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Abstract

In recent years, the display industry has progressed rapidly. One of the most important 
developments is the ability to build flexible, transparent and very thin displays by organic 
light emitting diode (OLED). Researchers working on this field try to improve this area 
more and more. It is shown that quantum dot (QD) can be helpful in this approach. 
In this chapter, writers try to consider all the studies performed in recent years about 
quantum dot-based light emitting diodes (QDLEDs) and conclude how this nanoparticle 
can improve performance of QDLEDs. In fact, the existence of quantum dots in QDLEDs 
can cause an excellent improvement in their efficiency and lifetime resulted from using 
improved active layer by colloidal nanocrystals. Finally, the recent progresses on the 
quantum dot-based light emitting diodes are reviewed in this chapter, and an important 
outlook into challenges ahead is prepared.

Keywords: quantum dot, organic light emitting diode, efficiency, lifetime, active layer

1. Introduction

Due to increased population and consumption of more energy, the people of Earth are faced 
with a serious shortage of energy resources. Therefore, the primary concern of researchers 
and manufacturers is closely linked to energy consumption. In recent years, a lot of researches 
are conducted to achieve efficient and low-energy light sources. Inorganic light emitting diode 
(LED) and organic light emitting diode (OLED) have been introduced as a result of these 
efforts to achieve solid-state light sources [1–6]. The outdoor application is one of the impor-
tant markets for LED lighting. For year 2015, the assessment of the total outdoor lighting mar-
ket was $6.5 billion USD with LEDs. The outdoor lighting market is expected to grow with 
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growth rate about 4% from 2015 to 2021 [7]. LEDs were used in many applications such as 
television backlight units and illuminated signs. The US Department of Energy has reported 
that the achievements to the expected developments in LED technology would save 300 TW 
per hour of electricity [8]. It means that a remarkable strategy needs to be developed for the 
simple design and better material to reduce the cost of fabrication. According to Stephanie 
Pruitt report, the packaged LED profits hit 15.4 billion dollars in 2014 and will grow to 22.1 
billion dollars in 2019 [9].

2. Why OLEDs?

In recent years, the display industry and lighting panels have been changed. Many research-
ers are interested in using polymers and organic molecules as emissive layers in these devices 

to improve their characteristics. One of the most important developments related to OLED 
technology provides the ability to build flexible (can be deposited onto substrate like plastic), 
transparent and very thin displays and components. Simply an organic light emitting diode 
is constructed with a thin film of organic (carbon-based) put between a conductive cathode 
(electron injection site) and a conductive anode (electron removal site) considering that at 
least one of the electrodes should be transparent. This thin film is called emitter, which is 
electroluminescent; it emits light when excited by an electrical current. These organic matters 
have conductivity levels between insulating and conductive; therefore, they are considered 
as organic semiconductors. The highest occupied molecular orbital (HOMO) and the low-
est unoccupied molecular orbital (LUMO) in organic semiconductors are similar to the con-
duction and valence bands in inorganic semiconductors. The performance of OLEDs reaches 
important goals in display technology. In addition, OLEDs have many advantages over both 
LCDs and LEDs such as thinner, lighter, more flexible and brighter substrate. Moreover, 
OLEDs unlike the LCDs do not need a backlight and filters; thus, they are very thin, and their 
construction will be easier and reliable. Due to low energy consumption, OLEDs will be an 
important advantage for cellphones, which are battery-operated devices. Another important 
feature of the OLED is the solution-based emitting materials used in their structure. It can be 
possible to fabricate them into large area by a spin-coating method, which is low-cost fabrica-
tion techniques [10]. Also, OLEDs can be produced into large, thin sheet which makes them 
an interesting choice for industry. In addition, changing information in this technology is in 

real time, which is faster than LCDs.

