# An extension of Markov's Theorem 

A. Branquinho ${ }^{\text {a }}$, U. Fidalgo Prieto ${ }^{\text {b }}$, A. Foulquie Moreno ${ }^{\text {c }}$<br>${ }^{a}$ CMUC, Department of Mathematics, University of Coimbra, Largo D. Dinis, 3001-454 Coimbra, Portugal.<br>${ }^{b}$ Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain.<br>${ }^{c}$ Departamento de Matemática, Universidade de Aveiro, Campus de Santiago 3810, Aveiro, Portugal.


#### Abstract

We give a general sufficient condition for the uniform convergence of sequences of type II Hermite-Padé approximants associated with Nikishin systems of functions.


## 1. Introduction

Let $\Delta \subset \mathbb{R}$ be a compact interval and $\mathcal{M}(\Delta)$ the set of finite Borel measures with constant sign whose support $S(\mu)$ is a subset of $\Delta$ such that $\Delta$ is the smallest interval which contains $S(\mu)$; we write $\operatorname{Co}(S(\mu))=\Delta$. Given $\mu \in \mathcal{M}(\Delta)$, the associated Markov function is defined by

$$
\widehat{\mu}(z)=\int \frac{d \mu(x)}{z-x} \in \mathcal{H}(\overline{\mathbb{C}} \backslash S(\mu))
$$

which is holomorphic in $\overline{\mathbb{C}} \backslash S(\mu)$.
Fix a measure $\sigma \in \mathcal{M}(\Delta)$ and a system of $m$ weights $\mathbf{r}=\left(\rho_{1}, \ldots, \rho_{m}\right)$ with respect to $\sigma$; that is, each $\rho_{k} \in L_{1}(\sigma)$ and has constant sign. Consider the system of measures $\mathbf{s}=\left(s_{1}, \ldots, s_{m}\right)$, where $d s_{j}=\rho_{j} d \sigma$, and the corresponding system of Markov functions $\widehat{\mathbf{s}}=\left(\widehat{s}_{1}, \ldots, \widehat{s}_{m}\right)$. Take a multi-index

[^0]$\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{Z}_{+}^{m}$, where $\mathbb{Z}_{+}=\{0,1,2, \ldots\}$. There exist polynomials $Q_{\mathbf{n}}$ and $P_{\mathbf{n}, j}, j=1, \ldots, m$, such that
\[

$$
\begin{align*}
& \text { i) } \quad \operatorname{deg} Q_{\mathbf{n}} \leq|\mathbf{n}|=n_{1}+\cdots+n_{m}, \quad Q_{\mathbf{n}} \not \equiv 0, \\
& \text { ii) } \quad\left(Q_{\mathbf{n}} \widehat{s}_{j}-P_{\mathbf{n}, j}\right)(z)=\mathcal{O}\left(1 / z^{n_{j}+1}\right), \quad z \rightarrow \infty, \quad j=1, \ldots, m . \tag{1.1}
\end{align*}
$$
\]

In the sequel we assume that $Q_{\mathbf{n}}$ is monic.
For each $j=1, \ldots, m, Q_{\mathbf{n}}$ annihilates the terms corresponding to the powers between -1 and $-n_{j}$ of the Laurent expansion of $Q_{\mathbf{n}} \widehat{s}_{j}$ whereas $P_{\mathbf{n}, j}$ represents the polynomial part of $Q_{\mathbf{n}} \widehat{s}_{j}$. Hence, $Q_{\mathbf{n}}$ determines univocally $P_{\mathbf{n}, j}$ and, consequently, the rational fraction $P_{\mathbf{n}, j} / Q_{\mathbf{n}}$.

The vector rational fractions $\mathbf{R}_{\mathbf{n}}=\left(P_{\mathbf{n}, 1} / Q_{\mathbf{n}}, \ldots, P_{\mathbf{n}, m} / Q_{\mathbf{n}}\right)$ is called type II Hermite-Padé approximant corresponding to the system $\widehat{\mathbf{s}}$ and the multiindex $\mathbf{n}$.

When $m=1, \mathbf{R}_{\mathbf{n}}=P_{\mathbf{n}, 1} / Q_{\mathbf{n}}=P_{n} / Q_{n}, \mathbf{n}=n$, is the $n$th diagonal Padé approximant of $\widehat{s}_{1}=\widehat{s}$. It is well known (for example, see Chapter II in [15]), that in this case $Q_{n}$ is the $n$th monic orthogonal polynomial with respect to the measure $s$. Usually, monic orthogonal polynomials are defined for positive measures, however, the definition is trivially extended to measures with constant sign. $Q_{n}$ has $n$ simple zeros in the interior of $\operatorname{Co}(S(s)$ ) (see [16, Lemma 1.1.3]).

In [13], A.A. Markov proved that given an arbitrary measure $s \in \mathcal{M}(\Delta)$ the sequence $\left\{P_{n} / Q_{n}\right\}_{n \in \mathbb{Z}_{+}}$converges uniformly to $\widehat{s}$ on every compact subset contained in the domain $\overline{\mathbb{C}} \backslash \Delta$. We write

$$
\frac{P_{n}}{Q_{n}} \underset{n \rightarrow \infty}{\rightrightarrows} \widehat{s}, \quad \text { on } \quad \overline{\mathbb{C}} \backslash \Delta .
$$

In the present paper, we extend Markov's Theorem to the context of type II Hermite-Padé approximation.

The first drawback in extending Markov's Theorem to the context of Hermite-Padé approximation is that in the vector case, in general, $Q_{\mathbf{n}}$ is not uniquely determined by (1.1). However, in [10] it is shown that uniqueness takes place for the so called Nikishin systems of measures which we introduce below. In this case, $Q_{\mathbf{n}}$ also has $|\mathbf{n}|$ simple zeros in the interior of $\Delta$.

Nikishin systems of measures were introduced by E.M. Nikishin in his famous article [14]. Take two compact intervals $\Delta_{\alpha}$ and $\Delta_{\beta}$ of the real line
such that $\Delta_{\alpha} \cap \Delta_{\beta}=\emptyset$ and two measures $\sigma_{\alpha} \in \mathcal{M}\left(\Delta_{\alpha}\right)$ and $\sigma_{\beta} \in \mathcal{M}\left(\Delta_{\beta}\right)$. We define a third measure $\left\langle\sigma_{\alpha}, \sigma_{\beta}\right\rangle$ whose differential expression is

$$
d\left\langle\sigma_{\alpha}, \sigma_{\beta}\right\rangle(x)=\int \frac{d \sigma_{\beta}(t)}{x-t} d \sigma_{\alpha}(x)=\widehat{\sigma}_{\beta}(x) d \sigma_{\alpha}(x)
$$

Observe that $\left\langle\sigma_{\alpha}, \sigma_{\beta}\right\rangle \in \mathcal{M}\left(\Delta_{\alpha}\right)$.
Now, take $m$ compact intervals $\Delta_{1}, \ldots, \Delta_{m}$ with the property that for each $j=1, \ldots, m-1, \Delta_{j} \cap \Delta_{j+1}=\emptyset$. Let $\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ be a system of measures such that $\sigma_{j} \in \mathcal{M}\left(\Delta_{j}\right), j=1, \ldots, m$. The system of measures $\left(s_{1}, \ldots, s_{m}\right)$ given by
$s_{1}=\sigma_{1}, \quad s_{2}=\left\langle\sigma_{1}, \sigma_{2}\right\rangle, \quad s_{3}=\left\langle\sigma_{1},\left\langle\sigma_{2}, \sigma_{3}\right\rangle\right\rangle=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle, \ldots, s_{m}=\left\langle\sigma_{1}, \ldots, \sigma_{m}\right\rangle$,
is the so called Nikishin system of measures generated by $\left(\sigma_{1}, \ldots, \sigma_{m}\right)$. For short, we write $\left(s_{1}, \ldots, s_{m}\right)=\mathcal{N}\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ whereas $\widehat{\mathbf{s}}=\left(\widehat{s}_{1}, \ldots, \widehat{s}_{m}\right)=$ $\widehat{\mathcal{N}}\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ is the corresponding Nikishin system of functions. Nikishin systems have received a great deal of attention in the recent past and have found numerous applications, see for example [1], [2], [3], [4], [6], [7] [8], [11], [12] and [17].

In order to state our main result we need to review some concepts. Given two disjoint compact sets $K_{1}$ and $K_{2}$ of $\mathbb{R}, \operatorname{dist}\left(K_{1}, K_{2}\right)$ denotes the distance between $K_{1}$ and $K_{2}$ i.e. $\operatorname{dist}\left(K_{1}, K_{2}\right)=\min \left\{\left|x_{1}-x_{2}\right|:\left(x_{1}, x_{2}\right) \in K_{1} \times K_{2}\right\}$ whereas $\operatorname{diam}\left(K_{1}\right)=\max \left\{\left|x_{1}-x_{2}\right|: x_{1}, x_{2} \in K_{1}\right\}$ denotes the diameter of $K_{1}$.

