipeline: 

all results presented here are based on such cell line. The A549 cell line is considered one of 

the closest cell line mimicking the human epithelial alveolar model [141], and a physiologi-

cally relevant in vitro model of NSCLC [142], which is the most prevalent form of human lung 

cancer originating from epithelial cells. A549 cells are also an established cell line for anti-

cancer drugs discovery and screening [143] and it has proven to be a robust cell line/alveolar 

model for several previous nanomaterial-based studies [112, 117, 144–148]. Unlike other stud-

ies on A549 cells [118, 149–151], the formation of our 3D tumour spheroids did not require 

architecturally complex scaffolds or reconstitute basement membrane that could circumvent 
some applications, such as drug delivery and assays performance.

The protocols developed can be grouped in three categories (in dark blue in Figure 1). For 

each of the identified categories, experimental validation was carried out and is reported in 
the form in which they have been used in our lab, namely forming 3D tumour spheroids and 

incorporating them into a 3D co-culture model, characterising the markers expressed by 3D 

tumour spheroids, and testing an anticancer drug or gold nanocarriers.

Our protocol allowed cell aggregation and spheroids formation in standard commercially 

available multi-well plates, thus meeting the pharmaceutical industry requirements [133]. 

Formation of 3D tumour spheroids was easily controlled by tuning specific parameters (i.e. 
the initial cell aggregation and cells adhesion to the substrate). 3D structure and mechani-

cal robustness are mandatory requirements to allow the translation and implementation of 

3D tumour spheroids into a primary drug-testing routine. Without these features, in fact, 

the pathophysiological gradients developed in genuine tumour spheroids cannot be mim-

icked [94]. Unfortunately, some so-called spheroids in the literature are no more than loose 

aggregates that easily detach; they cannot be manipulated or transferred and they show lack 

cell-cell interactions [23]. Our experimental data demonstrated that only 3D tumour spher-

oids formed in 24-well low-cell binding plates and ULA plates were mechanically robust 
(Figure 3). 3D tumour spheroids formed in these cell culture plates could be easily transferred 

Nanotoxicity in Cancer Research: Technical Protocols and Considerations for the Use of 3D...
http://dx.doi.org/10.5772/intechopen.69447

117



onto different substrates for further specific analysis (e.g. immunofluorescence staining and 
imaging), showing a beneficial advantage over other multi-well cell plates.

As heterotypic cell interactions are key for the function of certain tissues, co-cultures includ-

ing multiple cell types are another means of increasing relevance to in vivo scenario [152]. A 

protocol for forming 3D co-culture tumour models was therefore developed. Various exam-

ples of spheroid co-culture approaches are reported in the literature [153] including, but not 

limited to: (i) mixed spheroids, mimicking, for example, lung cancer [154]; (ii) tumour spher-

oids cultured on fibroblast monolayers as model of colon carcinoma [155, 156] or breast can-

cer [157] and (iii) tumour spheroids co-cultured with pre-established fibroblast spheroids for 
creating in vitro models of breast cancer [158–160]. Mixed spheroids are the most widely used 

approach. In this approach, however, the histo-morphology and cellular distribution cannot 

be accurately controlled by the end-user, resulting in not-homogenous (and not replicable) 

models, even if identical cell numbers and harmonised culture protocols are used. These 

models have therefore limited application as drug screening models in the pharmaceutical 

industry. Thus, in our study a co-culture approach in which tumour spheroids were plated 

onto a fibroblast monolayer was preferred. Fibroblasts were selected as these cells represent a 
major portion of the tumour stroma in carcinomas, and they can promote cancer progression 

and invasion [161, 162]. Confocal images of the 3D co-culture models formed in this study 

demonstrated the successful attachment of 3D spheroids of A549 cells to the fibroblast mono-

layer (Figure 4), suggesting interaction among the different cell types.

Since the presence or extent of certain tumour characteristics, such as those associated to EMT, 
are likely to affect drug response, it is essential to extensively characterise the spheroid model 
used during drug screening. The protocols described in our study allowed a simple and eco-

nomically feasible evaluation of cell markers expression (Figures 5–10) by means of conven-

tional and advanced microscopy approaches. Spheroids characteristics were also assessed 

by Western blotting (Figure 11). Although not all the main features of solid cancers (such as 

the influence of acellular stroma and immune cells) were modelled through our formation 
protocols, our results demonstrated that 3D tumour spheroids did reflect many important 
properties of solid tumours, including the expression of specific cancer markers.

Finally, keeping in mind that one of the preferred embodiments of the protocols described 

herein is their application in research labs for efficacy screening of new chemotherapeutic 
agents and oncological nanomedicine products, cell features/responses were assessed by con-

ventional and high-throughput assays (Figures 12–16). Various studies provide evidence that 

standard cell proliferation assays (e.g. AlamarBlue assay [163]) are not suitable for quanti-

fying cytotoxic/cytostatic responses in 3D tumour spheroids, as they do not show a linear 

correlation with cell densities [164], unless properly adapted. Similarly, nanomaterials are 

known to interfere with many assays (e.g. MTT) [3, 165]. Our protocols based on conventional 

viability assays satisfied criteria, such as ease-of-use and reliability, without losing the main 
advantages of validated commercially available kits. A protocol for high-throughput flow 
cytometry was also developed, resolving time and cost issues [166]. The implementation of 

flow cytometry can be regarded as advantageous since this technique is widely used in clini-
cal laboratories and can include multiple molecular read-outs and endpoints.
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6. Conclusions

3D tumour spheroids can allow the fast development of new effective anticancer nanomedi-
cines without dissatisfying safety, economical and ethical issues raised by societal, healthcare 

and pharmaceutical industry stakeholders. However, this can be achieved only by developing 
clear, simple and reproducible protocols for the formation and use of 3D tumour spheroids in 

a way that is compatible with standard analysis techniques. The protocols described within 

this work offer a set of tools addressing many of the problems that need to be overcome in 
order to translate 3D tumour spheroids into preclinical models. The obtained data validate 

the developed protocols to bear a novel platform technology solving the existing bottlenecks 
in the arena of anticancer drug and nanomedicine products development, presented here in 

the form of gold nanocarriers.
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