The ability of a light source to reveal the colours of objects compared to a natural light source 
is called colour rendering index (CRI). This parameter is the most important advantage of an 
OLED in comparison with LED. Consequently, OLEDs have attracted a lot of attention due 
to light weight and high image quality. These features lead to a wide range of applications in 
industry, particularly in manufacturing flexible screens and full-colour light emitting pages. But 
there are still some problems like sensitivity to water vapour. Also, the production costs should 
be reduced more. Technology of OLED has much room for continuous progress in future. On 
the other hand, the fabrication process of small-molecule OLEDs is too expensive because ther-
mal deposition with high vacuum is required. However, polymer-based OLEDs (POLEDs) are 
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the good substitute due to their solution process, which makes them more cost-effective. In fact, 
straightforward way of fabrication is the necessary factor for the low-cost electronic devices. 
Another advantage of POLEDs is their lower power consumption in comparison with tradi-
tional option. Therefore, many researchers are interested in developing POLED technology. 
Bottom-emitting conventional, bottom-emitting inverted, top-emitting conventional and top-
emitting inverted are the four different architectures of POLEDs. Bottom-emitting inverted and 
top-emitting inverted can increase operational lifetime and reduce the fabrication and operat-
ing cost of the device. In addition, top-emitting conventional and top-emitting inverted can 
increase light out-coupling efficiency.

3. A brief review of OLED development

The first OLED was manufactured in 1987 by Tong in Kodak company [11]. He realized when 
an electric current is applied to the molecules of the organic material, this material emits green 

light. This was the first idea about OLEDs. In the first OLED, the structure was built by an 
indium tin oxide (ITO)/aromatic diamine/8-hydroxyquinoline aluminium (Alq3)/Mg-Al metal 
electrode. Up to now, the most organic components used in OLEDs are poly(para-phenylenev-
inylene) (PPV) [12], polyvinylcarbazole (PVK) [13] and aluminium-tris-(8-hydroxyquinoline) 
(Alq3) [14, 15]. To commercialize the OLEDs, several aspects must be improved. Therefore, 
during two decades, a lot of efforts have been made to achieve high performance of OLED 
devices. For example, the ability of charge injection, charge transport and emission of differ-
ent layers of OLEDs are three important factors in their performance. To improve these fac-
tors, much effort has been devoted by researchers. They have tried to find better anode and 
cathode materials. They have also attempted to synthesize new materials’ high emissivity. 
Therefore, development in synthesis process and application of electron transport materials, 
modification of surface in hole injection layer and electron injection layer, using high mobility 
materials in hole and electron transport layer (ETL), doping the high efficiency emitter dop-
ants in emission layers and reducing the barrier to charge carrier injection by increasing the 
doping level of materials, was received [16, 17].

To achieve high-brightness display, high electron mobility is necessary in electron transport 
materials. For enhancement of charge injection, scientists try to use different cathode, and 
simultaneously, they have tried different surface treatments of ITO [18]. It is well known 
that employing electroluminescence material with high mobility is required for low-power 
consumption. On the other hand, the voltage can be decreased by doping, but rapid dopant 

diffusion can create the quenching centres in the emissive layers, which result in reduction 
of efficiency. Balancing of electron and holes will increase the efficiency of device that can be 
achieved by controlling the mobility of the transport layers. Therefore, an increase in the exci-
ton recombination probability and control of the carrier accumulation needs to be adjusted for 
improving the current and power efficiencies by aligning the bands at the interface between 
the emitting layer (EML) and ETL [19]. Water/oxygen permeability is another that factor must 
be noticed. Moreover, encapsulation with a barium oxide (BaO) or calcium oxide (CaO) is 
used in OLEDs, and an acceptable level of water/oxygen permeability is achieved [20]. As 
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mentioned above, the architecture of OLEDs is one of the parameters that need to improve 
the performance of organic light emitting diode. So far, different structures of the OLEDs are 
investigated. Scientists have tried to improve the performance and stability of these devices 
by substituting of alternative material in different layers of OLEDs. For example, carbon 
nanotubes [21, 22], graphene [23, 24], metal nanomeshes [25, 26], thin metal films [27, 28] and 

metal nanowires [29, 30] are employed instead of ITO up to now. In addition, Burns et al. 
have investigated the effect of thermal annealing super yellow emissive layer on efficiency of 
OLEDs [31]. By annealing of the emissive layer at 50°C, the external quantum efficiency (EQE) 
of this device reached a maximum of 4.09%.