The main result of this paper is the following theorem.
Theorem 1.1. Let $\left\{\mathbf{R}_{\mathbf{n}}=\left(P_{\mathbf{n}, 1} / Q_{\mathbf{n}}, \ldots, P_{\mathbf{n}, m} / Q_{\mathbf{n}}\right)\right\}_{\mathbf{n} \in \boldsymbol{\Lambda}}$ be the sequence of type II Hermite-Padé approximants corresponding to a sequence of distinct multi-indices $\boldsymbol{\Lambda} \subset \mathbb{Z}_{+}^{m}$ and a system $\left(\widehat{s}_{1}, \ldots, \widehat{s}_{m}\right)=\widehat{\mathcal{N}}\left(\sigma_{1}, \ldots, \sigma_{m}\right)$. Assume $\operatorname{diam}\left(\Delta_{k}\right)<\operatorname{dist}\left(\Delta_{1}, \Delta_{2}\right)$. Then, for each compact set $K \subset \overline{\mathbb{C}} \backslash \Delta_{1}$

$$
\underset{\mathbf{n} \in \Lambda}{\limsup }\left\|\widehat{s}_{j}-\left.\frac{P_{\mathbf{n}, j}}{Q_{\mathbf{n}}}\right|_{K} ^{1 /\left(|\mathbf{n}|+n_{j}\right)} \leq\right\| \phi_{\infty} \|_{K}<1, \quad j=1, \ldots, m
$$

where $\|\cdot\|_{K}$ denotes the sup-norm on $K$ and $\phi_{\infty}$ denotes the conformal representation of $\overline{\mathbb{C}} \backslash \Delta_{1}$ onto the open unit disk such that $\phi_{\infty}(\infty)=0$ and $\phi_{\infty}^{\prime}(\infty)>0$.

Notice that the sequence of multi-indices may be completely arbitrary. In Markov's Theorem, there is no assumption on the measure. This is also true in our case whenever $\operatorname{diam}\left(\Delta_{k}\right)<\operatorname{dist}\left(\Delta_{1}, \Delta_{2}\right), k=1,2$. We have imposed no restrictions on the measures $\sigma_{3}, \ldots, \sigma_{m}$ at all. Another extension of Markov's Theorem was given in [10, Corollary 1.1] without any assumption on the measures, but the indices are required to satisfy $n_{j} \geq|\mathbf{n}| / m-c|\mathbf{n}|^{\kappa}$, $j=1, \ldots, m$, for $c>0$ and $\kappa<1$. We believe that a complete analogue of Markov's Theorem should hold.

The following result extends [9, Corollary 2] to a larger class of multiindices.

Theorem 1.2. Let $\boldsymbol{\Lambda} \subset \mathbb{Z}_{+}^{m}$ be a sequence of multi-indices such that either there exists $k \in\{2, \ldots, m\}$ such that for every $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right) \in \boldsymbol{\Lambda}, n_{k}=$ $\max \left\{n_{1}+1, n_{2}, \ldots, n_{m}\right\}$, or $n_{1}=\max \left\{n_{1}, n_{2}-1, \ldots, n_{m}-1\right\}$ (in which case we take $k=1$ ). Then, for each compact set $K \subset \overline{\mathbb{C}} \backslash \Delta_{1}$,

$$
\begin{equation*}
\underset{\mathbf{n} \in \Lambda}{\limsup }\left|\left\lvert\, \widehat{s}_{k}-\frac{P_{\mathbf{n}, k}}{Q_{\mathbf{n}}}\right. \|_{K}^{1 / 2|\mathbf{n}|} \leq \kappa(K)<1\right. \tag{1.2}
\end{equation*}
$$

where

$$
\kappa(K)=\sup \left\{\left\|\phi_{t}\right\|_{K}: t \in \Delta_{2} \cup\{\infty\}\right\}
$$

and $\phi_{t}$ denotes the conformal representation of $\overline{\mathbb{C}} \backslash \Delta_{1}$ onto the open unit disk such that $\phi_{t}(t)=0$ and $\phi_{t}^{\prime}(t)>0$.

In the first three sections we give some preliminary results which are necessary for the proof of the Theorems above. Section 2 includes some properties of multiple orthogonal polynomials corresponding to Nikishin systems of measures. In Section 3 we study properties of Fourier series of functions expanded in terms of orthogonal polynomials with respect to varying measures. Theorem 1.2 is proved in Section 4 as a first step to the proof of Theorem 1.1 which is completed in Section 5.

## 2. Multiple orthogonality in Nikishin systems

Let $\mathbf{s}=\left(s_{1}, \ldots, s_{m}\right)=\mathcal{N}\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ and $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right)$ be given. It is well known and easy to verify that the conditions (1.1) imply

$$
\begin{equation*}
0=\int x^{\nu} Q_{\mathbf{n}}(x) d s_{j}(x), \quad \nu=0 \ldots, n_{j}-1, \quad j=1, \ldots, m . \tag{2.1}
\end{equation*}
$$

For each $j=1, \ldots, m$, let $h$ be an arbitrary polynomial such that $\operatorname{deg} h \leq n_{j}$. Then

$$
\begin{equation*}
0=\int \frac{h(z)-h(x)}{z-x} Q_{\mathbf{n}}(x) d s_{j}(x) \tag{2.2}
\end{equation*}
$$

hence

$$
\int \frac{Q_{\mathbf{n}}(x)}{z-x} d s_{j}(x)=\frac{1}{h(z)} \int \frac{h(x) Q_{\mathbf{n}}(x)}{z-x} d s_{j}(x)=\mathcal{O}\left(\frac{1}{z^{n_{j}+1}}\right) \quad \text { as } \quad z \rightarrow \infty
$$

Define

$$
P(z)=\int \frac{Q_{\mathbf{n}}(z)-Q_{\mathbf{n}}(x)}{z-x} d s_{j}(x) .
$$

Thus

$$
\left(Q_{\mathbf{n}} \widehat{s}_{j}-P\right)(z)=\int \frac{Q_{\mathbf{n}}(x)}{z-x} d s_{j}(x)=\mathcal{O}\left(\frac{1}{z^{n_{j}+1}}\right) \quad \text { as } \quad z \rightarrow \infty
$$

From (1.1) we see that

$$
P(z)-P_{\mathbf{n}, j}(z)=\mathcal{O}\left(\frac{1}{z^{n_{j}+1}}\right) \in \mathcal{H}(\overline{\mathbb{C}}) \quad z \rightarrow \infty .
$$

Consequently,

$$
\begin{equation*}
P_{\mathbf{n}, j}(z) \equiv \int \frac{Q_{\mathbf{n}}(z)-Q_{\mathbf{n}}(x)}{z-x} d s_{j}(x), \quad\left(Q_{\mathbf{n}} \widehat{s}_{j}-P_{\mathbf{n}, j}\right)(z)=\int \frac{Q_{\mathbf{n}}(x)}{z-x} d s_{j}(x) . \tag{2.3}
\end{equation*}
$$

From [10] we know that the conditions (2.1) imply that $Q_{\mathbf{n}}$ has $|\mathbf{n}|$ simple zeros which lie in the interior of $\Delta_{1}$. Let $x_{\mathbf{n}, 1}<\ldots<x_{\mathbf{n},|\mathbf{n}|}$ be the zeros of $Q_{\mathbf{n}}$. Decomposing into simple fractions, we get

$$
\begin{equation*}
\frac{P_{\mathbf{n}, j}(z)}{Q_{\mathbf{n}}(z)}=\sum_{i=1}^{|\mathbf{n}|} \frac{\lambda_{i, j, \mathbf{n}}}{z-x_{\mathbf{n}, i}}, \quad j=1, \ldots, m \tag{2.4}
\end{equation*}
$$

The coefficients $\lambda_{i, j, \mathbf{n}}, i=1, \ldots,|\mathbf{n}|$ and $j=1, \ldots, m$, were called NikishinChristoffel coefficients in [9, Definition 2]. Taking into account the equality in (2.3), we have that

$$
\begin{equation*}
\lambda_{i, j, \mathbf{n}}=\lim _{z \rightarrow x_{\mathbf{n}, i}}\left(z-x_{\mathbf{n}, i}\right) \frac{P_{\mathbf{n}, j}(z)}{Q_{\mathbf{n}}(z)}=\int \frac{Q_{\mathbf{n}}(x) d s_{j}(x)}{Q_{\mathbf{n}}^{\prime}\left(x_{\mathbf{n}, i}\right)\left(x-x_{\mathbf{n}, i}\right)} . \tag{2.5}
\end{equation*}
$$

