
Link Load Balancing Optimization of
Telecommunication Networks: a Column

Generation based Heuristic Approach

Dorabella Santos∗, Amaro de Sousa†, Filipe Alvelos‡ and Michał Pióro§,¶
∗Instituto de Telecomunicações, 3810-193 Aveiro, Portugal

Email: dorabella@av.it.pt
†Instituto de Telecomunicações/DETI

Universidade de Aveiro, 3810-193 Aveiro, Portugal

Email: asou@ua.pt
‡Centro Algoritmi/DPS

Universidade do Minho, 4710-057 Braga, Portugal

Email: falvelos@dps.uminho.pt
§Institute of Telecommunications

Warsaw University of Technology, 00-665 Warsaw, Poland

Email: mpp@tele.pw.edu.pl
¶Department of Electrical and Information Technology

Lund University, 221-00 Lund, Sweden

Email: mpp@eit.lth.se

Abstract—This paper deals with optimal load balancing in
telecommunication networks. For a capacitated telecommunica-
tions network with single path routing and an estimated traffic
demand matrix, we wish to determine the routing paths aiming
at min-max optimization of link loads. To solve this problem, we
propose a column (path) generation based heuristic. In the first
step, we use column generation to solve a linear programming
relaxation of the basic problem (obtaining a lower bound and
a set of paths). In the second step, we apply a multi-start local
search heuristic with path-relinking to the search space defined
by the paths found in the first step. In order to assess the merits
of this approach, we also implemented a search heuristic which
is equivalent to the second step of the proposed one but with no
constraints on the set of paths that can be used. Through a set
of computational results, we show that the proposed heuristic is
efficient in obtaining near optimal routing solutions within short
running times. Moreover, the comparison of the two heuristics
show that constraining the search space to the columns given by
column generation gives better results since this solution space
contains good quality solutions and, due to its size, enables to
find them in short running times.

Index Terms—Link Load Balancing Optimization, Column
Generation based Heuristics, Routing, Traffic Engineering

I. INTRODUCTION

Consider a given capacitated telecommunications network

that supports a set of traffic flows. Each traffic flow has an

estimated demand bandwidth which must be routed through

a single network path. Examples of such telecommunication

networks are MPLS networks [1], [2] and more recent Ethernet

networks based on PBB-TE technology [3]. In both cases,

an explicit route must be configured in the network for each

traffic flow. The aim is to determine a routing path for each

traffic flow so that the traffic load is balanced as much as

possible over all network links. The single path routing variant

is preferred by many network operators for different reasons:

it minimizes the size of the routing tables, it avoids processing

overhead of traffic splitting rules, it introduces less jitter, etc.

The link load balance optimization is an important traffic

engineering objective to maximize the robustness of the net-

work to unpredictable traffic growth. Assume the worst case

scenario where all traffic demands grow simultaneously. If the

worst link load is a, with 0 ≤ a ≤ 1, then all traffic demands

can simultaneously grow up to (1 − a)/a before the network

becomes saturated and, therefore, the lower the value of a is,

the more robust the network becomes to unpredictable traffic

growth. Moreover, for a solution with the minimum worst link

load a, if the second worst link load is b, with 0 ≤ b ≤ 1,

then all traffic demands that do not use the worst load link can

uniformly grow up to (1 − b)/b before the network becomes

saturated. Therefore, the value b should also be minimized

provided that the worst link load a is kept at its minimum.

This idea can be generalized to all other link loads, defining the

min-max optimization of link loads: first minimize the worst

case link load; among all such solutions, minimize the second

worst case link load; among all such solutions, minimize the

third worst case link load; and so on.

One approach proposed in [4], [5] to define a load balance

optimization function (which has been used by other authors)

is to minimize the summation of the individual link costs

978-1-4244-6705-1/10/$26.00 c©2010 IEEE

where the cost of a link is an increasing piecewise linear

function of its load (it was originally proposed for shortest

path routing). The main merit of this proposal is that the

optimization problem can be addressed by integer linear

programming. Nevertheless, the resulting optimization models

are hard to solve and their solutions may not correspond to the

optimal solutions of the min-max optimization of link loads.

