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Abstract

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are 
two devastating neurodegenerative diseases. Several lines of evidence suggest that these 
diseases are part of a continuum with common genetic factors. As researchers uncover 
more genes associated with ALS/FTLD, studies have shown that majority of these genes 
regulate lysosome‐related processes. Lysosomes play important roles in clearing dam‐
aged organelles and proteins through the autophagy‐lysosome pathway and clearing 
extracellular debris by the endolysosomal pathway. Disruption of both the autophagy 
and endolysosomal pathways has been implicated in ALS/FTLD pathogenesis.

Keywords: autophagy, lysosome, amyotrophic lateral sclerosis (ALS), frontotemporal 
lobar degeneration (FTLD), neurodegeneration, progranulin (PGRN), TMEM106B, 
C9orf72, OPTN, p62, TBK1, ubiquilin2 (UBQLN2), TDP‐43, FUS, tau, VCP, CHMP2B

1. Introduction

Proper degradation machinery is necessary for neuronal survival, and disruption of lyso‐

somal function is sufficient to cause neurodegeneration [1–4]. To recycle cellular material, cells 

use two major pathways: autophagy for damaged organelles and long‐lived proteins and the 

ubiquitin‐proteasome system (UPS) for short‐lived proteins [5, 6]. Autophagy consists of three 

pathways and each of them ultimately delivers cellular contents to the lysosome for degrada‐

tion. The pathways are chaperone‐mediated autophagy (CMA), which uses HSC70 to recognize  
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specific misfolded proteins; microautophagy, which directly invaginates material into the 
lysosome; and macroautophagy, which is responsible for the degradation of organelles, 
protein aggregates, and large protein complexes. Macroautophagy (hereafter referred to as 

autophagy) is the most common pathway. The autophagy pathways and molecular mecha‐

nisms have been recently reviewed elsewhere [7, 8]. The presence of protein aggregates in 

most neurodegenerative diseases suggests common underlying problem in protein degrada‐

tion systems. Here, we summarize the connection between the autophagy‐lysosome pathway 

and two neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal 

lobar degeneration (FTLD) [9].

ALS is characterized by the loss of upper and lower motor neurons resulting in progressive 

weakness and ultimately paralysis. Patients survive a median of 3–5 years from disease onset 

[10]. FTLD is characterized by the degeneration of neurons in the frontal cortex and anterior 

temporal lobes. This degeneration leads to changes in behavior and language impairment. The 

subtypes of FTLD can be distinguished by the prominent symptoms, which reflect the area 
affected by neuron loss [11, 12]. The subtypes are behavioral variant frontotemporal dementia 

(bvFTD), semantic dementia (SD), and primary nonfluent aphasia (PNFA). Behavioral variant 
frontotemporal dementia, the most common subtype, is characterized by changes in behavior 

such as disinhibition, loss of empathy, impaired social skills, and decline in personality. SD is 

characterized by impaired language comprehension, and PNFA disrupts speech production 

[9]. These subtypes often overlap and can additionally include Parkinson’s disease‐like symp‐

toms. Patients survive for a median of 7–11 years after diagnosis. There are no treatments for 

FTLD [9]. ALS and FTLD symptoms are often present in the same patient with an indication 

that these diseases have shared etiology [13, 14].

Each disease is also subdivided by molecular pathology depending on the primary compo‐

nents of inclusion bodies, such as Tau, TDP‐43 (TAR DNA‐Binding Protein 43), FUS (fused 

in sarcoma), SOD1 (superoxide dismutase 1 ) and C9 or f72 dipeptide repeats (DPRs) [9, 15]. 

In 2006, both ALS and FTLD were found to have neuronal inclusions composed largely of 

TDP‐43, an RNA‐binding protein, that are also ubiquitin and p62‐positive, suggesting that 

these aggregates were tagged for degradation [16–18]. Additionally, genetic mutations that 

can lead to the development of both ALS and FTLD have since been discovered. Thus, these 

two diseases are linked by clinical concurrence, molecular pathology, and genetic overlap 

[13, 14, 19].

As many new genes have been identified for FTLD and ALS in the last decade, studies have 
revealed a common theme of these genes functioning in the lysosomal network (Figure 1). 