For each $j=1, \ldots, m$,

$$
\begin{gather*}
\left|\sum_{i=1}^{|\mathbf{n}|} \lambda_{i, j, \mathbf{n}}\right|=\left|\sum_{i=1}^{|\mathbf{n}|} \int \frac{Q_{\mathbf{n}}(x) d s_{j}(x)}{Q_{\mathbf{n}}^{\prime}\left(x_{\mathbf{n}, i}\right)\left(x-x_{\mathbf{n}, i}\right)}\right|=  \tag{2.6}\\
\left|\int \sum_{i=1}^{|\mathbf{n}|} \frac{Q_{\mathbf{n}}(x)}{Q_{\mathbf{n}}^{\prime}\left(x_{\mathbf{n}, i}\right)\left(x-x_{\mathbf{n}, i}\right)} d s_{j}(x)\right|=\left|\int d s_{j}(x)\right|=\left\|s_{j}\right\|<+\infty,
\end{gather*}
$$

where $\|s\|$ represents the total variation of the measure $s$. In this chain of equalities we have used that $\mathcal{P}(x)=\sum_{i=1}^{|\mathbf{n}|} Q_{\mathbf{n}}(x) /\left(Q_{\mathbf{n}}^{\prime}\left(x_{\mathbf{n}, i}\right)\left(x_{\mathbf{n}, i}-x\right)\right)$ is the polynomial of degree $\leq|\mathbf{n}|-1$ which interpolates the constant function 1 at the zeros of $Q_{\mathbf{n}}$. Thus $\mathcal{P} \equiv 1$.

From [10, Lemma 3.2] one can state the following result. (We wish to point out that the measure denoted here with $\tau$ are products of those in [10].)

Lemma 2.1. Let $\left(\widehat{s}_{2,2}, \ldots, \widehat{s}_{2, m}\right)=\widehat{\mathcal{N}}\left(\sigma_{2}, \ldots, \sigma_{m}\right)$, there is a system of $m-1$ measures $\left(\tau_{2,1}^{k}, \ldots, \tau_{2, k-1}^{k}, \tau_{2, k+1}^{k}, \ldots, \tau_{2, m}^{k}\right)$ where $\operatorname{Co}\left(S\left(\tau_{2, j}^{k}\right)\right) \subset \Delta_{2}$, $j=1, \ldots, k-1, k+1, \ldots, m$, such that

$$
\begin{equation*}
\frac{1}{\widehat{s}_{2, k}(z)}=\ell_{2, k}(z)+\widehat{\tau}_{2,1}^{k}(z) \tag{2.7}
\end{equation*}
$$

where $\ell_{2, k}$ denotes a polynomial with degree one, and

$$
\begin{equation*}
\frac{\widehat{s}_{2, j}(z)}{\widehat{s}_{2, k}(z)}-\frac{\left|s_{2, j}\right|}{\left|s_{2, k}\right|}=\widehat{\tau}_{2, j}^{k}(z), \quad j=2, \ldots, k-1, k+1, \ldots, m \tag{2.8}
\end{equation*}
$$

Theorem 1.4 in [10] refers to so called mixed type multiple orthogonal polynomials of two Nikishin systems. When reduced to type II multiple orthogonal polynomials of a Nikishin system it may be restated in the following form.

Lemma 2.2. Let $\left(s_{1}, \ldots, s_{m}\right)=\mathcal{N}\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ and $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{Z}_{+}^{m}$ be given. Set $k=1$ if $n_{1}+1=M=\max \left\{n_{1}+1, n_{2} \ldots n_{m}\right\}$, otherwise $k$ is equal to the subscript of the first component of $\mathbf{n}$ such that $M=n_{k}$. Then, there exists a permutation $\lambda$ of $\{1, \ldots, m\}$ which reorders the components of $\mathbf{n}$ such that $n_{\lambda(1)}+\delta_{\lambda(1), 1} \geq n_{\lambda(2)} \geq \cdots \geq n_{\lambda(m)}$ with $n_{k}=n_{\lambda(1)}$ and $\delta_{\lambda(1), 1}$ denoting the known Kronecker delta function, and an associated

Nikishin system $\widetilde{\mathbf{s}}=\left(r_{1}, \ldots, r_{m}\right)=\mathcal{N}\left(\rho_{1}, \ldots, \rho_{m}\right)$, where $s_{k}=r_{1}=\rho_{1}$ and $\operatorname{Co}\left(S\left(\rho_{j}\right)\right) \subset \Delta_{j}, j=1, \ldots, m$, such that if $\widetilde{\mathbf{n}}=\left(n_{\lambda(1)}, \ldots, n_{\lambda(m)}\right)$, the pairs $(\mathbf{s}, \mathbf{n})$ and $(\widetilde{\mathbf{s}}, \widetilde{\mathbf{n}})$ have the same type II multiple orthogonal polynomial. That is, $Q_{\mathrm{n}}$ satisfies (2.1) and

$$
\begin{equation*}
0=\int x^{\nu} Q_{\mathbf{n}}(x) \widehat{r}_{2, j}(x) d s_{k}(x), \quad \nu=0 \ldots, n_{\lambda(j)}-1, \quad j=1, \ldots, m \tag{2.9}
\end{equation*}
$$

where $r_{2, j}=\left\langle\rho_{2}, \ldots, \rho_{j}\right\rangle, j=2, \ldots, m$, and $\widehat{r}_{2,1} \equiv 1$.
Type II multiple orthogonal polynomials of Nikishin systems with respect to decreasing multi-indices satisfy other orthogonality relations. In particular, from Propositions 2 and 3 in [11] (see also relations (5)-(7) in [2]), we have

Lemma 2.3. Let $\mathbf{s}=\left(s_{1}, \ldots, s_{m}\right)=\mathcal{N}\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ and $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right)$ be given. Let $k \in\{1, \ldots, m\}$ be as in Lemma 2.2. Then, there exist two monic polynomial $Q_{\mathbf{n}, 2}, \operatorname{deg} Q_{\mathbf{n}, 2}=|\mathbf{n}|-n_{k}$, and $Q_{\mathbf{n}, 3}=|\mathbf{n}|-n_{k}-n_{\lambda(2)}$, whose zeros are simple and lie in the interior of $\Delta_{2}$ and $\Delta_{3}$, respectively, such that:

$$
\begin{gather*}
\left(\frac{Q_{\mathbf{n}} \widehat{s}_{k}-P_{\mathbf{n}, k}}{Q_{\mathbf{n}, 2}}\right)(z)=\mathcal{O}\left(\frac{1}{z^{|\mathbf{n}|+1}}\right) \in \mathcal{H}\left(\overline{\mathbb{C}} \backslash S\left(\sigma_{1}\right)\right),  \tag{2.10}\\
0=\int x^{\nu} Q_{\mathbf{n}}(x) \frac{d s_{k}(x)}{Q_{\mathbf{n}, 2}(x)}, \quad \nu=0, \ldots,|\mathbf{n}|-1 \tag{2.11}
\end{gather*}
$$

and
$0=\int t^{\nu} Q_{\mathbf{n}, 2}(t) \int \frac{Q_{\mathbf{n}}^{2}(x)}{t-x} \frac{d s_{k}(x)}{Q_{\mathbf{n}, 2}(x)} \frac{d \rho_{2}(t)}{Q_{\mathbf{n}}(t) Q_{\mathbf{n}, 3}(t)}, \quad \nu=0, \ldots,|\mathbf{n}|-n_{k}-1$.
(Here, $\rho_{2}$ is the measure coming from Lemma 2.2.)
Formulas (2.11) and (2.12) state that $Q_{\mathbf{n}}$ and $Q_{\mathbf{n}, 2}$ are the $|\mathbf{n}|$ th and $(|\mathbf{n}|-$ $\left.n_{k}\right)$ th monic orthogonal polynomials with respect to the varying measures

$$
\begin{equation*}
\frac{d s_{k}}{Q_{\mathbf{n}, 2}} \quad \text { and } \quad \int \frac{Q_{\mathbf{n}}^{2}(x)}{t-x} \frac{d s_{k}(x)}{Q_{\mathbf{n}, 2}(x)} \frac{d \rho_{2}(t)}{Q_{\mathbf{n}}(t) Q_{\mathbf{n}, 3}(t)}, \quad \text { respectively. } \tag{2.13}
\end{equation*}
$$

There are other full orthogonality relations with respect to varying measures satisfied deeper in the system, but we will not need them.