For example, consider a network with 5 links and a set of

traffic flows such that there are 2 possible routing solutions:

A with link load values 0.7, 0.4, 0.4, 0.4 and 0.3, and B with

link load values 0.5, 0.5, 0.5, 0.5 and 0.4. With the objective

function proposed in [4], A is the selected solution since it

has a value of 3.57 while B has a value of 3.87 but, clearly,

B is the best solution since it has a much lower worst load.

The min-max optimization of link loads is a non-linear

objective but it can be theoretically solved through a set of

integer linear programming models in sequence. This objective

has been previously addressed for multiple spanning tree based

routing [6], [8] and for routing with path protection [7]. Note

that we have seen in [8] that the optimization of the average

link load is very penalizing for the worst link load values,

while the min-max optimization of link loads usually lead to

very small penalties on the average link load values.

The min-max optimization of link loads is related to the con-

cept of lexicographical minimization and this objective func-

tion is similar to that of max-min fairness (MMF) previously

applied to routing and allocation of network resources [9],

[10], [11]. General issues on MMF are also discussed in [12].

More applications of the MMF solutions in telecommunication

network design can be found in [13], [14], [15].

To solve our problem, we propose a column generation

based heuristic which runs in two steps. In the first step, we

use column generation (CG) to solve the linear programming

relaxation of the problem (it corresponds to the splittable path

routing variant of the problem). In this step, we still have

to solve a set of optimization problems in sequence (one for

each load) but since the problems are linear, the whole set of

problems run in short running times. Moreover, the solution

obtained in this step is a lower bound for the original problem

which is used to assess the quality of the heuristic solutions. In

the second step, we apply a multi-start local search heuristic

with path-relinking [17], to the search space defined by the

columns found in CG.

The proposed approach is part of a more general effort to

explore the combination of CG and meta-heuristics. Although

the combination of exact and approximate methods has been

very active in recent years (see, for example, [18]), attempts to

systematically combine CG and meta-heuristics are rare (ex-

ceptions are [19] and [20]). The rationale for this combination

lies in the fact that often CG provides tight lower bounds

(in minimization problems) on the optimal value and that the

columns belonging to the restricted master problem (RMP)

containing the optimal solution define a search space where

high-quality solutions exist. In order to assess the merits of

such approach, we also implemented two variants of a search

heuristic which is equivalent to the second step of the proposed

one but with no constraints on its search space.

This paper is organized as follows. Section II defines the

optimization problem and describes how it can be solved

through mathematical programming. Section III presents the

proposed heuristics. Section IV describes a set of case studies

and presents the computational results obtained by the heuris-

tics together with their analysis. Finally, Section V presents

the main conclusions and identifies topics for future research.

II. PROBLEM FORMULATION

Consider a network given by a graph G(N,A) where N is

the set of nodes and A is the set of links between the nodes.

The edge between nodes i ∈ N and j ∈ N is denoted by {i, j}
and each edge {i, j} ∈ A has a given capacity c{ij}. There is a

set of commodities K, where each commodity is to be routed

in a single path through the network. Each commodity k ∈ K
is characterized by its origin node ok ∈ N , its destination node

dk ∈ N and its demand bk > 0.

Let Pk be the set of paths available in graph G between the

end nodes of k ∈ K and let δpk

{ij} be a binary parameter that

is 1 if edge {i, j} ∈ A belongs to path p ∈ Pk. Consider the

following decision variables: the binary variable ϕp
k which is

1 if path p ∈ Pk is chosen as the routing path of commodity

k ∈ K; and the real variable µ{ij} which accounts for the

load on link {i, j} ∈ A. The set of constraints defining the

optimization problem are given by

∑

p∈Pk

ϕp
k = 1 ∀k ∈ K (1)

∑

k∈K

∑

p∈Pk

bkδpk

{ij}ϕ
p
k = c{ij}µ{ij} ∀{i, j} ∈ A (2)

ϕp
k ∈ {0, 1}, µ{ij} ∈ [0, 1] (3)

where constraints (1) guarantee that exactly one path of Pk

is chosen for every commodity k ∈ K, and constraints (2)

account for the link loads.