4. Looking to the future: outlook

OLEDs have been commercialized in tablet, smart watches and smart phones up to now, and 
they are stable devices with good efficiency. But they still need to achieve more improve-
ments. Higher efficiency, better stability and being more environmentally friendly are some 
important factors that researchers are trying to improve them. Samsung has manufactured its 
mobile displays by red, green and blue OLED subpixels, and LG used white emitting OLED 
material with WRGB colour filters for its TVs. OLED display includes red, green and blue 
pixels. The most critical issue is the blue gap in OLED materials. Nowadays, display indus-
tries use fluorescent materials for blue colour, but the use of fluorescent materials involves 
with an increase in power consumption. Therefore, new approaches should be introduced 
in the technology of the OLED display. From technological point of view, the fluorescence, 
phosphorescence and thermally activated delayed fluorescence (TADF) are three mechanisms 
to harvest excitons in OLEDs and considered for improvement of their performance. High-
performance and low-cost OLEDs are available after discovery of metal-free organic emitters 
with thermally activated delayed fluorescence (TADF). There are two kinds of TADF emit-
ters named organic and metal-organic. The maximum external quantum efficiency of these 
OLEDs has been reached to 25% up to now [32]. The efficiency of TADF OLEDs is comparable 
with phosphorescent OLEDs. The most value of TADF OLED lifetime is reported over 10,000 
h. Carbazole [33, 34] or arylamine-type donors [35, 36] are the main organic TADF emitters 
that are reported up to date. The excited-state lifetime or emission decay time of materials is 
the important problem that should be solved to commercialize TADF OLEDs. It needs more 
developments in this field.

5. Structure of OLEDs

Structure of OLED is another factor that can be employed to improve its characteristics. At 
the device level, each OLED pixel is a p-n junction that emits lights. Top emitting and bottom 
emitting are two main configurations of the OLEDs. Up to now, top emitting is a common 
structure that has been used to increase efficiency and the light output of the device by the dis-
play industry. When the current source creates potential difference in OLED circuit, a  variable 

Quantum-dot Based Light-emitting Diodes28



voltage between 2 and 10 V is applied between the cathode and the anode, and the flow 
of electrons from the cathode to the anode is established. After a while the negative charge 
density in the electron transport layer and the positive charge density in the hole transport 

layer will increase. Today, some thin layers are used between two conductive layers in order 
to achieve better performance of OLEDs. The half-life of the device can be reduced by high 
voltage. Therefore, highly conductive transmission layer is used to reduce injection barriers 
and achieve low-voltage operation in modern OLEDs. The basic and typical structure of an 
organic light emitting diode has been shown in Figure 1.

The anode is positive compared to the cathode, so the electrons flow from the cathode to the 
anode. The electrons injected into the cathode are placed in the LUMO level of the organic 
layer, and they also will withdraw in the HOMO level of the organic layer. Holes arrive from 
the hole transport layer to the HOMO level. The energy level of the emissive layer should 
be less than the hole transport layer in order that the injection of the electrons from electron 
transport layer to LUMO level of the emissive layer to be possible. To penetration the holes 
into emissive layer, this layer also should have higher HOMO level than HOMO level of the 
hole transport layer.

Electrostatic forces bring the electrons and holes towards each other and form the excitons in 
a singlet/triplet ratio of 1:3. It happens near the emissive layer. Figure 2 shows the popula-
tion of emitter states by energy transfer from singlet and triplet excitons. It is important to 
note that the holes are more mobile than electrons in organic semiconductors and arrive to 

electron transport layer faster. The destruction of this excited state led to radiation in the vis-
ible region. If the active layer is phosphorescent, non-radiative triplet excitons may be emit-
ted. The frequency of this radiation depends on the difference between HOMO and LUMO 
levels of these materials. Because the holes must be logged in the HOMO level of the organic 
material in emissive layer with energy levels about 5–6 eV, anode with high work function is 
required till holes will be able to effectively enter to the organic material. Also anode should 
be transparent in order for the produced photons to be visible. ITO is often used as anode 
material because it is transparent compared to visible light. In addition, the injection of holes 
into the HOMO level of the organic layer will be possible due to its high work function.

Anode

Emi�ng Layer

Cathode

Anode

Hole Transport Layer

Exciton Blocking Layer

Emi�ng Layer

Electron Transport Layer

Cathode

Substrate

Substrate

V

V(a) (b)

Figure 1. The structure of (a) basic and (b) typical organic light emitting diode.
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To inject electrons into the LUMO level of the organic layer, the work function of the cathode 
should be low. Calcium and magnesium are two metals used as cathode due to their low 
work function. But the drawback is that these metals are sensitive to moisture and therefore 
will reduce the lifetime of the device. To solve this problem, aluminium or various alloys such 
as Mg/Ag as a cathode are used as cathode [37–39]. Figure 3 shows the evolution of OLED 
device structure. The electron and hole transport layers could help to high-speed movement 
of electrons and holes to meet each other in the emission layer. Electron transport layer pre-
vents the penetration of hole into cathode, and in contrast hole transport layer prevents the 

penetration of electrons to the anode. The electrons and holes recombine with each other in 

Figure 2. Population of emitter states by energy transfer from singlet and triplet excitons.