## 3. Varying measures and associated Fourier series

Let sign : $\mathbb{R} \backslash\{0\} \rightarrow\{-1,1\}$ denote the sign function. Analogously, $\operatorname{sign}(\mu)$ will denote the sign of a given measure $\mu \in \mathcal{M}(\Delta)$. Notice that $\operatorname{sign}(\mu) \cdot \mu$ is a positive measure. Given a measurable function $f: \Delta \rightarrow \mathbb{R}$,

$$
\|f\|_{2, \mu}=\sqrt{\operatorname{sign}(\mu) \int f^{2}(x) d \mu(x)}
$$

denotes the $\mathrm{L}_{2}$ norm with respect to $\mu$. If $\|f\|_{2, \mu}<+\infty$ we write $f \in \mathrm{~L}_{2}(\mu)$.
Let $\left\{q_{\mu, n}\right\}_{n \in \mathbb{Z}_{+}}$be the family of monic orthogonal polynomials with respect to $\mu$. For each $n \in \mathbb{Z}_{+}$let $p_{\mu, n}(z) \equiv q_{\mu, n} /\left\|q_{\mu, n}\right\|_{2, \mu}$ denote the $n$th orthonormal polynomial with respect to the measure $\mu$. That is

$$
\int p_{\mu, n}(x) p_{\mu, k}(x) d \mu(x)=\delta_{n, k}=\left\{\begin{array}{ccc}
1 & \text { if } & n=k \\
0 & \text { if } & n \neq k
\end{array}, \quad(n, k) \in \mathbb{Z}_{+}^{2}\right.
$$

Fix $n \in \mathbb{Z}_{+}$, for each polynomial $h$ of degree $\leq n$ we have the identity

$$
0=\int \frac{h(z)-h(x)}{z-x} p_{\mu, n}(x) d \mu(x),
$$

thus

$$
\begin{equation*}
\int \frac{p_{\mu, n}(x) d \mu(x)}{z-x}=\frac{1}{p_{\mu, n}(z)} \int \frac{p_{\mu, n}^{2}(x) d \mu(x)}{z-x} \tag{3.1}
\end{equation*}
$$

From (2.11) we see that $q_{\mu,|\mathbf{n}|} \equiv Q_{\mathbf{n}}$ when $d \mu=d s_{k} / Q_{\mathbf{n}, 2}$, and $p_{\mu,|\mathbf{n}|} \equiv$ $Q_{\mathbf{n}} /\left\|Q_{\mathbf{n}}\right\|_{2, \mu}$.

Lemma 3.1. Let $\left\{d \mu_{n}\right\}_{n \in \mathbb{Z}_{+}} \subset \mathcal{M}(\Delta)$ be given. Then for each $t \in \mathbb{C} \backslash \Delta$ we have that

$$
\begin{equation*}
\left|\frac{q_{\mu_{n}, n}(x)}{q_{\mu_{n}, n}(t)}\right|^{1 / n} \leq \frac{\operatorname{diam}(\Delta)}{\operatorname{dist}(t, \Delta)}, \quad n \in \mathbb{Z}_{+} \tag{3.2}
\end{equation*}
$$

uniformly in $\{x \in \Delta\}$.
Proof. Fix $n \in \mathbb{Z}_{+}$. Since $q_{\mu_{n}, n}$ has its $n$ zeros in the interior of $\Delta$ then

$$
\left|\frac{q_{\mu_{n}, n}(x)}{q_{\mu_{n}, n}(z)}\right| \leq\left(\frac{\operatorname{diam}(\Delta)}{\operatorname{dist}(K, \Delta)}\right)^{n}
$$

This proves immediately (3.2).

Fix two integers $n, \nu \in \mathbb{Z}_{+}$and a function $f \in \mathrm{~L}_{2}\left(\mu_{\nu}\right)$. The sum

$$
\begin{equation*}
S_{f, n, \mu_{\nu}}(z)=\sum_{i=0}^{n} \gamma_{i, \nu} p_{\mu_{\nu}, i}(z) \tag{3.3}
\end{equation*}
$$

where

$$
\gamma_{i, \nu}=\operatorname{sign}\left(\mu_{\nu}\right) \int f(x) p_{\mu_{\nu}, i}(x) d \mu_{\nu}(x), \quad i=0, \ldots, n
$$

defines the $n$th partial sum of the Fourier series corresponding to $f$ in terms of the orthonormal system $\left\{p_{\mu_{n}, i}\right\}_{i \in \mathbb{Z}_{+}}$.

Substituting in (3.3) the well known Christoffel-Darboux identity (Theorem 4.5 in [5] page 23) we obtain

$$
\begin{equation*}
S_{f, n, \mu_{\nu}}(z)=a_{\mu_{\nu}, n+1} \int \frac{p_{\mu_{\nu}, n+1}(z) p_{\mu_{\nu}, n}(x)-p_{\mu_{\nu}, n+1}(x) p_{\mu_{\nu}, n}(z)}{z-x} f(x) d \mu_{\nu}(x) \tag{3.4}
\end{equation*}
$$

where

$$
a_{\mu_{\nu}, n+1}=\int x p_{\mu_{\nu}, n+1}(x) p_{\mu_{\nu}, n}(x) d \mu_{\nu}(x)
$$

Notice that $\operatorname{sign}\left(a_{\mu_{n}, n+1}\right)=\operatorname{sign}\left(\mu_{n}\right)$. For an arbitrary polynomial $\mathcal{P}$ of degree $\leq n, S_{\mathcal{P}, n, \mu_{n}} \equiv \mathcal{P}$.
Proposition 3.1. Let $\left\{\mu_{n}\right\}_{n \in \mathbb{Z}_{+}} \subset \mathcal{M}(\Delta)$ be given. Fix $t \in \mathbb{C} \backslash \Delta$ such that $\operatorname{dist}(t, \Delta)>\operatorname{diam}(\Delta)$. Then

$$
\begin{equation*}
S_{1 /(z-t), n, \mu_{n}} \rightrightarrows \frac{1}{z-t}, \quad \text { for } \quad z \in \Delta \tag{3.5}
\end{equation*}
$$

Proof. Fix $N \in \mathbb{Z}_{+}$. We start by proving

$$
\begin{equation*}
S_{1 /(z-t), n, \mu_{N}} \rightrightarrows \frac{1}{z-t}, \quad \text { for } \quad z \in \Delta \tag{3.6}
\end{equation*}
$$

For two nonnegative integers $n>n^{\prime}$ we analyze the difference

$$
\begin{equation*}
\varepsilon_{N, n, n^{\prime}}=\left|S_{1 /(z-t), n^{\prime}, \mu_{N}}-S_{1 /(z-t), n, \mu_{N}}\right|=\left|\sum_{i=n^{\prime}+1}^{n} \gamma_{i, N} p_{\mu_{N}, i}(z)\right|, \tag{3.7}
\end{equation*}
$$

where $\gamma_{i, N}=\int p_{\mu_{N}, i}(x) /(x-t) d \mu_{N}(x)$. So

$$
\varepsilon_{N, n, n^{\prime}}=\left|\sum_{i=n^{\prime}+1}^{n} p_{\mu_{N}, i}(z) \int \frac{p_{\mu_{N}, i}(x)}{\rho_{N}(x)} \frac{d \mu_{N}(x)}{x-t}\right| .
$$

Taking into account the identity given in (3.1) we have that

$$
\begin{gathered}
\varepsilon_{N, n, n^{\prime}}=\left|\sum_{i=n^{\prime}+1}^{n} \frac{p_{\mu_{N}, i}(z)}{p_{\mu_{N}, i}(t)} \int \frac{p_{\mu_{N}, i}^{2}(x) d \mu_{N}(x)}{x-t}\right| \leq \\
\sum_{i=n^{\prime}+1}^{n}\left|\frac{p_{\mu_{N}, i}(z)}{p_{\mu_{N}, i}(t)}\right|\left|\int \frac{p_{\mu_{N}, i}^{2}(x) d \mu_{N}(x)}{x-t}\right| \leq \sum_{i=n^{\prime}+1}^{n}\left|\frac{p_{\mu_{N}, i}(z)}{p_{\mu_{N}, i}(t)}\right| \frac{\left|\int p_{\mu_{n}, i}^{2}(x) d \mu_{N}(x)\right|}{\operatorname{dist}(t, \Delta)} .
\end{gathered}
$$

Hence we obtain that

$$
\varepsilon_{N, n, n^{\prime}} \leq \frac{1}{\operatorname{dist}(t, \Delta)} \sum_{i=n^{\prime}+1}^{n}\left|\frac{p_{\mu_{N}, i}(z)}{p_{\mu_{N}, i}(t)}\right| .
$$