The min-max optimization of link loads is closely related

to the concept of lexicographical optimization. Given two

vectors a = (a1, ..., am) and b = (b1, ..., bm), vector a is

lexicographically smaller that b, if either a1 < b1 or there

exists an index l ∈ {1, ...,m − 1} such that ai = bi for all

i ≤ l and al+1 < bl+1. Now consider the vector of link loads

µ = (µ{ij} : {i, j} ∈ A) and let [µ] be the vector obtained

from µ by rearranging its elements in non-increasing order.

The min-max optimization problem can be defined in a non-

linear manner as

lexmin[µ]

s.t. (1) − (3)

where lexmin denotes the lexicographical minimization, i.e.

finding a vector [µ∗] which is lexicographically minimal

among all possible vectors [µ]. An optimal solution of the

problem can be obtained by solving a sequence of mixed

integer linear problems, using the conditional means approach

[16], [10], in the following way. Consider the vector θ = (θl :
l = 1, ..., |A|) whose elements are given by the accumulated

elements of [µ], θl =
∑l

t=1
[µ]l, for l = 1, ..., |A|. The min-

max optimization problem is equivalent (in the sense that the

optimal solution set is the same) to

lexminθ

s.t. (1) − (3)

Following [10], we consider the additional real variables rt

for t = 1, ..., |A|, and dt{ij} for t = 1, ..., |A| and {i, j} ∈ A.

Then, the lth element of θ is given by the optimal solution of

the following mixed integer linear problem

θ∗l = min

l rl +
∑

{i,j}∈A

dl{ij}

 (4)

s.t.

(1) − (3)

µ{ij} ≤ rt + dt{ij} ∀t ∈ 1, 2, ..., l, ∀{i, j} ∈ A (5)

t rt +
∑

{i,j}∈A

dt{i,j} ≤ θ∗t ∀t ∈ {1, 2, ..., l − 1} (6)

rt ≥ 0, dt{ij} ≥ 0 (7)

where the set of constraints (6) guarantee that the previously

obtained objectives are not jeopardized. At the end, the worst

link load value [µ]1 is given by θ∗1 , and the lth worst link load

value [µ]l, for l > 1, is given by θ∗l − θ∗l−1.

III. HEURISTICS

The min-max optimization of link loads objective is com-

putationally hard. This has motivated the search for heuristics

to obtain good solutions. We propose a CG based heuristic

which is a hybridization between CG and local search with

path-relinking. The proposed heuristic (named Algorithm A)

has two phases: COLUMN GENERATION and SEARCH.

In the COLUMN GENERATION phase, we solve through

CG the linear programming relaxation of the problem, i.e., we

let variables ϕp
k be real between 0 and 1 (please see [9] for

a general description of CG technique). The optimal solution

is a lower bound for the original problem and, therefore, can

be used to assess the quality of the heuristic solutions. In this

phase, we apply CG in solving the same set of optimization

problems as defined in section II, but since all problems are

linear, the whole set is solved in short running times. The

columns determined in the COLUMN GENERATION phase

define the sets Pk which are to be input to the SEARCH phase.

In the SEARCH phase, we use a multi-start local search

heuristic with path-relinking on the solution space defined

by the sets Pk computed in the first phase. At each local

search procedure, we first build an initial solution by selecting

randomly a path p ∈ Pk for each commodity k ∈ K and,

then, we apply local search using a neighbor set defined as all

solutions which differ from the current one in a single path.

At the end of the first local search procedure, the solution

is kept as the elite solution. At the end of each local search

procedure after the first, we apply path relinking between its

solution and the elite solution (path-relinking is done in both

directions), and keep the best one as the elite solution. Note

that in general, path relinking might use a list of elite solutions

(please see [17] for a general description of these heuristic

techniques) but our computational experience shows that good

performance is achieved with a single elite solution.

In order to assess the merits of Algorithm A, we also

implemented two variants of a multi-start local search heuristic

with path-relinking (named Algorithm B1 and Algorithm B2)

with no constraints on its search space. Note that it is not

possible to use directly the SEARCH phase algorithm in

this case since the complete sets Pk of a given graph are

exponentially sized (which is the reason why this problem is

combinatorial in nature, and, therefore, hard to solve). We have

to make appropriate adaptations on how the initial solutions

of each local search procedure are computed and on how

neighbor solutions are defined at each local search step (the

path relinking remains the same).