Figure 3. Evolution of OLED device structure.
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the middle of emissive layer. The material of the hole transport and the electron transport 
layers (electron and hole blocking layers) depends on the characteristics of the charge and the 
values of the HOMO and LUMO levels. Usually PEDOT:PSS is used as a conductive layer in 
which its HOMO level is between the work function of the ITO and HOMO level of the com-
monly used polymers in order to reduce the energy barrier of the injecting holes.

6. Different types of the OLEDs

To date, various types of the organic light emitting diodes are presented. The six main types of 
the OLEDs are passive-matrix OLED (PMOLED), active-matrix OLED (AMOLED), transparent 
OLED, top-emitting OLED, foldable OLED and white OLED. Each of these types has different 
kinds of use. PMOLED consists of cathode, organic layers and anode. The manufacture of this 
type of OLED is easy. They have high-power consumption; therefore, they are effective for small 
screens. Passive-matrix addressed displays are attractive, as the device construction is relatively 
simple. AMOLED is composed of cathode, organic molecules and anode layers. The anode layer 
is established on a thin film transistor (TFT) and formed a matrix. Because of the use of less 
power, they are suitable for large-sized displays. Substrate, cathode and anode are transparent 
in the transparent OLED. Top emitting OLED consists of an opacity substrate, and it is suitable 
for active-matrix design. Foldable OLED has a flexible substrate made of metal or plastic that is 
very lightweight and durable and can be used in clothes with OLED display. White OLED emits 
white light that is brighter, more uniform and more efficient than fluorescent lights.

7. Important features of OLEDs

Quantum yields and lifetime are the two important characteristics of an OLED that researchers 
are trying to improve by different structures and techniques all around the world. Optimizing 
the balanced charge is an important issue for the lifetime of the device. Also choosing the right 
ingredients in the manufacture of layers can be useful in improving the performance of the 

device. OLEDs have the limited peak emission so that the highest peak luminance of OLEDs 
is at most 500–600 nits. But this value for LCD TVs is about 1800 nits. The amount of the light 
emitted divided by the amount of the injected current into the piece is called quantum yields 
of an OLED. High yield achievement and suitable coordinates of colour for display applica-
tions are the other important features of an OLED. External quantum efficiency (EQE) can be 
explained in following formula:

  External quantum efficiency  ( η  EQE  )  = γχ ⋅  η  PL    η  
OC    (1)

γ = recombination efficiency of holes and electrons; χ = fraction of excitons with spin allowed 
optical transitions, created in emissive layer; ηPL = photoluminescent efficiency of the emitter; 
ηOC = fraction of emitted photons that are coupled out of the device (1/2n2); n = refractive index 
of the substrate (glass).
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Electrons and holes which meet each other in active layer create different states; about 
25% of the excitons are in the singlet states, and the rest of them are in the triplet states. 
Therefore, the maximum internal efficiency of the OLEDs based on fluorescent molecules 
is around 25%. It can be possible to improve the efficiency of OLEDs by enhancing spin-
orbit coupling and enable emission from the formally forbidden triplet state with the use 
of phosphors. Totally, display devices are typically assessed through a number of charac-
terization measurements that include colour coordinates (perceived colour), current den-
sity (A/cm) versus voltage, luminance (a measure of brightness in cd/m2) versus voltage, 
current efficiency (cd/A) versus luminance, power efficiency (lm/W) versus luminance and 
lifetime (a measure of the stability of the device). Kim and his colleagues in 2014 have 
shown that approximately 35.6% EQE can be reached by using iridium compounds (HICs). 
This efficiency is one of the highest external quantum efficiencies achieved to date in the 
red OLEDs [40]. OLED has already been commercialized; LG company has commercialized 
the OLED-based TVs. OLEDs are emissive displays, which means they create their own 
light at each pixel, like CRTs and PDPs. But as mentioned, the possibility of degradation 
in the presence of moisture and oxygen is the big problem needed to be considered. There 
are several damaging processes in these materials such as thermal instability, optical and 