Some mutations, such as GRN, TMEM106B, CHMP2B, and valosin‐containing protein (VCP) 

are associated with disrupted lysosomes and multivesicular bodies (MVB). Other mutations, 

such as in p62/SQSTM1, OPTN, ubiquilin2 (UBQLN2), and TANK‐binding kinase (TBK1) 

directly disrupt selective autophagy and therefore prevent cargo from being degraded. The 

rest of the mutations have a more complex relationship with autophagy and lysosome func‐

tion, such as mutations in the RNA‐binding proteins TDP‐43 and FUS. Here, we will discuss 

the genetic causes of ALS and FTLD in more detail with specific emphasis on lysosomal and 
autophagy impairment (Figure 1).
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2. Mutations affecting the endolysosome pathway: progranulin  
(PGRN), TMEM106B, CHMP2B, and VCP

2.1. Progranulin

The most common cause of familial FTLD with ubiquitin‐positive aggregates is mutation of 

the GRN gene, which accounts for 10% of all FTLD cases and ∼25% of familial FTLD [20–22]. 

About 70 mutations in the GRN gene have been linked to FTLD, most of which have been 

shown or predicted to decrease PGRN protein level or disrupt secretion of PGRN [20–24]. 

While FTLD is caused by haploinsufficiency of PGRN, a more serve neurodegeneration is 
caused by homozygous loss of PGRN. This complete loss of PGRN results in neuronal ceroid 

lipofuscinosis (NCL), a type of lysosome storage disorder (LSD) characterized by the build‐up 

of autofluorescent lipofuscin [25, 26]. These findings suggest that loss of function mutations 
in the GRN gene causes neurodegenerative diseases in a dose‐dependent manner and PGRN 

is important for lysosome function.

The function of PGRN is still under investigation: it is known to be a secreted glycoprotein com‐

prised of 7.5 granulin repeats with pleiotropic roles, including protein homeostasis, inflamma‐

tion, and neuronal survival and outgrowth [27]. Recently, several lines of evidence suggest that 

it plays a vital role in lysosome function. First, GRN has been found to be regulated with other 

lysosomal genes [28]. Furthermore, GRN mRNA and PGRN protein levels are upregulated in 

response to lysosome or autophagy inhibition [29]. Finally, PGRN was found to be delivered 

to the lysosome [30, 31]. PGRN reaches the lysosome through at two independent pathways. 

In one pathway, PGRN’s extreme C‐terminus binds the sorting receptor sortilin, which carries 

PGRN to the lysosome [30, 32]. In the second pathway, PGRN binds prosaposin, and they are 

Figure 1. Functions of the ALS/FTLD genes in the autophagy‐lysosome pathway. Many genes associated with ALS/

FTLD play critical roles in the endosome‐lysosomal pathway, regulate lysosomal functions, or affect autophagy pathway 
directly or indirectly.
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transported to the lysosome together by the cation‐independent mannose‐6‐phosphate receptor 

(CI‐M6PR) and low‐density lipoprotein receptor‐related protein 1 (LRP1) [31].

Mouse models of PGRN deficiency have consistently found increased levels of ubiquitin 
and p62, an adaptor for delivering cargo to the autophagosome [33], buildup of lipofuscin 

and its protein components saposin D and SCMAS and electron‐dense storage granules, 

all of which suggest lysosome impairment [34–36]. Several models also found aggregation 

of TDP‐43, similar to what is seen in FTLD patients [34, 37, 38]. Furthermore, PGRN‐defi‐

cient mouse models also phenocopy FTLD symptoms such as decreased social interaction 

and mild learning/memory defects [35, 38–40]. The presence of clear lysosomal problems in 

mouse models and in patients with complete loss of PGRN suggests that PGRN is necessary 

for lysosome function. FTLD patients with GRN mutations also exhibit typical pathological 

features of NCL pathology [36], suggesting FTLD and NCL caused by PGRN mutations are 

pathologically linked and lysosomal dysfunction is one of the underlying disease mecha‐

nisms for FTLD‐GRN. However, how PGRN regulates lysosomal function remains to be 

investigated.