Concerning the initial solutions of each local search pro-

cedure of Algorithms B1 and B2, they are computed by first

selecting randomly an order of the commodities k ∈ K and

then applying the following greedy procedure:

1. For all {i, j} ∈ A do:

2. γ{ij} = 0
3. For all k ∈ K, following the selected order do:

4. For all {i, j} ∈ A do:

5. µ{ij} = γ{ij} + bk/c{ij}

6. Compute [µ]
7. Set α = 1.0
8. For l = 1, ..., |A| − 2 do:

9. If [µ]l 6= [µ]l+1 then:

10. If ([µ]l)
α
≤ (|A| − l) ([µ]l+1)

α
then:

11. α = z · log(|A| − l)/ log([µ]l/[µ]l+1)
12. Set δ{ij} equal to 1 for the links in the minimum

cost path of k using link costs
(

µ{ij}

)α

13. For all {i, j} ∈ A do:

14. γ{ij} = γ{ij} + δ{ij}bk/c{ij}

Initially, the link loads are set to zero (lines 1-2). Following

the previous selected order (line 3), a minimum cost path is

computed for each k (line 12) and the bandwidth of k is

added to the load of the edges of the minimum cost path

(lines 13-14). To compute the minimum cost path (line 12),

we use the well known Dijkstra algorithm. Nevertheless, this

algorithm assumes that the cost of a path is given by the sum

of all link costs composing it. Since our aim is the min-max

optimization of link loads, the edge costs are set to
(

µ{ij}

)α
.

This value is the load that the edge will have, if it is used

to route commodity k (lines 4-5), to the power of a value α
which is calculated in such a way (lines 6-11) that the result

is a min-max cost path (see Appendix for details). In this

procedure, z (line 11) is a parameter that must be set to a

value slightly larger than 1.0 (in our implementation, we have

set z = 1.0000001).

The difference between Algorithms B1 and B2 is on how

the order of the commodities k ∈ K is computed to obtain the

initial solution of each local search procedure. In Algorithm

B1, all orders have equal probability while in Algorithm B2,

the commodities k with higher values of demand bk have more

probability of being positioned before the others.

Concerning how neighbor solutions are defined at each

local search, both algorithms B1 and B2 use the following

strategy. For each current solution, there is one neighbor

solution for each k ∈ K which is computed by: (i) removing

its bandwidth demand from its current path and (ii) computing

a new minimum cost path using the same method as described

in the previous greedy algorithm (lines 4-14).

All algorithms (A, B1 and B2) run until a running time limit

(defined at the beginning) is reached. At the end, the last elite

solution is the result of the algorithm.

IV. COMPUTATIONAL RESULTS

In order to test the proposed algorithms, we have defined

a set of 4 case studies based on the well known network

topology of NSF network (depicted in Figure 1) where all

links are considered to have a capacity of 10000 Mbps.

1

2

5

7

4

3

6

10

8

9

12

16

13

11

14

15

17

18
19

20

24

25

26

23

21

22

Fig. 1. NSF Network: 26 nodes and 42 links

Based on this network, we have generated 4 different traffic

matrices, with commodities between all origin-destination

pairs (giving a total of 325 commodities).

In the first case study, named NSFa, all commodity demand

values were randomly generated with a uniform distribution

with values multiple of 10 Mbps between 20 and 180 Mbps.

In the other 3 case studies, named NSFb, NSFc and NSFd,

we have generated the traffic matrices in the following way.

First, we have selected a set Ns ∈ N composed by 6 nodes.

Then, we have set the commodity demand values with: 400

Mbps (when both end nodes belong to Ns), 140 Mbps (when

one of the end nodes belong to Ns) and 50 Mbps (when none

of the end nodes belong to Ns). Sets Ns are {1, 3, 5, 6, 10, 12}
for NFSb (nodes concentrated on the left part of the network),

{5, 6, 10, 12, 14, 18} for NFSc (nodes concentrated on the

central part of the network) and, {2, 8, 11, 20, 22, 26} for

NFSd (nodes distributed evenly over all the network).