chemical oxidation of the active layer and penetration of the metal from electrodes [41]. So 
it should be a process for encapsulating structure to protect it from the influence of moisture 
and oxygen. Also, by replacing the organic materials to inorganic structures, there will be 
the possibility of a better stability. The best results have been achieved up to date related on 
the usage of quantum dots based on cadmium. Employing nanoparticles such as oxides and 
semiconductors to form composite materials is one of the available solutions to improve 

the stability of these devices [42]. Not only adding nanoparticle can increase the stability of 
the film, but also it will be possible to control the optical properties by adjusting their size. 
Thus this would be an appropriate way for optoelectronic applications. For example, the 
gap between energy levels (luminescence colour) of semiconductor increases by reducing 
the particle size.

8. A brief review of quantum dot-based light emitting diodes (QDLEDs)

Being cost-effective, much more brightness and more efficient as well as more stable devices 
made of environmentally sustainable materials are the most important factors that led to the 

development of the lighting industry. A new candidate for improvement of display industry 
is emissive layer based on quantum dots (QDs). Quantum dot technology is a novel inno-
vation to help this industry. This technology has also applications in many other markets 
such as solar cells, biomedical, instrumentation, quantum computers and more. Quantum 
dot technology seems to offer the biggest colour gamut of the various approaches today. 
Quantum dots have three key elements to their structure. Core, shell and ligand are the three 
main properties of the structure of the QDs. The core adsorbs and re-emits the light. The shell 
layer is responsible to confine the emission and passivate defects in the structure. The ligand 
layer provides more stability. The addition of barrier layers is required to protect QDs from 
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oxygen, water and heat. Quantum dot-based light emitting diodes (QDLEDs) are a new form 
of light emitting technology based on nanoparticle, and their structures are similar to the 
OLED technology. Although, in this technology, a layer of quantum dots is placed between 
electron and hole-transporting layers, like sandwiched structure. Electrons and holes are 
accumulated in the quantum dot layer by an applied electric field. Then, they will recombine 
and emit narrow spectrum of photons. For example, FWHM for Cd based is 25–35 nm and 
40–50 nm for Cd-free QDs.

The efficiency of QDLEDs is still lower than OLEDs. But the pure emission colour, the easier 
tenability of colour emission by adjusting the particle size and their lower emitter cost make 
them interesting subject for researchers as well as artisans. Conducted researches improve 
the quantum efficiency of QDLEDs more than two order of magnitude up to now. A bounded 
electron and hole inside the QD can recombine and emit a photon that has energy equal to the 
gap between the highest occupied and lowest unoccupied states. In 1994, the first structure 
of organic light emitting diodes based on quantum dots is studied. This structure consists of 
a layer of CdSe quantum dots and the polymeric electron transport layer, which are placed 
between two electrodes [43]. Due to low mobility of organic semiconductor, QDLED had low 
performance, and the threshold voltage was as large as 4 V. Recently, a new colloidal quan-
tum dot-based light emitting diode (QDLED) is reported with improved external quantum 
efficiencies (EQE) by applying the organic CIM/LiF/Al cathode [44]. QLEDs with this new 
structure increase the EQE about 25% comparing to the bare Al devices. Therefore, using an 
organic cathode interfacial material can result in better device performance, including the 
brightness, EQE and CE. In this proposed device, the peaks of EQE and CE were 8.5% and 
over 29 cd/A, respectively. This improvement is because of balanced electron/hole injection 
due to the presence of the organic CIM. The balancing of the carriers is hard, because most 
quantum dots are considered in n-type materials. So the current efficiency will be low in 
these devices. The p-type conductivity and hole injection barriers of the organic hole trans-
port layer are necessary to improve the efficiency of QDLEDs. Further attempts are aimed to 
optimize charge injection, to transport, to improve stability of material and to control chemi-
cal and physical phenomena at the interface. Also, an all solution-processed QDLED with 
an inverted structure is investigated by Castan and his coworkers [45]. They demonstrated 
that the optimized amount of PTE in the PEDOT:PSS can balance the charge in the device. 
The red, green and blue devices using this structure have maximum luminance about 12.510, 
32.370 and 249 cd/m2 and turn-on voltages of 2.8, 3.6 and 3.6 V, respectively. Because of the 
process used for the fabrication of this device, it is very promising in the future of display 

industry.