2.2. TMEM106B

Another gene associated with FTLD is TMEM106B, which is the only identified risk factor for 
FTLD with GRN mutations [41–44]. TMEM106B was also found to increase risk in patients 

with C9orf72 hexanucleotide repeat expansions [45, 46]. The TMEM106B SNP associated with 

FTLD increases the mRNA and protein levels of TMEM106B [36, 44, 47]. TMEM106B is a 

single pass, type II transmembrane protein that localizes to the late endosome and lysosome 

[47–49]. Cellular studies on TMEM106B have pointed to roles in lysosome trafficking and 
lysosomal stress response [50, 51]. Overexpression of TMEM106B in cells disrupts lysosome 

morphology and function [47, 48]. Furthermore, when a transgenic TMEM106B mouse line 

was crossed with a PGRN deficient mouse line, the lysosome abnormalities and lipofuscin 

accumulation seen in PGRN deficient mice were exacerbated [52]. The connection between 

TMEM106B’s role at the lysosome and a risk factor for FTLD with GRN mutations further 

highlights the importance of the lysosome pathway in FTLD etiology.

2.3. CHMP2B

The sole mutation identified to cause FTLD with ubiquitin‐positive aggregates, but tau, 
TDP‐43, and FUS negative inclusions, occurs in the gene CHMP2B [53, 54]. CHMP2B has also 

been found to cause rare cases of ALS [55]. CHMP2B functions in the ESCRT‐III complex, 

involved in MVB formation to deliver cargo from endocytic pathway to lysosomes [56, 57]. 

The mutations identified create an early termination of the protein, resulting in an unregulated 
CHMP2B truncation that is unable to recruit VPS4 to recycle the ESCRT‐III complex to new 

sites of MVB formation [58, 59]. With ESCRT‐III still engaged on the MVB, MVB‐lysosome 

fusion cannot take place [54, 60–62]. Furthermore, CHMP2B mutations impair autophago‐

some maturation, possibly through the disruption of amphisome formation between autopha‐

gosome and late endosomes [63–66]. Mouse models of CHMP2B mutations replicate both 

ALS and FTLD pathology, whereas CHMP2B knockout mice do not show neurodegenerative  

Lysosomes - Associated Diseases and Methods to Study Their Function66



phenotypes, implicating a gain of function disease mechanism [67–70]. Similar to the PGRN 

deficiency mouse models, CHMP2B mutations cause protein inclusions and accumulation 

of autofluorescent aggregates in the frontal cortex, reminiscent of lysosome storage disor‐

ders [71]. Thus, FTLD‐associated mutations in CHMP2B impair the endolysosomal pathway, 

which may cause additional defects in autophagy [66, 69], providing additional evidence that 

disruption of the autophagy‐lysosome pathway may drive ALS and FTLD.

2.4. VCP

Valosin‐containing protein (VCP) has been implicated in several diseases including FTLD 

[22, 72–76], ALS [77], and Charcot Marie Tooth disease, a genetic peripheral nerve disorder 

[78]. VCP is an AAA+‐ATPase that delivers and unfolds ubiquitinated proteins, as well as 

endoplasmic reticulum–associated protein degradation (ERAD) substrates, at the proteasome 

[79–83]. Furthermore, VCP binds to clathrin and EEA1 to regulate the size and selectivity of 

endosomes [83–85]. Pharmacological inactivation of VCP as well as VCP knockdown inhib‐

its MVB formation and blocks autophagosome maturation, resulting in accumulated LC3‐II, 

ubiquitin, and p62 levels along with cytoplasmic TDP‐43 aggregation [86–88]. Disease‐associ‐

ated mutants of VCP present similar phenotypes in transgenic mouse models, whereas com‐

plete loss of VCP is embryonic lethal [86, 89–91]. Finally, VCP mutants inhibit the autophagic 

turnover of stress granules, which may be relevant to the accumulation of TDP‐43‐positive 

aggregates found in patients with VCP mutations [76, 92, 93]. The precise mechanism that 

halts autophagosome maturation in VCP mutations remains unclear, though MVB dysfunc‐

tion may play a role [66]. VCP’s role in MVB formation and autophagic flux suggest that 
loss of VCP function may cause ALS, FTLD, and other related neurodegenerative diseases by 

impairing the autophagy‐lysosome pathway.