All algorithms were developed in C++ programming lan-

guage and were run on the same computational platform with

Worst A B1 B2

Load LP RMP Best Worst Best Best

1st 43,70% 43,70% 43,70% 43,70% 43,70% 43,70%

2nd 43,60% 43,60% 43,60% 43,60% 43,60% 43,60%

3rd 43,60% 43,60% 43,60% 43,60% 43,60% 43,60%

4th 43,60% 43,60% 43,60% 43,60% 43,60% 43,60%

5th 42,40% 42,40% 42,40% 42,50% 43,00% 42,90%

6th 42,30% 42,30% 42,30% 42,40% 42,90% 42,70%

7th 42,30% 42,30% 42,30% 42,40% 42,80% 42,70%

8th 42,30% 42,30% 42,30% 42,40% 42,40% 42,60%

9th 41,60% 41,60% 41,60% 41,60% 42,40% 42,50%

10th 41,40% 41,40% 41,40% 41,40% 42,30% 42,50%

TABLE I
COMPUTATIONAL RESULTS FOR NSFA

Worst A B1 B2

Load LP RMP Best Worst Best Best

1st 52,20% 52,20% 52,20% 52,20% 52,20% 52,20%

2nd 52,10% 52,10% 52,10% 52,10% 52,10% 52,10%

3rd 52,10% 52,10% 52,10% 52,10% 52,10% 52,10%

4th 42,90% 43,00% 43,00% 43,00% 43,40% 43,50%

5th 42,90% 42,80% 42,80% 42,80% 43,10% 43,10%

6th 42,40% 42,40% 42,40% 42,50% 43,00% 43,10%

7th 42,40% 42,40% 42,40% 42,40% 42,90% 43,00%

8th 42,40% 42,40% 42,40% 42,40% 42,60% 43,00%

9th 42,40% 42,40% 42,40% 42,30% 42,50% 42,90%

10th 42,30% 42,30% 42,30% 42,20% 41,20% 42,80%

TABLE II
COMPUTATIONAL RESULTS FOR NSFB

a running time limit of 10 minutes. The running time of

COLUMN GENERATION phase of Algorithm A was never

higher than 10 seconds for all 4 case studies, which confirms

that the linear programming relaxation can be easily solved by

CG. Since the proposed algorithms are stochastic processes,

they give, in general, different solutions in different runs.

Therefore, we have run each algorithm 10 times for all case

studies. The computational results are summarized in Table I

for NFSa, Table II for NFSb, Table III for NFSc and Table

IV for NFSd. All tables show the 10 worst link load values

of the obtained solutions.