Lemma 3.1 implies that there exists a nonnegative integer $N^{\prime}$ such that for every pair ( $n, n^{\prime}$ ), with $n \geq n^{\prime} \geq N^{\prime}$

$$
\varepsilon_{N, n, n^{\prime}} \leq \varepsilon_{N, n, n^{\prime}} \leq \frac{1}{\operatorname{dist}(t, \Delta)} \sum_{i=n^{\prime}+1}^{n} M^{i} \rightarrow 0 \quad \text { as } \quad n, n^{\prime} \rightarrow \infty,
$$

where $M=\operatorname{diam}(\Delta) / \operatorname{dist}(\Delta, t)<1$. This proves (3.6).
So, for each $n \in \mathbb{Z}_{+}$fixed we can write

$$
\frac{1}{z-x}=\sum_{i=0}^{\infty} p_{\mu_{n}, i}(z) \int \frac{p_{\mu_{n}, i}(x)}{x-t} d \mu_{n}(x)=\sum_{i=0}^{\infty} \frac{p_{\mu_{n}, i}(z)}{p_{\mu_{n}, i}(t)} \int \frac{p_{\mu_{n}, i}^{2}(x) d \mu_{n}(x)}{x-t}
$$

Then

$$
\varepsilon_{n, n, \infty}=\left|S_{1 /(z-t), n, \mu_{n}}-\frac{1}{z-t}\right|=\left|\sum_{i=n+1}^{\infty} \frac{p_{\mu_{n}, i}(z)}{p_{\mu_{n}, i}(t)} \int \frac{p_{\mu_{n}, i}^{2}(x) d \mu_{n}(x)}{x-t}\right| .
$$

Taking again into account Lemma 3.1 we see that there exists a nonnegative integer $N^{\prime}$ such that for all $n \geq N^{\prime}$

$$
\varepsilon_{n, n, \infty} \leq \frac{1}{\operatorname{dist}(t, \Delta)} \sum_{i=n}^{\infty} M^{i} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

This proves (3.5) and completes the proof of Proposition 3.1.
Recall the definition of Nikishin-Christoffel coefficients introduced in Section 2.

Proposition 3.2. Let $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right) \in \mathbb{Z}_{+}^{m}$ and $\left(s_{1}, \ldots, s_{m}\right)=\mathcal{N}\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ be given. Set $k=1$ if $n_{1}+1=M=\max \left\{n_{1}+1, n_{2} \ldots n_{m}\right\}$, otherwise $k$ is equal to the subscript of the first component of $\mathbf{n}$ such that $M=n_{k}$. For each $n \in \mathbb{Z}_{+}$, denote $d \mu_{\mathbf{n}}=d s_{k} / Q_{\mathbf{n}, 2}$. Then, for each $j=1, \ldots, m$, the Nikishin-Christoffel coefficients can be written as follows

$$
\begin{equation*}
\lambda_{i, j, \mathbf{n}}=\frac{\left\|Q_{\mathbf{n}}\right\|_{2, \mu_{\mathbf{n}}} S_{Q_{\mathbf{n}, 2} \widehat{s}_{2, j} / \widehat{s}_{2, k},|\mathbf{n}|-1, \mu_{\mathbf{n}}}\left(x_{\mathbf{n}, i}\right)}{a_{\mu_{\mathbf{n}}, \mathbf{n} \mid} Q_{\mathbf{n}}^{\prime}\left(x_{\mathbf{n}, i}\right) p_{\mu_{\mathbf{n}},|\mathbf{n}|-1}\left(x_{\mathbf{n}, i}\right)}, \quad i=1, \ldots,|\mathbf{n}| . \tag{3.8}
\end{equation*}
$$

When $j=k$, the Nikishin-Christoffel coefficients acquire the following form

$$
\begin{equation*}
\lambda_{i, k, \mathbf{n}}=\frac{\left\|Q_{\mathbf{n}}\right\|_{2, \mu_{\mathbf{n}}}\left(x_{\mathbf{n}, i}\right)}{a_{\mu_{\mathbf{n}}, \mathbf{n} \mid} Q_{\mathbf{n}}^{\prime}\left(x_{\mathbf{n}, i}\right) p_{\mu_{\mathbf{n}}, \mathbf{n} \mid-1}\left(x_{\mathbf{n}, i}\right)}, \quad i=1, \ldots,|\mathbf{n}| . \tag{3.9}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\operatorname{sign}\left(\lambda_{i, k, \mathbf{n}}\right)=\operatorname{sign}\left(s_{k}\right), \quad i=1, \ldots,|\mathbf{n}| . \tag{3.10}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\sum_{i=1}^{|\mathbf{n}|}\left|\lambda_{i, k, \mathbf{n}}\right|=\left|\left|s_{k}\right|\right|<+\infty . \tag{3.11}
\end{equation*}
$$

Proof. Let us rewrite (2.5) for each $j=1, \ldots, m$ and each $i=1, \ldots,|\mathbf{n}|$ as

$$
\begin{gathered}
\lambda_{i, j, \mathbf{n}}=\int \frac{Q_{\mathbf{n}}(x) d s_{j}(x)}{Q_{\mathbf{n}}^{\prime}\left(x_{\mathbf{n}, i}\right)\left(x-x_{\mathbf{n}, i}\right)}=\int \frac{Q_{\mathbf{n}}(x)}{Q_{\mathbf{n}}^{\prime}\left(x_{\mathbf{n}, i}\right)\left(x-x_{\mathbf{n}, i}\right)} \frac{\widehat{s}_{2, j}(x)}{\widehat{s}_{2, k}(x)} Q_{\mathbf{n}, 2}(x) \frac{d s_{k}(x)}{Q_{\mathbf{n}, 2}(x)}= \\
\frac{\left\|Q_{\mathbf{n}}\right\|_{2, \mu_{\mathbf{n}}}}{a_{\mu_{\mathbf{n}},|\mathbf{n}|} Q_{\mathbf{n}}^{\prime}\left(x_{\mathbf{n}, i}\right) p_{\mu_{\mathbf{n}},|\mathbf{n}|-1}\left(x_{\mathbf{n}, i}\right)} \times \\
a_{\mu_{\mathbf{n}},|\mathbf{n}|} \int \frac{p_{\mu_{\mathbf{n}},|\mathbf{n}|}(x) p_{\mu_{\mathbf{n}},|\mathbf{n}|-1}\left(x_{\mathbf{n}, i}\right)}{x-x_{\mathbf{n}, i}} \frac{\widehat{s}_{2, j}(x)}{\widehat{s}_{2, k}(x)} Q_{\mathbf{n}, 2}(x) \frac{d s_{k}(x)}{Q_{\mathbf{n}, 2}(x)} .
\end{gathered}
$$

Using the formula given in (3.4) it follows that

$$
\lambda_{i, j, \mathbf{n}}=\frac{\left\|Q_{\mathbf{n}}\right\|_{2, \mu_{\mathbf{n}}} S_{Q_{\mathbf{n}, 2} \widehat{s}_{2, j} / \widehat{s}_{2, k},|\mathbf{n}|-1, \mu_{\mathbf{n}}}\left(x_{\mathbf{n}, i}\right)}{a_{\mu_{\mathbf{n}},|\mathbf{n}|-1} Q_{\mathbf{n}}^{\prime}\left(x_{\mathbf{n}, i}\right) p_{\mu_{\mathbf{n}},|\mathbf{n}|-1}\left(x_{\mathbf{n}, i}\right)} .
$$

When $j=k$, since $\widehat{s}_{2, j} / \widehat{s}_{2, k} \equiv 1$ and $\operatorname{deg} Q_{\mathbf{n}, 2}=|\mathbf{n}|-n_{k}$

$$
\lambda_{i, k, \mathbf{n}}=\frac{\left\|Q_{\mathbf{n}}\right\|_{2, \mu_{\mathbf{n}}} Q_{\mathbf{n}, 2}\left(x_{\mathbf{n}, i}\right)}{a_{\mu_{\mathbf{n}},|\mathbf{n}|} Q_{\mathbf{n}}^{\prime}\left(x_{\mathbf{n}, i}\right) p_{\mu_{\mathbf{n}},|\mathbf{n}|-1}\left(x_{\mathbf{n}, i}\right)} .
$$

So (3.8) and (3.9) have been proved. It is well known (see [5, Theorem 5.3]) that the zeros two two consecutive elements of a family of orthogonal polynomials interlace, then $Q_{\mathbf{n}}^{\prime}\left(x_{\mathbf{n}, i}\right) p_{\mu_{\mathbf{n}},|\mathbf{n}|-1}\left(x_{\mathbf{n}, i}\right)$ must be positive. Hence for each $i=1, \ldots,|\mathbf{n}|$ the equalities (3.9) imply

$$
\begin{gathered}
\operatorname{sign}\left(\lambda_{i, k, \mathbf{n}}\right)=\operatorname{sign}\left(a_{\mu_{\mathbf{n}},|\mathbf{n}|}\right) \operatorname{sign}\left(Q_{\mathbf{n}, 2}\right)= \\
\operatorname{sign}\left(s_{k}\right) \operatorname{sign}\left(Q_{\mathbf{n}, 2}\right) \operatorname{sign}\left(Q_{\mathbf{n}, 2}\right)=\operatorname{sign}\left(s_{k}\right)
\end{gathered}
$$

Combining (2.6) and (3.10) we obtain (3.11).

