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Abstract—Today, electronic devices may have multiple pos-
sibilities to communicate, either through wired or wireless in-
terfaces. Despite this diversity, devices still fail to fully use the
available resources by not simultaneously using multiple channels
to their full extent. This is especially true in wireless channels
where the efficient aggregation of multiple channels has proved
to be a difficult task, as shown in recent simulation based
works. In this Work In Progress paper, we present a testbed
suitable to the evaluation of aggregation algorithms under real
network environments. The proposed testbed aims to simulate
and experiment both existing and new aggregation algorithms,
optimized for wireless heterogeneous communication channels
that can be deployed in industrial environments. In order to
illustrate the merits of the proposed testbed, we also describe its
use in the performance assessment of two aggregation algorithms:
Linux Bonding Driver and Multipath TCP.

I. INTRODUCTION

As the diversity of electronic devices and communication
mechanisms grows, the popularity of mobile devices, such as
laptops, smartphones and Internet of Things (IoT) devices,
is also growing. Today, these devices can easily integrate
multiple wireless communication interfaces, including IEEE
802.11 (WiFi), 3G/4G, Bluetooth or other WAN/PAN tech-
nologies. Despite the existence of multiple communication
channels, most of these devices only use one channel, while
the remaining channels are reserved for failover or not used at
all. The simultaneous data transmission over multiple channels
(or paths) brings enormous benefits in terms of throughput and
robustness. Regarding throughput, the capacity of the multiple
channels can be aggregated into a virtual higher capacity
channel that can serve bandwidth intensive connections and/or
multiple low bandwidth connections. Considering robustness,
by having a connection established over multiple paths, the
perception of a link failure or wireless handover can be
mitigated and made imperceptible to the connection. Also, it is
possible to redundantly transmit the information over multiple
paths, increasing the probability of the information reaching
their destination when using unreliable paths.

Still, the development of an efficient multipath aggregation
algorithm is not an easy task due to the high level of packet
reordering. Some algorithms, directed at different layers of
the TCP/IP protocol stack, have been proposed, but they are
somehow conditioned by assumptions that do not correspond
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to real network environments, as we will see in the Related
Work section. Our goal is to evaluate several algorithms under
real network environments and propose improvements. We
also aim to develop, simulate and experiment new aggregation
algorithms capable of enhancing the transmission efficiency
when using wireless heterogeneous communication channels.

In the following sections, the main problem of multipath
aggregation will be presented as well as some related works
that address the problem in different layers of TCP/IP protocol
stack. In the sequence, we will present a testbed for evaluating
multipath aggregation algorithms, where we evaluate the Linux
Bonding Driver and MPTCP.

II. PROBLEM

Data transmission over multiple paths has a number of
benefits, although the heterogeneity of path communication
technologies and the inherent network variability makes dif-
ficult the process of efficiently transmitting data. A common
approach to increase the throughput of a system consists in
distributing data packets over multiple paths in proportion to
their capacity. In an ideal scenario, the total throughput would
be the sum of all individual paths throughputs. However, in
a real scenario, the latency and capacity variability induces
packet reordering and loss, which lowers the performance of
reliable data transport protocols.

For example, in TCP Congestion Control algorithm [1], if
a packet arrives more than three positions out of order, the
sender assumes that the packet is lost and retransmits it (this
is the Fast Retransmission mechanism). However, the packet
could have just been delayed due to some unexpected network
event and, therefore, the unnecessary transmissions will lower
the transmission efficiency. Note that tweaking data transport
protocols to allow a larger out of order reception of packets,
without unnecessary retransmission, is a compromise that must
be investigated between transmission efficiency and required
buffering resources, which may be limited in some devices. A
detailed analysis of packet reordering and its consequences in
wireless networks can be seen in Kaspar et al. [2] and Chan
et al. [3].

As a result, an efficient method for transmitting data over
multiple paths must take into account the path heterogeneity



and variability, in order to efficiently distribute data in propor-
tion to each path available bandwidth capacity and, at the same
time, to mitigate reordering effects at the receiver devices.