All tables show the best and the worst among all 10

solutions of algorithm A and only the best among all 10

solutions of algorithms B1 and B2. In order to understand the

meaning of the two additional columns (LP and RMP), note

first that the demand values of all traffic matrices are multiple

of 10 Mbps and, since all link capacities are 10000 Mbps,

the possible link load values µ{ij} are multiples of 0,1%. We

have used this fact to improve the lower bounds obtained in

the COLUMN GENERATION phase of Algorithm A using

a lifting technique previously proposed in [6]. We substitute

constraints (2) with their inequality version
∑

k∈K

∑

p∈Pk

bkδpk

{ij}ϕ
p
k ≤ c{ij}µ{ij} ∀{i, j} ∈ A

and apply the following lifting technique: the optimal solution

value θ∗l obtained by solving model (4) in iteration l is lifted

Worst A B1 B2

Load LP RMP Best Worst Best Best

1st 43,80% 43,80% 43,80% 43,80% 43,80% 43,80%

2nd 43,70% 43,70% 43,70% 43,70% 43,70% 43,70%

3rd 43,70% 43,70% 43,70% 43,70% 43,70% 43,70%

4th 42,50% 42,50% 42,50% 42,50% 42,60% 42,60%

5th 42,50% 42,50% 42,50% 42,50% 42,50% 42,50%

6th 42,50% 42,50% 42,50% 42,50% 42,40% 42,40%

7th 42,40% 42,40% 42,40% 42,40% 42,40% 42,40%

8th 42,10% 42,10% 42,10% 42,20% 42,20% 42,30%

9th 41,50% 41,50% 41,60% 41,80% 42,10% 41,90%

10th 41,50% * 41,60% 41,70% 41,90% 41,70%

* Reached timelimit of 24 hours

TABLE III
COMPUTATIONAL RESULTS FOR NSFC

Worst A B1 B2

Load LP RMP Best Worst Best Best

1st 43,80% 43,80% 43,80% 43,80% 43,80% 43,80%

2nd 43,70% 43,70% 43,70% 43,70% 43,70% 43,70%

3rd 43,70% 43,70% 43,70% 43,70% 43,70% 43,70%

4th 42,40% 42,40% 42,40% 42,40% 42,80% 42,70%

5th 42,40% 42,40% 42,40% 42,40% 42,50% 42,30%

6th 42,40% 42,40% 42,40% 42,40% 42,30% 42,30%

7th 42,30% 42,30% 42,30% 42,30% 42,00% 42,30%

8th 42,00% 42,00% 42,00% 42,00% 42,00% 42,30%

9th 41,90% 41,90% 41,90% 41,90% 41,90% 42,30%

10th 41,90% 41,90% 41,90% 41,90% 41,80% 42,20%

TABLE IV
COMPUTATIONAL RESULTS FOR NSFD

(rounded up) to the lowest multiple of 0,1% higher than θ∗l ,

and then used in constraint (6) in the subsequent iterations.

The LP columns present the lower bounds obtained by CG

with this lifting technique.

The RMP column is the solution obtained by solving

through mathematical programming (we have used CPLEX

12.1) the original problem with the paths obtained by CG, i.e.,

solving the integer restricted master problem (RMP). Although

in the general case, this problem is still very hard to solve, we

have used the granularity of 0,1% of link load values µ{ij}

to set the absolute MIP gap tolerance parameter of CPLEX.

Using this setting, we were able to find within a time limit of

24 hours many of the worst link load values. The worst case

was NSFc where we have found only the 9 worst link load

values. Note that this solution is the best that can be obtained

by the heuristics. In order to help the analysis, the link load

values of the heuristics that are equal to the values given by

the integer RMP are highlighted in bold on the tables.

The first important observation from the results is that the

optimal solutions of the constrained space (RMP results) are

quite close to the lower bounds (LP results), which clearly

indicates that the constrained search space includes high-

quality solutions.

The second important observation is that Algorithm A is

able to find high-quality solutions within the given time limit,

since that even the worst solution (out of 10 runs) of each

case study has always the best values in at least the 4 worst

link loads, although on average the solutions exhibit an higher

number of best values.

The third important observation is that the worst solution

out of 10 runs of Algorithm A is always better than the

best solutions of Algorithms B1 and B2. Note that the search

space of algorithms B1 and B2 necessarily contains the search

space of algorithm A and, therefore, the only reason for the

superior performance of algorithm A is because its search

space contains high-quality solutions that, due to its size, can

be found in short running times.

Note that the total number of paths given by the COL-

UMN GENERATION phase of Algorithm A in our runs were

1333 for NSFa, 1063 for NSFb, 1095 for NSFc and 1178 for

NSFd. These numbers represent an average number of paths

per commodity around 4 in all case studies, which confirms

that the constrained search space is a very small subset of the

whole search space.

As a concluding remark, we observe that the results of

Algorithm B1 have an average quality similar to the results of

Algorithm B2 (tables show only the best out of 10 solutions),

leading to the conclusion that the two strategies to generate the

order of the commodities in the greedy procedure (that com-

putes the initial solutions) produce no significant differences

on the obtained solutions.

V. CONCLUSIONS

For a capacitated telecommunications network with single

path routing and an estimated traffic demand matrix, we have

addressed the problem of how to determine the routing paths

aiming the min-max optimization of link loads. We have first

described the problem by mathematical programming. Then,

we have proposed a column generation based heuristic which

is a hybridization between column generation and local search

with path-relinking. In our proposal, we use column generation

to solve the linear programming relaxation of the problem and,

then, we apply a multi-start local search heuristic with path-

relinking to the solution space defined by the paths computed

in column generation.