## 4. Proof of Theorem 1.2

We proceed as in the proof of (34) in [9, Corollary 2]. Fix $\mathbf{n} \in \boldsymbol{\Lambda}$. Taking into account (3.11), from (2.4) we have that for each compact set $K \subset \overline{\mathbb{C}} \backslash \Delta_{1}$

$$
\left\|\frac{P_{\mathbf{n}, k}}{Q_{\mathbf{n}}}\right\|_{K} \leq \frac{\left\|s_{k}\right\|}{\operatorname{dist}\left(K, \Delta_{1}\right)} .
$$

Therefore, the family of functions $\left\{\widehat{s}_{k}-P_{\mathbf{n}, k} / Q_{\mathbf{n}}\right\}_{\mathbf{n} \in \boldsymbol{\Lambda}}$, is uniformly bounded on each compact $K \subset \overline{\mathbb{C}} \backslash \Delta_{1}$ by $2\left\|s_{k}\right\| / \operatorname{dist}\left(K, \Delta_{1}\right)$.

Let $t_{\mathbf{n}, 1}<\cdots<t_{\mathbf{n},|\mathbf{n}|-n_{k}}$ denote the zeros of $Q_{\mathbf{n}, 2}$. From Lemma 2.3 we know that $\left\{t_{\mathbf{n}, 1}, \cdots, t_{\mathbf{n},|\mathbf{n}|-n_{k}}\right\} \subset \Delta_{2}$ and the zeros of $Q_{\mathbf{n}}$ lie in $\Delta_{1}$, and

$$
\left(\frac{\widehat{s}_{k}-\frac{P_{\mathbf{n}, k}}{Q_{\mathbf{n}}}}{Q_{\mathbf{n}, 2}}\right)(z)=\mathcal{O}\left(\frac{1}{z^{2|\mathbf{n}|+1}}\right), \quad z \rightarrow \infty
$$

So

$$
\frac{\widehat{s}_{k}-\frac{P_{\mathbf{n}, k}}{Q_{\mathbf{n}}}}{\phi_{\infty}^{|\mathbf{n}|+n_{k}+1} \prod_{i=1}^{|\mathbf{n}|-n_{k}} \phi_{t_{\mathbf{n}, i}}} \in \mathcal{H}\left(\overline{\mathbb{C}} \backslash \Delta_{1}\right) .
$$

Take $\rho \in(0,1)$ such that $\gamma_{\rho}=\left\{z:\left|\phi_{\infty}(z)\right|=\rho\right\}$ satisfies that $\Delta_{2} \subset \operatorname{Ext}\left(\gamma_{\rho}\right)$, where $\operatorname{Ext}\left(\gamma_{\rho}\right)$ denotes the unbounded connected component of the complement of $\gamma_{\rho}$. We have then

$$
\left\|\frac{\widehat{s}_{k}-\frac{P_{\mathbf{n}, k}}{Q_{\mathbf{n}}}}{\phi_{\infty}^{|\mathbf{n}|+n_{k}+1} \prod_{i=1}^{|\mathbf{n}|-n_{k}} \phi_{t_{\mathbf{n}, i} i}}\right\|_{\gamma_{\rho}} \leq \frac{2\left|s_{k}\right|}{\operatorname{dist}\left(\gamma_{\rho}, \Delta_{1}\right) \psi^{2|\mathbf{n}|+1}\left(\gamma_{\rho}\right)},
$$

where

$$
\psi\left(\gamma_{\rho}\right)=\inf \left\{\left|\phi_{t}(z)\right|: z \in \gamma_{\rho}, t \in \Delta_{2} \cup\{\infty\}\right\} .
$$

Considered as a function of the two variables $z$ and $t, \phi_{t}(z)$ is a continuous function in $\overline{\mathbb{C}}^{2}$. Since $\gamma_{\rho} \cap \Delta_{2}=\emptyset$ then $\psi\left(\gamma_{\rho}\right)>0$. Fix a compact $K \subset \overline{\mathbb{C}} \backslash \Delta_{1}$ and take $\rho$ sufficient by close to 1 so that $K \subset \operatorname{Ext}\left(\gamma_{\rho}\right)$. Since the function under the norm sign is analytic in $\overline{\mathbb{C}} \backslash \Delta_{1}$, from the maximum principle it follows that the same bound holds for all $z \in K$. Consequently,

$$
\left\|\widehat{s}_{k}-\frac{P_{\mathbf{n}, k}}{Q_{\mathbf{n}}}\right\|_{K} \leq \frac{2\left|s_{k}\right| \phi_{\infty}^{|\mathbf{n}|+n_{k}+1} \prod_{i=1}^{|\mathbf{n}|-n_{k}} \phi_{t_{\mathbf{n}, i}}}{\operatorname{dist}\left(\gamma_{\rho}, \Delta_{1}\right) \psi^{2|\mathbf{n}|+1}\left(\gamma_{\rho}\right)} \leq \frac{2\left|s_{k}\right|}{\operatorname{dist}\left(\gamma_{\rho}, \Delta_{1}\right)}\left(\frac{\kappa(K)}{\psi\left(\gamma_{\rho}\right)}\right)^{2|\mathbf{n}|+1}
$$

taking $\kappa(K)$ as in the statement of the theorem. Therefore,

$$
\limsup _{|\mathbf{n}| \rightarrow \infty}\left\|\widehat{s}_{k}-\frac{P_{\mathbf{n}, k}}{Q_{\mathbf{n}}}\right\|_{K}^{1 / 2|\mathbf{n}|} \leq \frac{\kappa(K)}{\psi\left(\gamma_{\rho}\right)}
$$

So, the continuity of $\left|\phi_{t}(z)\right|$ in $\overline{\mathbb{C}}^{2}$ and the fact that $\lim _{\rho \rightarrow 1} \psi\left(\gamma_{\rho}\right)=1$ prove (1.2). That $\kappa(K)<1$ is also a consequence of the continuity of $\left|\phi_{t}(z)\right|$ in $\overline{\mathbb{C}}^{2}$.

## 5. Proof of Theorem 1.1

We will use the following auxiliary result.
Proposition 5.1. Let $\left(s_{1}, \ldots, s_{m}\right)=\mathcal{N}\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ and $\boldsymbol{\Lambda} \subset \mathbb{Z}_{+}^{m}$ be given. Assume that $\operatorname{diam}\left(\Delta_{k}\right)<\operatorname{dist}\left(\Delta_{1}, \Delta_{2}\right), k=1,2$. Then there exists $N \geq$ 0 such that for each $\mathbf{n} \in \boldsymbol{\Lambda}$, where $|\mathbf{n}| \geq N$, every coefficient $\lambda_{i, j, \mathbf{n}}, i=$ $1, \ldots,|\mathbf{n}|, j=1, \ldots, m$ has the same sign as its corresponding measure $s_{j}$.
Proof. Fix an arbitrary permutation $\lambda$ of $\{1, \ldots, m\}$. Define $\Lambda_{\lambda}$ as the set of all $\mathbf{n} \in \Lambda$ such that there exists $\widetilde{\mathbf{s}}=\left(r_{1}, \ldots, r_{m}\right)=\mathcal{N}\left(\rho_{1}, \ldots, \rho_{m}\right)$ for which $Q_{\mathbf{n}}$ is orthogonal with respect to ( $\mathbf{s}, \mathbf{n}$ ) and ( $\left.\widetilde{\mathbf{s}}, \widetilde{\mathbf{n}}\right)$ (recall that $\widetilde{\mathbf{n}}=$ $\left.\left(n_{\lambda(1)}, \ldots, n_{\lambda(m)}\right)\right)$ in such a way that $n_{\lambda(1)}+\delta_{\lambda(1), 1)} \geq n_{\lambda(2)} \geq \cdots \geq n_{\lambda(m)}$. According to Lemma 2.2 we have that $\cup_{\lambda} \Lambda_{\lambda}=\Lambda$. Some of the sets $\Lambda_{\lambda}$ may be empty or have a finite number of elements. Since the group of permutations of $\{1, \ldots, m\}$ is finite it is sufficient to prove that the result holds true for all $\lambda$ such that $\Lambda_{\lambda}$ has an infinite number of multi-indices. In the sequel we restrict our attention to such $\lambda$ 's and fix one of them.