In addition, highly bright and efficient blue QDLEDs have been reported by employing 
ZnCdSe core/multishell QDs as emitters [46]. The efficiency and brightness were improved by 
doping poly vinyl(N-carbazole) (PVK) in the emissive layer. It balances the charge injection 
because of the lower HOMO level, which causes the reduction of potential barrier at the inter-
face of QDs and hole transport layer. This blue QDLEDs show a high efficiency (EQE > 8%),  
and the peak of efficiency happens at the luminance about 1000 cd/m2. In 2007, Xie et al. 
found that the inorganic core oxidizes through their lifetime. So they suggested growing the 
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shell materials on the surface of the core to passivate the inorganic core [47, 48]. They could 
improve stability by growing a ZnS shell around the InP core. The properties of QDs strongly 
depend on their shell and their compounds. The cluster diameter is a significant factor in 
determination of bandgap in structure of the QDs. The emission band will be narrower, while 
the diameter of the cluster gets smaller. Also the thickness of shell is important in increas-
ing the maximum amount of the PL efficiency. According to the result of Bera and his col-
leagues’ research, the thicker shell layer, the lower amount of photoluminescence quantum 
yield (PLQY) [49]. The main reason of this phenomenon is that the misfit dislocations (sites 
of non-radiative recombination) are formed when the shell layer is thick. Higher quantum 
efficiency will be available by minimizing these sites in QDs. In addition, matching the energy 
levels of the shell and core should be considered. Confining the excitons within the QDs is 
possible by selecting proper material of shell with wider bandgap to create an appropriate 
potential barrier around the QD.

Colloidal CdSe/ZnS (core-shell QDs) have high quantum yield and high photo stability at 
room temperature. So they are good choice in lighting industry, and many researchers have 
investigated them [50]. To prevent the light scattering, the particle size should be smaller 
than one-tenth of the visible light’s wavelength [51]. On the other hand, large particles tend 

to accumulate that tarnish the composite film. The fluorescence properties of the QDs can be 
affected by the ability of QDs to aggregation. Accumulation effect can drastically reduce the 
quantum efficiency. Recent researches have demonstrated that the repulsive force between 
the molecular chains of polymers can prevent the accumulation of nanoparticles, so the com-
pound of the polymer quantum dot can improve this problem. Up to now colloidal nanopar-
ticles of cadmium sulphides, cadmium silicon and lead sulphides are used in organic light 

emitting diodes. These QDLEDs emit green light potentially [52–56]. On the other hand, 

these kinds of QDs have toxicological properties so it is environmentally restricted and not 
to be able to be a commercial material in this field. New Cd-free quantum dots should be 
introduced to commercialize the QDLED technology. ZnO cores with a MgO shell, InP-based 
dots and CuInS2 are three new materials that need more studies to be performed by scientists 
[57, 58]. In 2015, Du et al. studied a stable photoluminescence QDLEDs based on hydrophilic 
CdTe QD. Inorganic nanocomposite CdTe quantum dots were prepared with two rotary 
steam and freeze-drying methods. Because of adhesion, flexibility and transparency, silica 
gel can be coated on the surface of UV light emitting diode and form photoluminescence 
QDLEDs. This new photoluminescence QDLED is sustainable and cost-effective. Also it is 
easy to operate and environmentally non-toxic [59]. Recently, Kim’ group has studied a mul-
tiple structure of QDLED based on InP quantum dots. Current efficiency and brightness in 
this structure are reported to be 1 cd/A and 530 cd/m2, respectively. As mentioned, the best 
results in improving the stability of organic light emitting diodes are based on Cd QDs. InP 
quantum dots are replaced with Cd QDs in this study because of the environmental risks 
of cadmium [60]. In addition, the interface trap states are very effective on the performance 
of the device. In 2016, Koh et al. investigated these traps in the presence of TCNQ between 
charge transfer layer and quantum dots. With the introduction of TCNQ, the electrolumines-
cent efficiency (EL) in QDLED has been improved by increasing the charge injection into the 
QD layer [61].
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ZnO nanowires are perfect single crystals, which increases the mean free path of carriers 
transmitted on them. High density of QDs layers is prepared by ZnO nanowires which 
caused much more brightness of QDLEDs. These ZnO nanorods allow high density for 
QD and provide brighter LED-based display. This structure emits light that is very similar 
to the sun’s light, and energy transfer efficiency of this structure is measured and equal 
to 17% [62]. The efficiencies equal to 10.7 and 14.5% are obtained by combining electron 
transfer layer and hole transfer layer and using the Cd QD for blue and green QDLED, 
respectively. However, the efficiency of red QDLED has reached to 20% [63]. Furthermore, 