In order to assess the merits of our approach, we have

also implemented two variants of a multi-start local search

heuristic with path-relinking with no constraints on its solution

space. The computational results have shown that constraining

the search space of the heuristic to the paths given by the

column generation gives much better results since this solution

space contains good quality solutions and, due to its size,

enables to find them in much shorter running times. Moreover,

the computational results have also shown that the proposed

heuristic is quite efficient in obtaining near optimal routing

solutions within short running times.

Concerning future work, note first that, in the general case,

the lower bounds given by the column generation might be not

so close to the obtained solutions as the ones obtained in our

case studies. Therefore, we should test the algorithms in other

case studies with different topological and/or traffic demand

characteristics.

Finally, note that the min-max optimization of link loads has

been previously addressed as a traffic engineering objective in

the cases of (i) multiple spanning tree based routing networks

[6], [8] and (ii) single path routing with path protection [7].

It will be interesting to investigate how the column generation

based heuristic approach proposed here for the simplest case of

single path routing can be generalized to these more complex

traffic engineering variants and if its efficiency will be at least

as good as in the present case.

ACKNOWLEDGMENT

This work has been conducted under the project PTDC/EIA-

EIA/100645/2008 ”SearchCol: Meta-heuristic Search by Col-

umn generation” (funded by FCT) and under the Euro-

pean FP7 Network of Excellence “Euro-NF”. Dorabella San-

tos was funded by Portuguese FCT under post-doc grant

SFRH/BPD/41581/2007. Michał Pióro was funded by Polish

Ministry of Science and Higher Education under research grant

N517 397334.

REFERENCES

[1] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell and J. McManus, “Re-
quirements for Traffic Engineering Over MPLS”, RFC 2702, September
1999

[2] X. Xiao, A. Hannan, B. Bailey and L. Ni, “Traffic Engineering with
MPLS in the Internet”, IEEE Network, Vol. 14, No. 2, pp. 28-33, 2000

[3] IEEE Standard 802.1Qay, “Provider Backbone Bridge - Traffic Engi-
neering”, 2009

[4] B. Fortz and M. Thorup, “Internet Traffic Engineering by Optimizing
OSPF Weights”, in Proc. 19th IEEE Conf. on Computer Communica-
tions (INFOCOM), pp. 519-528, 2000

[5] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS Weights in a Chang-
ing World”, IEEE Journal on Selected Areas in Communications, Vol.
20, No. 4, pp. 756-767, 2002

[6] D. Santos, A. de Sousa, F. Alvelos, M. Dzida and M. Pióro, “Optimiza-
tion of link load balancing in multiple spanning tree routing networks”,
Telecommunication Systems, Springer, available online, June 2010, doi:
10.1007/s11235-010-9337-8

[7] A. de Sousa, D. Santos, P. Matos and J. Madeira, “Load Balancing
Optimization of Capacitated Networks with Path Protection”, in Proc. of
International Symposium on Combinatorial Optimization, Hammamet,
Tunisia, 2010

[8] D. Santos, A. de Sousa, F. Alvelos, M. Dzida, M. Pióro and M.
Zagożdżdon, “Traffic Engineering Of Multiple Spanning Tree Routing
Networks: the Load Balancing Case”, Next Generation Internet Net-
works (NGI 09), IEEE Xplore, Aveiro, Portugal, 2009

[9] M. Pióro and D. Medhi, “Routing, Flow and Capacity Design in
Communication and Computer Networks”, Morgan Kaufmann, 2004

[10] W. Ogryczak, M. Pióro, and A. Tomaszewski, “Telecommunications net-
work design and max-min optimization problem”, Journal of Telecom-
munications and Information Technology, vol. 3, 2005

[11] D. Nace and M. Pióro, “Max-Min Fairness And Its Applications to
Routing and Load-Balancing in Communication Networks: A Tutorial”,
IEEE Surveys and Tutorials, vol. 10, no. 4, 2008

[12] B. Radunovic and J.-Y. L. Boudec, “A unified framework for max-min
and min-max fairness with applications”, ACM/IEEE Transactions on
Networking, vol. 15, no. 5, October 2007