III. RELATED WORK

The main approach to simultaneously use multiple paths
consists in distributing, under a certain criteria, the outgoing
data flows by the available paths. For example, if the capacity
of a certain path is saturated, a new outgoing data flow is
assigned to a less saturated path. By choosing adequate criteria,
the overall throughput can be increased. However, since each
outgoing data flow is confined to a single path, the flow cannot
take advantage of the other paths resources for throughput and
robustness increase, and its maximum throughput is limited by
the assigned path characteristics.

This limitation led us to focus on studying techniques and
research efforts capable of establishing data flows yielding
robustness and bandwidth increase due to multipath aggrega-
tion. In the following, we describe some known aggregation
techniques that match these characteristics. In general, such
techniques can be deployed in different layers of TCP/IP pro-
tocol stack. We do not include Application Layer techniques
since they are highly platform dependent and resource hungry
when compared to lower layers implementations.

A. Link Layer

At the Link Layer, the Linux Bonding Driver (LBD) [4]
can be used to distribute evenly data frames over multiple
paths (i.e using mode 0). If multiple point-to-point Link Layer
paths between two nodes are available, the LBD is capable of
aggregating the multiple physical interfaces into a single virtual
interface in each host. The data packets delivered through the
virtual interface are encapsulated into frames that are evenly
split by LBD across the available links and merged at the
destination.

Similarly to LBD, Multilink PPP [5] is also capable of
sending data segments over various PPP channels. Moreover,
it can also cope with different capacity channels using two
possible approaches [S5]. The first approach consists in di-
viding the packets into variable segment size in proportion to
the transmission rates of the channels. The second approach
consists in dividing the packets into many equal size fragments
and distribute these fragments by the channels, the number
being proportional to the transmission rate of each channel.

Both the LBD and Multilink PPP have good performance
when running over paths with stable and predictable character-
istics in terms of bandwidth and latency, such as wired paths.
However, when dealing with wireless paths, with high latency
and capacity variability, the packet reordering can affect the
transmission efficiency. When using the LBD, the latency and
capacity of the multiple paths must be equal, otherwise the
packet reordering phenomena will occur. The same happens
when using Multilink PPP, even if the capacity difference
is compensated with appropriate segment distribution, but a
latency variation exists, the reordering phenomena will occur.
Thus, a Link Layer approach for aggregating multiple paths
without any kind of feedback mechanism for compensating
path characteristics variability is not a suitable solution.

B. Network Layer

A number of research works address the aggregation
problem in the Network Layer. For example, Gurtovet et
al. [6] work takes advantage of the Multihoming and advanced
security features of Host Identity Protocol to implement a
Fastest Path First scheduling algorithm. The authors managed
to successfully simulate a TCP connection spread over multiple
paths with minimal reordering, although the latency of the
paths was constant, which does not correspond to a real
scenario.

Chebrolu et al. [7] propose a proxy based reordering
minimization algorithm for wireless paths. By introducing re-
ordering buffers and estimating path bandwidth for conducting
a weighted data distribution over the different paths, the au-
thors present simulation results showing that their proposal can
achieve good bandwidth aggregation. However, their method
requires knowing the status of base station queues, which is not
directly accessible in practice. Evenson et al. [8] use a similar
approach but they consider a Delay Equaliser component, run-
ning at sender side, that compensates path latencies mismatch.
Despite the emulation results show that packet reordering is
significantly reduced [8] [9], the additional delay added to
the fastest paths lowers the transmission efficiency, due to the
increase of the round trip times.

C. Transport Layer

The majority of Transport Layer aggregation techniques are
focused on the addition of multipath transmission capability
to already standardized and vastly deployed protocols. This
approach ensures compatibility with already existing upper
layer protocols and network middleboxes (Firewall, NAT, etc.)
A promising work and moving towards standardization is Mul-
tiPath TCP (MPTCP) [10], capable of splitting a single TCP
connection over multiple heterogeneous paths. By establishing
a TCP subflow per path, with independent sequence numbers
and congestion algorithms, the transmission efficiency in each
path is maximized. Moreover, each TCP subflow carries an
additional Data Sequence Number used for reordering the
data packets before they reach the receiving application [11].
MPTCP has already a Linux Kernel implementation [12]
suitable for development and evaluation that we will use in
Section IV-C.