the red QDLED with reverse multiple structures and excellent performance with an exter-
nal quantum efficiency of 18% has been reported [64]. Up to now the external quantum 
efficiencies of QDLEDs based on Cd QD obtained are 10.7% [65] and 14.5% [66] for blue 

and green QDLEDs, respectively, while red QDLED efficiency is 20.5% [67]. Of course, the 

higher efficiencies are obtained in OLEDs without the use of quantum dots. In many appli-
cations, nanoparticles are imported into the polymer to give a special feature. For example, 
nanoparticles improve stability of the host material, because they act as energy absorbers 

to reduce the structural defects of organic materials. The benefits of using nanoparticles are 
high stability, narrow emission spectrum and feasible use in the polymer structure and the 
formation of thin film layers. Dark details, image sticking, peak luminance, colour gamut, 
colour volume, efficiency and lifetime of QDLEDs are so much better than OLEDs. However, 
black level, haloing, viewing angle and being eco-friendly are the advantages of OLEDs 
comparing to QDLEDs. QDLEDs are the energy efficient and have tuneable colour display. 
They deliver about 35% more luminous efficiency in comparison with OLEDs at the same 
colour point. Also, power efficiency of QDLEDs can be twice more than OLEDs at the same 
colour purity. The last but not least advantage of QDLEDs over OLEDs is low-cost manu-
facture. They can be printed in large area on thin flexible substrates, and they are also solu-
tion processable [68]. QDs have very narrow emission spectra, but their absorption spectra 
are broad. Factually, they absorb all wavelengths higher than their bandgap and convert 
them into a single colour. This narrow spectrum will improve colour saturation in QDLEDs 
compared to OLEDs. In addition, QDLEDs can be more power efficient due to good colour 
coordinate and luminous efficiency.

QDs can be used in solar cells as well as LEDs due to their broad excitation band and nar-
row emission spectra. The tunable colour of QDLEDs will be provided by controlling the 
quantum dot size [69]. For example, cadmium selenide quantum dots can emit optical wave-
length in the range of 470–640 nm by varying the size of 2–8 nanometres. The size of the 
QD can make unique physical properties in QDLEDs because the electrons in a nanocrystal 
exhibit quantum mechanical effects. The quantum confinement phenomenon occurred in 
nanocrystal will lead to discrete energy levels. The bandgap energy of a QD is inversely pro-
portional to its size; therefore the emission from a QD will be colour tuneable. At present, the 
best OLEDs can have a quantum efficiency of up to 33%, which is much higher than that of 
QDLEDs [70]. Defects in the crystal create some non-radiative electron-hole recombinations 
that are the main reason of the low quantum efficiency. Although, the PL efficiencies of QDs 
are high, still the EQEs in these devices are low mainly due to poor charge carrier injection 
into the QD layers [71]. QDLEDs will be a good choice for the future of LEDs due to their 
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colour stability, easily tunable colour and long lifetime. In recent years, due to all the advan-
tages of the QDLEDs mentioned above, many research groups have worked on QDLEDs 
[72–75], and the efficiency of this type of light emitting diodes has improved in subsequent 
researches [76–80].

9. Features of QDLEDs

QDLEDs are characterized by their total width at half maximum (FWHM). Moreover, having 
a high quantum yield and high charge transfer coefficient are two important features of the 
emissive layer [81]. FWHM is examined in these devices, and entirely these structures have a 
small FWHM. This value of a single QD size should be very small. However, the extension of 
the FWHM is unavoidable because there will be different sizes of the QDs. Because the size of 
the nanoparticles determines the wavelength of radiation and particles with similar size will 
be commensurate with the radiation intensity, radiation spectrum shows QD size distribution 
directly [82]. As mentioned above, the increase in FWHM shows that there is more diver-
sity of QDs that can be caused by the reformation of QD result in exposure to UV and heat. 
When photons of UV are absorbed by colloidal quantum dots, the heat caused by losses stoke 
remains near to QDs and resizes QDs. Changes of FWHM will be more in higher currents. The 
use of semiconductor nanoparticles with narrow size distribution and narrow-band radia-
tion leads to emit white light with low CRI. And this is because the CRI depends on the size 
and distribution of colloidal nanoparticles. In this way, we have developed a procedure for 
preparation of CdS colloidal nanocrystals. The emission spectrum of synthesized sample was 
shown in Figure 4. As can be found from this figure, FWHM of emission spectrum is reduced 
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Figure 4. Emission spectrum of CdS colloidal sample.
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to 10 nm, which is very small [83]. The prepared sample displays a strong and narrow green 
emission peak centred at 519 nm that has not been reported before, and it is longer than the 
onset of absorption of ∼512 nm for bulk CdS. Several weak emission peaks appeared at wave-
lengths 490, 506, 521 and 543 nm, too. These two important characteristics of the prepared 
sample are due to the strong band-edge emission of CdS nanocrystals. Figure 4 shows the PL 
spectrum of CdS nanoparticles excited by wavelength of 190 nm.