[13] M. Dzida, M. Pióro, and M. Zagożdżon, “The Application of Max-
Min Fairness Rule to Bandwidth Allocation in Telecommunication
Networks”, The 3rd Polish-German Teletraffic Symposium (PGTS),
Dresden, 2004

[14] M. Pióro, M. Dzida, E. Kubilinskas, P. Nilsson, W. Ogryczak, A.
Tomaszewski and M. Zagożdżon, “Applications of the Max-Min Fairness
Principle in Telecommunication Network Design”, Next Generation
Internet Networks (NGI 05), IEEE Xplore, Rome, Italy, 2005

[15] W. Ogryczak, M. Milewski and A. Wierzbicki, “Fair and Effcient Band-
width Allocation with the Reference Point Methodology”, International
Network Optimization Conference (INOC), Spa, Belgium, 2007

[16] W. Ogryczak and T. Śliwiński, “On Solving Linear Programs with the
Ordered Weighted Averaging Objective”, European Journal of Opera-
tional Research, Vol. 148, pp. 80-91, 2003

[17] M. Resende and C. Ribeiro, “GRASP with Path-Relinking: Recent Ad-
vances and Applications” in ”Metaheuristics: Progress as Real Problem
Solvers”, T. Ibaraki, K. Nonobe and M. Yagiura, (Eds.), Springer, pp.
29-63, 2005

[18] J. Puchinger and G.R. Raidl, “Combining metaheuristics and exact
algorithms in combinatorial optimization: a survey and classification”
in ”Artificial Intelligence and Knowledge Engineering Applications: A
Bioinspired Approach”, J. Mira and J. R. Álvarez, (Eds.), Lecture Notes
in Computer Science 3562, Springer, pp. 41-53, 2005

[19] E. Danna and C.L. Pape, “Branch-and-Price Heuristics: A Case Study
on the Vehicle Routing Problem with Time Windows” in ”Column
Generation”, G. Desaulniers, J. Descrosiers and M.M. Solomon (eds.),
Springer, New York, 2005

[20] F. Alvelos and J.M. Valério de Carvalho, “A local search heuristic
based on column generation applied to the binary multicommodity flow
problem”, International Network Optimization Conference (INOC), Spa,
Belgium, 2007

APPENDIX

Consider a graph G(N,A) where each link {i, j} ∈ A has

an associated cost µ{ij}. Consider µ = {µ{ij} : {i, j} ∈ A}
and let [µ] be the vector obtained from µ by rearranging its

elements in non-increasing order ([µ]l is the lth element of

[µ]). For a given l = 1, ..., |A| − 1 such that [µ]l > [µ]l+1, if

we set a value α ≥ 1 such that:

([µ]l)
α

>

|A|
∑

t=l+1

([µ]t)
α

(A.1)

then, a standard minimum cost path algorithm (e.g., Dijkstra

algorithm), with costs given by
(

µ{ij}

)α
, guarantees that the

link with cost [µ]l will not be in the solution if there is a path

composed only by links with lower costs. An alternative way

of ensuring (A.1) is:

([µ]l)
α

> (|A| − l) ([µ]l+1)
α

(A.2)

since the right-hand side expression of (A.2) is an upper bound

for the right-hand side expression of (A.1).
Note that (A.2) is always true for l = |A| − 1. Therefore,

if we compute a value of α compliant with (A.2) for all l =
1, ..., |A| − 2 such that [µ]l > [µ]l+1, we guarantee that the

solution of a standard minimum cost path algorithm, with costs

given by
(

µ{ij}

)α
, is a solution for the min-max optimization

of link costs.
In the greedy procedure of Algorithms B1 and B2 (section

III), we start by setting α = 1.0 (line 7) and for all l =
1, ..., |A| − 2 (line 8) such that [µ]l > [µ]l+1 (line 9), we

check if (A.2) is fulfilled (line 10) and, if not, we raise α
(line 11) to an appropriate value.

If there are indexes l = 1, ..., |A|−2 such that [µ]l = [µ]l+1,

the min-max optimization solution is still guaranteed by any

value α compliant with (A.2). To understand this, consider

that there are M links with the same cost. In this case, m of

such links (2 ≤ m ≤ M) will not be in the solution if there

is a path composed by at most m− 1 of such links and links

with lower costs.