Fix $\mathbf{n} \in \Lambda_{\lambda}$. Let us denote the measures introduced in (2.13) as

$$
\begin{equation*}
d \mu_{\mathbf{n}, 1}=\frac{d \rho_{1}}{Q_{\mathbf{n}, 2}}=\frac{d s_{k}}{Q_{\mathbf{n}, 2}} \quad \text { and } \quad d \mu_{\mathbf{n}, 2}(t)=\int \frac{Q_{\mathbf{n}}^{2}(x)}{t-x} \frac{d \rho_{1}(x)}{Q_{\mathbf{n}, 2}(x)} \frac{d \rho_{2}(t)}{Q_{\mathbf{n}}(t) Q_{\mathbf{n}, 3}(t)} \tag{5.1}
\end{equation*}
$$

We call $k=\lambda(1)$. From identities (3.8) in Proposition 3.2 it is sufficient to show that for each $j=1, \ldots, k-1, k+1, \ldots, m$ the sequence of functions $\left\{S_{Q_{\mathbf{n}, 2} \widehat{s}_{2, j} / \widehat{s}_{2, k},|\mathbf{n}|-1, \mu_{\mathbf{n}, 1}}\right\}_{\mathbf{n} \in \Lambda_{\lambda}}$ converges unifromly to $\widehat{s}_{2, j} / \widehat{s}_{2, k}$ on $\Delta_{1}$ because this function has constant and constant sign and no zero on $\Delta_{1}$.

Denote

$$
\mathcal{K}(z, x,|\mathbf{n}|-1)=\frac{p_{\mu_{\mathbf{n}, 1},|\mathbf{n}|}(z) p_{\mu_{\mathbf{n}, 1},|\mathbf{n}|-1}(x)-p_{\mu_{\mathbf{n}, 1},|\mathbf{n}|}(x) p_{\mu_{\mathbf{n}, 1},|\mathbf{n}|-1}(z)}{z-x} .
$$

Let us start by analyzing the case when $j=1$. Taking into account the formula (3.4) and unsing the identity (2.7) in Lemma 2.1 we have that

$$
\begin{gathered}
\left|\frac{S_{Q_{\mathbf{n}, 2} / \widehat{s_{2, k},|\mathbf{n}|-1, \mu_{\mathbf{n}, 1}}}(z)}{Q_{\mathbf{n}, 2}(z)}-\frac{1}{\widehat{s}_{2, k}(z)}\right|= \\
\left|\frac{a_{\mu_{\mathbf{n}, 1},|\mathbf{n}|}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(\frac{Q_{\mathbf{n}, 2}(x)}{\widehat{s}_{2, k}(x)}-\frac{Q_{\mathbf{n}, 2}(z)}{\widehat{s}_{2, k}(z)}\right) d \mu_{\mathbf{n}, 1}(x)\right|= \\
\left\lvert\, \frac{a_{\mu_{\mathbf{n}, 1},|\mathbf{n}|}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(Q_{\mathbf{n}, 2}(x) \ell_{2, k}(x)-Q_{\mathbf{n}, 2}(z) \ell_{2, k}(z)\right) d \mu_{\mathbf{n}, 1}(x)+\right. \\
\left.\frac{a_{\mu_{\mathbf{n}, 1},|\mathbf{n}|}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(Q_{\mathbf{n}, 2}(x) \widehat{\tau}_{2, k}(x)-Q_{\mathbf{n}, 2}(z) \widehat{\tau}_{2, k}(z)\right) d \mu_{\mathbf{n}, 1}(x) \right\rvert\, .
\end{gathered}
$$

Since $\operatorname{deg} Q_{\mathbf{n}, 2} \ell_{2, k} \leq|\mathbf{n}|-n_{k}+1<|\mathbf{n}|-1\left(n_{k}=\max \left\{n_{1}, \ldots, n_{m}\right\}\right)$, then

$$
\begin{gathered}
\left|\frac{S_{Q_{\mathbf{n}, 2} / \widehat{s}_{2, k},|\mathbf{n}|-1, \mu_{\mathbf{n}, 1}}(z)}{Q_{\mathbf{n}, 2}(z)}-\frac{1}{\widehat{s}_{2, k}(z)}\right|=\mid \ell_{2, k}(z)-\ell_{2, k}(z)+ \\
\left.\frac{a_{\mu_{\mathbf{n}, 1}, \mathbf{n} \mid}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(Q_{\mathbf{n}, 2}(x) \widehat{\tau}_{2, k}(x)-Q_{\mathbf{n}, 2}(z) \widehat{\tau}_{2, k}(z)\right) d \mu_{\mathbf{n}, 1}(x) \right\rvert\,= \\
\left|\frac{a_{\mu_{\mathbf{n}, 1},|\mathbf{n}|}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(Q_{\mathbf{n}, 2}(x) \widehat{\tau}_{2, k}(x)-Q_{\mathbf{n}, 2}(z) \widehat{\tau}_{2, k}(z)\right) d \mu_{\mathbf{n}, 1}(x)\right|
\end{gathered}
$$

Proceeding analogously as above, for $j=2, \ldots, k-1, k+1, \ldots, m$, and taking into account (3.4) and (2.8), we obtain

$$
\begin{gathered}
\left\lvert\, \frac{S_{Q_{\mathbf{n}, 2}, \widehat{s}_{2, j} / \widehat{s}_{2, k},|\mathbf{n}|-1, \mu_{\mathbf{n}, 1}}(z)}{Q_{\mathbf{n}, 2}(z)}-\widehat{s}_{2, j}(z)\right. \\
\widehat{s}_{2, k}(z)
\end{gathered} \left\lvert\,=, \quad\left[\left.\frac{a_{\mu_{\mathbf{n}, 1},|\mathbf{n}|}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(\frac{Q_{\mathbf{n}, 2}(x) \widehat{s}_{2, j}(x)}{\widehat{s}_{2, k}(x)}-\frac{Q_{\mathbf{n}, 2}(z) \widehat{s}_{2, j}(z)}{\widehat{s}_{2, k}(z)}\right) d \mu_{\mathbf{n}, 1}(x) \right\rvert\,=\right.\right.
$$

$$
\left|\frac{a_{\mu_{\mathbf{n}, 1}, \mathbf{n} \mid}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(Q_{\mathbf{n}, 2}(x) \widehat{\tau}_{2, j}(x)-Q_{\mathbf{n}, 2}(z) \widehat{\tau}_{2, j}(z)\right) d \mu_{\mathbf{n}, 1}(x)\right|
$$

Summarizing, for each $j=1, \ldots, k-1, k+1, \ldots, m$, we need to analyze the expression

$$
\left|\frac{a_{\mu_{\mathbf{n}, 1}, \mathbf{n} \mid}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(Q_{\mathbf{n}, 2}(x) \widehat{\tau}_{2, j}(x)-Q_{\mathbf{n}, 2}(z) \widehat{\tau}_{2, j}(z)\right) d \mu_{\mathbf{n}, 1}(x)\right|
$$