10. Different types of QDLEDs

QDs are applied in three types of OLEDs. PLEDs which their emissive layer is based on 
polymers, fluorescent small molecules and PHOLEDs which are the organo–metallic phos-
phorescent small molecules. Phase separation and contact printing are two major fabrica-
tion techniques for manufacturing of QDLED. Table 1 shows common materials and QDs 
used in QDLEDs and OLEDs. Emission wavelength of QDs can be controlled by its size or 
composition.

QDs are very impressed by the environment (humidity and oxygen), because of the small size 
of the QDs. As can found from Table 1, ZnO is one of the semiconductors that can be used as 

electron transport material. Recently, we have developed a procedure for preparation of high 
mobility nanostructured thin indium-doped ZnO film [84, 85]. Figure 5(a) shows the scanning 
electron microscopy (SEM) of nanostructured thin ZnO film, and the X-ray diffraction (XRD) 
has been depicted in Figure 5(b). It can be seen that there are three sharp diffraction peaks 
approximately at 30°, 33° and 35° that correspond to (1 0 0), (1 0 1) and (0 0 2).

Materials HOMO LUMO

PEDOT:PSS −5.4 −2.4

MoO3 −9.5 −6.5

a-NPB −5.5 −2.4

ZnO −7.5 −4

TPBI −6.3 −2.8

TAZ −6.4 −2.8

p-NiO −5.4 −1.8

CdSe/ZnS (green QD) −6.8 −4.3

CdSe/ZnS (red QD) −6.7 −4.7

InP/ZnS (QD) −5.2 −2.2

Table 1. Energy levels of some common hole and electron transport materials used in OLEDs and typical QDs.
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11. Conclusions and challenge ahead

It is expected to see much more progresses in the lighting industry particularly QDLEDs in 
the near future. Optimizing the efficiency of devices can help to improve the performance of 
QDLEDs. Many researchers try to do their best in this respect such as Shen and his group [86]. 

They have suggested a new high efficiency QDLED. Anikeeva et al. try to increase efficiency 
by using materials with high PLs in the red, green and blue regions of the visible spectrum 
[87]. Despite all efforts they made, improving the efficiency of blue QDLEDs seems to be 
challenging because of that the blue QDs and used electron and hole-transporting materials 
have low spectral overlap with each other. They expect that using wide bandgap hole and 
electron transporting organic materials improves the efficiency of the blue QDLEDs due to 
better exciton energy transfer and direct charge injection into the blue QDs. Hybrid devices 
that incorporate emissive layers using different types of emissive materials can play a big role 
in the future of QDLEDs. They could be made by a blue emitting TADF layer, a green phos-
phorescent layer and a red QD layer.

In conclusion, to improve the performance of the QDLEDs:

1. Improve the structure of QDLEDs.

2. Improve manufacturing techniques.

3. Choose a suitable material for the injection and transfer layers.

4. Structural differences of quantum dots.
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There are a number of requirements that must be met in order for quantum dots to be 
integrated into the LED device and replace phosphor-based solutions. For one, the  quantum 
dots should be stable in air, and moisture and the colour performance must be stable. 

Another problem faced to the development of the quantum dot materials is self-quench-
ing. The quantum dots are designed to absorb light in one wavelength range and re-emit 
in another. The efforts of the researchers to create such a display are still in progress. 
QDLEDs promise to introduce very high contrast device, but with lower power than other 
technologies existed up to now. In addition, the lifetime of QDLEDs is another feature that 
needs more attention.
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