Another example is MultiPath SCTP (MPSCTP) [13],
one of many SCTP modifications that take advantage of the
multiple IP failover capability to aggregate the resources of
multiple paths. Under the assumption that all the acknowl-
edgement messages are received, the simulation results show
that MPSCTP is better than MPTCP [13], although the given
assumption can not be guaranteed in practice, especially in
wireless networks.

IV. MULTIPATH AGGREGATION TECHNIQUES
EVALUATION

All the previously identified techniques may achieve good
results, but they are somehow conditioned, either by the
stability of the paths, simulation environments or assumptions
that do not correspond to real network environments. The
goal of our work is to evaluate several techniques under real
network environments and to propose improvements capable



of enhancing the transmission efficiency when heterogeneous
communication channels are used. Below, we describe our
Evaluation Testbed and evaluate the Linux Bonding Driver and
the MPTCP using wireless communication channels.

A. Evaluation Testbed

The evaluation testbed is shown in Figure 1. It consists
on two computing nodes with networking capability, node
A and node B, and two User Equipments (UE), UE A and
UE B. Communication between UE A and UE B is to be
conducted through regular data transport protocols (i.e. without
any modifications). All aggregation algorithms run on nodes A
and B and are completely transparent to both user equipments.
By adopting a proxy based approach, UE A reaches UE B
via aggregated channels, experiencing a faster and robuster
connection.

Both node A and node B are based on the ALIXDI13
(Figure 2) system boards with a 500 MHz AMD Geode
LX800 CPU and 256 MB of RAM. Among other features,
ALIX2D13 offers three 10/100 Ethernet ports, four USB
ports and a miniPCI, enabling the interface with various
telecommunication technologies, such as cable modems (via
Ethernet ports), and 2G/3G/4G modems, WiFi or Bluetooth
(via USB/miniPCI). Node A and B can run various embedded
Linux flavours, providing a highly customizable and feature
rich platform for developing and experimenting multipath
aggregation algorithms. The use of embedded platforms will
make us aware of the limited resources impact when testing ex-
isting and developing new aggregation algorithms. Therefore,
besides validating aggregation algorithms, this testbed also
aims at testing them in platforms with limited computational
resources.

Wireless Channel 1
[ —
Wireless Channel 2

Network of Evaluation Testbed

LAN, WAN or PAN

Fig. 1.

Fig. 2. ALIX2D13 platform used in Node A and B

B. Linux Bonding Driver

To evaluate LBD under real wireless networks, Node A was
connected to the Internet by two similar 3G USB modems
(average transmission rates of 1.7 Kbps up link and 5.1
Mbps down link, measured at link layer) and Node B was
connected to the Internet by a broadband access link (average

TABLE 1. IMPACT OF PACKET REORDERING ON A TCP DATA FLOW

TCP flow over two
wireless channels

2.62 Mbps
1.53 Mbps

TCP flow over one
wireless channel

3.6 Mbps
0.78 Mbps

No traffic shaping

IMbps traffic shaping

transmission rate always above 20 Mbps in both directions,
measured also at link layer). In order to run LBD, we have
created two independent VPN tunnels over the Internet, one
per wireless channel, interconnecting node A and node B. The
nodes were running Debian 6 with LBD module loaded. The
measured Round Trip Time (RTT) of each tunnel was 110 ms.

In the first experiment, a file was downloaded from node
B to node A over one wireless channel, achieving an average
throughput of 3.6 Mbps. Afterwards, the same file was down-
loaded using LBD, and the average achieved throughput was
2.62 Mbps.

When dealing with wireless channels, even if they look
similar (same operator and characteristics), the underlying
wireless link retransmission mechanisms causes variability in
the latency and capacity of the communication channel [3].
This variability causes packet reordering at the receiver and
therefore the transmission throughput is lowered by the packet
retransmissions, as described in Section II.