Using Fubini's Theorem we obtain the following chain of equalities

$$
\begin{aligned}
& \left|\frac{a_{\mu_{\mathbf{n}, 1}, \mathbf{n} \mid}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(Q_{\mathbf{n}, 2}(x) \widehat{\tau}_{2, j}(x)-Q_{\mathbf{n}, 2}(z) \widehat{\tau}_{2, j}(z)\right) d \mu_{\mathbf{n}, 1}(x)\right|= \\
& \left|\int \frac{a_{\mu_{\mathbf{n}, 1}, \mathbf{n} \mid}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(\frac{Q_{\mathbf{n}, 2}(x)}{x-t}-\frac{Q_{\mathbf{n}, 2}(z)}{z-t}\right) d \mu_{\mathbf{n}, 1}(x) d \tau_{2, j}^{k}(t)\right|= \\
& \left\lvert\, \int \frac{a_{\mu_{\mathbf{n}, 1},|\mathbf{n}|}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(\frac{Q_{\mathbf{n}, 2}(x)-Q_{\mathbf{n}, 2}(t)}{x-t}\right) d \mu_{\mathbf{n}, 1}(x) d \tau_{2, j}^{k}(t)-\right. \\
& \quad \int \frac{a_{\mu_{\mathbf{n}, 1},|\mathbf{n}|}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(\frac{Q_{\mathbf{n}, 2}(z)-Q_{\mathbf{n}, 2}(t)}{z-t}\right) d \mu_{\mathbf{n}, 1}(x) d \tau_{2, j}^{k}(t)+ \\
& \quad \int \frac{a_{\mu_{\mathbf{n}, 1},|\mathbf{n}|}}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(\frac{Q_{\mathbf{n}, 2}(t)}{x-t}\right) d \mu_{\mathbf{n}, 1}(x) d \tau_{2, j}^{k}(t)- \\
& \left.\quad \int \frac{Q_{\mathbf{n}, 2}(t)}{Q_{\mathbf{n}, 2}(z)} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(\frac{Q_{\mathbf{n}, 2}(t)}{z-t}\right) d \mu_{\mathbf{n}, 1}(x) d \tau_{2, j}^{k}(t) \right\rvert\,= \\
& \left|\int \frac{Q_{\mathbf{n}, 2}(t)}{Q_{\mathbf{n}, 2}(z)} a_{\mu_{\mathbf{n}, 1},|\mathbf{n}|} \int \mathcal{K}(z, x,|\mathbf{n}|-1)\left(\frac{1}{x-t}-\frac{1}{z-t}\right) d \mu_{\mathbf{n}, 1}(x) d \tau_{2, j}^{k}(t)\right|= \\
& \left\lvert\, \int \frac{Q_{\mathbf{n}, 2}(t)}{Q_{\mathbf{n}, 2}(z)}\left(S_{\left.1 /(z-t),|\mathbf{n}|-1, \mu_{\mathbf{n}, 1}-\frac{1}{z-t}\right) d \tau_{2, j}^{k}(t) \mid \leq} \left\lvert\,\left\|\frac{Q_{\mathbf{n}, 2}(t)}{Q_{\mathbf{n}, 2}(z)}\right\|_{S\left(\sigma_{2}\right)}\left\|S_{1 /(z-t),|\mathbf{n}|-1, \mu_{\mathbf{n}, 1}}-\frac{1}{z-t}\right\|\left\|_{\Delta_{1}}\right\| \tau_{2, j}^{k}\right. \|\right.\right.
\end{aligned}
$$

Combining the requirement $\operatorname{diam}\left(\Delta_{k}\right)<\operatorname{dist}\left(\Delta_{1}, \Delta_{2}\right), k=1,2$, Lemma 3.1 and Proposition 3.1 we obtain that

$$
\left\|\frac{Q_{\mathbf{n}, 2}(t)}{Q_{\mathbf{n}, 2}(z)}\right\|_{S\left(\sigma_{2}\right)} \rightarrow 0 \text { and }\left\|S_{1 /(z-t),|\mathbf{n}|-1, \mu_{\mathbf{n}, 1}}-\frac{1}{z-t}\right\|_{\Delta_{1}} \rightarrow 0
$$

So this completes the proof.

Now we are ready to prove Theorem 1.1. As in Section 4, we take $\rho \in$ $(0,1)$ and $\gamma_{\rho}=\left\{z:\left|\phi_{\infty}(z)\right|=\rho\right\}$. For each $j=1, \ldots, k-1, k+1, \ldots, m$ we have that

$$
\left\|\widehat{s}_{j}\right\|_{\gamma_{\rho}}=\frac{\left|s_{j}\right|}{\operatorname{dist}\left(\gamma_{\rho}, \Delta_{1}\right)} \quad \text { and } \quad\left\|\frac{P_{j}}{Q_{\mathbf{n}}}\right\|_{\gamma_{\rho}}=\left\|\sum_{i=1}^{|\mathbf{n}|} \frac{\lambda_{i, j, \mathbf{n}}}{z-x_{\mathbf{n}, i}}\right\|_{\gamma_{\rho}} \leq \frac{\left|s_{j}\right|}{\operatorname{dist}\left(\gamma_{\rho}, \Delta_{1}\right)}
$$

The second inequality can be deduced easily from Proposition 5.1. Combining the above inequalities we have that

$$
\left\|\frac{\widehat{s}_{j}-\frac{P_{\mathbf{n}, j}}{Q_{\mathbf{n}}}}{\phi_{\infty}^{|\mathbf{n}|+n_{j}+1}}\right\|_{\gamma_{\rho}} \leq \frac{2\left|s_{j}\right|}{\operatorname{dist}\left(\gamma_{\rho}, \Delta_{1}\right) \rho^{|\mathbf{n}|+n_{j}+1}} .
$$

Let us fix a compact $K \subset \overline{\mathbb{C}} \backslash \Delta_{1}$ and take $\rho$ sufficient close to 1 . From the maximum principle it follows that the same bound holds for all $z \in K$. Consequently,

$$
\left\|\widehat{s}_{j}-\frac{P_{\mathbf{n}, j}}{Q_{\mathbf{n}}}\right\|_{K} \leq \frac{2\left|s_{j}\right|\left\|\phi_{\infty}\right\|_{K}^{|\mathbf{n}|+n_{j}+1}}{\operatorname{dist}\left(\gamma_{\rho}, \Delta_{1}\right) \rho^{|n|+n_{j}+1}} .
$$

Therefore,

$$
\limsup _{|\mathbf{n}| \rightarrow \infty}\left\|\widehat{s}_{j}-\frac{P_{\mathbf{n}, j}}{Q_{\mathbf{n}}}\right\|_{K}^{1 /\left(|\mathbf{n}|+n_{j}\right)} \leq \frac{\left\|\phi_{\infty}\right\|}{\rho}
$$

and the result readily follows making $\rho \rightarrow 1$.
[1] A.I. Aptekarev. Strong asymptotics of multiply orthogonal polynomials for Nikishin systems. 190 (1999), 3-44 (Russian); English translation in Sbornik: Mathematics 190 (1999), 631-669.
[2] A.I. Aptekarev, G. López Lagomasino, and I. A. Rocha. Ratio asymptotic of Hermite-Padé orthogonal polynomials for Nikishin systems. Mat. Sb. 196 (2005), 3-20 (Russian); English translation in Sbornik: Mathematics 196 (2005), 1089-1107.
[3] ZH. Bustamante and G. López Lagomasino. Hermite-Padé approximation for Nikishin systems of analytic functions. Mat. Sb. 183 (1992), 117-138 (Russian); English translation in Russian Acad. Sci. Sb. Math. 77 (1994), 367-384.
[4] J. Bustamante. Asymptotics for Angelesco Nikishin systems. J. of Approx. Theory 85 (1996). 43-68.
[5] T. S. Chihara. An Introduction to Orthogonal Polynomials. Gordon and Breach, Science Publishers, Inc. New York, 1978.
[6] K. Driver and H. Stahl. Normality in Nikishin systems. Indag. Math. N.S. 5 (1994), 161-187.
[7] K. Driver and H. Stahl. Simultaneous rational approximants to Nikishin systems. I. Acta Sci. Math. (Szeged) 60 (1995), 245-263.
[8] K. Driver and H. Stahl. Simultaneous rational approximants to Nikishin systems. II. Acta Sci. Math. (Szeged) 61 (1995), 261-284.
[9] U. Fidalgo, J. Illán, and G. López Lagomasino. Hermite-Padé approximants and simultaneous quadrature formulas. J. Approx. Theory 126 (2004), 171-197.
[10] U. Fidalgo, G. López Lagomasino. Nikishin systems are perfect. Constr. Approx. 34 (2011), 297-356.
[11] A.A. Gonchar, E.A. Rakhmanov, and V.N. Sorokin. Hermite-Padé approximants for systems of Markov-type functions. 188 (1997), 33-58 (Russian); English translation in Sb. Math. 188 (1997), 33-58.
[12] A. López García and G. López Lagomasino. Relative asymptotics of multiple orthogonal polynomials for Nikishin systems. J. of Approx. Theory 158 (2009), 214-241.
[13] A.A. Markov. Deux demonstrations de la convergence de certains fractions continues. Acta Math. 19 (1895), 93-104.
[14] E.M. Nikishin. On simultaneous Padé approximants. Matem. Sb. 113 (1980), 499-519 (Russian); English translation in Math. USSR Sb. 41 (1982), 409-425.
[15] E.M. Nikishin and V.N. Sorokin. Rational Approximations and Orthogonality. Transl. Math. Monogr., Vol. 92, Amer. Math. Soc., Providence, R. I., 1991.


[^0]:    Email addresses: ajplb@mat.uc.pt (A. Branquinho), ulisesfidalgoprieto@yahoo.es (U. Fidalgo Prieto), foulquie@ua.pt (A. Foulquie Moreno)