The simplest way to overcome the packet reordering neg-
ative effect consists in shaping (via token bucket) the sender
throughput to a value smaller than the minimum instantaneous
link capacity. In this way, the packets arrive in order and a
throughput increase is expected when transmitting data simul-
taneously over two wireless channels. In a second experiment,
traffic was shaped to a maximum of 1 Mbps in each link. We
observed a throughput of 0.78 Mbps over one channel rising up
to 1.53 Mbps when two channels were used, thus confirming
our assumption. Table I presents the obtained results.

Despite the fact that traffic shaping overcomes the band-
width aggregation problem, it is not a good approach, since the
network resources are not fully utilized. An efficient algorithm
operating at the Link Layer must have a frame scheduler that
probes channel bandwidth, for weighted frame distribution,
and probes the channel latency to predict the arrival instants
and send reordered frames that will arrive in the right sequence
due to latency mismatches between paths.

C. MPTCP evaluation

We then proceeded to test MPTCP. The network configu-
ration was the same as in the LBD evaluation. Node A was
equipped with two 3G wireless modems and node B was well
served by an internet broadband connection. Both nodes were
connected through two independent VPNs and were running
Debian 6 with MPTCP v0.88 Linux kernel [12] with the
required changes in the routing tables.

To evaluate MPTCP, a data stream, lasting 60 seconds, was
repeatedly sent from node A to node B and throughput was
measured using iperf tool. We have conducted 30 consecutive
measurements. The first 10 measurements were conducted with
only the first channel active. The next 10 measurements were
conducted with both channels active. The last 10 measurements
were conducted with only the second channel active.
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This experiment was also evaluated through simulation
with ns-3 and Direct Code Execution framework (ns-3 DCE).
ns-3 DCE was configured to incorporate TCP/IP stack of
MPTCP kernel instead of the standard Linux stack. Node A
and B were connected by two point-to-point paths with a
capacity of 1.7 Kbps and a RTT of 110 ms. In the middle of
the paths we placed intermediate nodes that represent operator
network equipments (Figure 4). These intermediate nodes were
configured to induce 1% packet loss characteristic of the 3G
wireless networks [3]. Under the simulation environment,
the achieved results were 1.26 Mbps with one channel and
1.8 Mbps with the two aggregated channels.

The results are presented in Figure 3, where the straight
line represents experimental measurements and the dashed
line represents simulated measurements. As we can see, the
achieved throughput when Channel 1 or Channel 2 is used is
similar ( 1.18 Kbps on average). When both channels are used
together with MPTCP, the data rate is increased to an average
value of 1.68 Kbps and, therefore, throughput aggregation was
obtained. Note, though, that the average aggregated throughput
is not twice the average throughput of individual channels,
which means that additional efficiency might be achieved with
better aggregation algorithms.

The simulation results are similar to, but slightly better
than, experimental measurements because the simulations only
took into account packet loss, and did not consider path latency
variability. In addition, the constant shape along samples in
simulation results is due to the fact that simulation parameters
were constant over simulation time.

When experimenting and simulating MPTCP, we noticed
that throughput aggregation becomes significant only when
long data streams are transmitted. When small files are trans-
mitted, the achieved throughput is equal to a single path
throughput. This behaviour was also documented by Chen
et al. [14], who did a measurement based study of MPTCP

performance under different data flow sizes and concluded that
most of the small file transfers are concluded before MPTCP
can establish alternative paths.

V. CONCLUSION AND FUTURE WORK

In this Work In Progress, we have presented a testbed for
evaluating aggregation techniques under real network environ-
ments. We have used the testbed to evaluate a Link Layer
approach (LBD) and a Transport Layer approach (MPTCP).
From our evaluation, we have concluded that the LBD is not
suitable for wireless link aggregation and MPTCP is inefficient
when dealing with small size file transfers. We plan to continue
evaluating and developing algorithms at different layers of
communication stack and identify the problems caused by
high variability networks. In parallel, we plan to develop,
characterize and model various aggregation algorithms with ns-
3 simulator. The goal is to be capable of deploying aggregation
algorithms in different platforms, identifying the most adequate
solutions.
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