3. Autophagy adaptor proteins

Further evidence that ALS and FTLD are linked to autophagy and lysosome disruption 

comes from mutations that directly affect several autophagy adaptor proteins and their regu‐

lation. Genetic mutations in the adaptor proteins p62/SQSTM1, UBQLN2, and OPTN have 

been shown to contribute to rare cases of ALS [94–99] and FTLD [100, 101]. All these adaptor 

proteins contain an ubiquitin‐associated (UBA) domain, which is able to bind polyubiquitin 

conjugated proteins that are tagged for degradation by either the UPS or autophagy. The 

autophagy adaptors then associate with LC3 on the autophagosome to deliver the cargo for 

degradation through autophagy‐lysosome pathway.

3.1. p62/SQSTM1

p62/SQSTM1 (p62)‐positive inclusions have been observed in patient tissue samples in 

both ALS and FTLD [18, 102–104]. The association of p62 with inclusions suggests that the 

inclusion body has been targeted for degradation and the accumulation of such inclusions 

suggests defects with their turnover [33, 105, 106]. p62 bridges autophagy substrates to the 
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 autophagosome by interacting with ubiquitinated proteins via its UBA domain [107] and LC3 

with its LC3‐interacting region (LIR) [33, 108, 109].

p62 is activated by phosphorylation at Ser407 by ULK1, allowing further phosphorylation by 

casein kinase 2 or TANK‐binding kinase 1 (TBK1), which increases p62’s affinity for polyubiq‐

uitinated cargo [110–113]. p62 acts within the selective autophagy system by aggregating pro‐

teins and organelles together for the autophagosome to enclose [106, 114]. These aggregated 

cargos are then subject to autophagy [115, 116]. While p62 accumulation and association with 

protein aggregates broadly suggests a defect in autophagy, mutations in p62 directly link 

selective autophagy impairment to neurodegeneration.

The p62 mutations identified in ALS and FTLD patients disrupt aggregate formation 
or decrease the amount of p62 protein produced, leading to loss of function [117–119]. 

Homozygous mutation of p62 causes adolescence/childhood‐onset neurodegeneration with 

a defect in mitochondrial depolarization response due to impaired autophagy [120]. Thus, 

a loss of normal p62 function in autophagy leads to neurodegeneration in a dose‐dependent 

manner, with earlier onset correlating to lower levels of functional p62.

In addition to its role in autophagy, p62 also links ubiquitinated cargo to the proteasome 

through its UBA domain [106] and mediates the degradation of the protein via the UPS, indi‐

cating that p62 plays multiple roles in proteostasis [121].

3.2. Ubiquilin2

Another adaptor protein implicated in ALS and FTLD is ubiquilin2 (UBQLN2) [95, 122]. 

Similar to p62, UBQLN2 is able to recognize ubiquitinated proteins and bind them via its UBA 

domain [123]. The UBA domain is also required for UBQLN2 to associate with the autopha‐

gosome, though unlike p62 and OPTN, UBQLN2 does not directly recognize LC3 [124, 125].

Knockdown of UBQLN2 in culture reduced autophagosome formation and inhibited lyso‐

somal degradation of mitochondria [124, 125]. This loss of UBQLN2 also sensitizes cells to 

starvation‐induced death in an autophagy‐dependent manner [124]. Interestingly, UBQLN2 

binds directly to TDP‐43 holo‐protein and C‐terminal fragments and may regulate the levels 

of TDP‐43 in the cell independent of ubiquitin [126]. Indeed, overexpression of UBQLN2 in 

culture can reduce aggregation of TDP‐43 [126].

Many of the disease‐associated mutations map to the proline‐rich domain in UBQLN2, which 

is important in mediating protein‐protein interactions [95, 127]. Furthermore, mutations 

in UBQLN2 have a reduced binding to hnRNPA1, a RNA‐binding protein associated with 

stress granules. Interestingly, mutations in hnRNPA1 are also associated with ALS and these 

mutations also disrupt its interaction with UBQLN2 [128], confirming that the interaction of 
autophagy adaptors with stress granules is important for neuronal survival.

UBQLN2 knockout in a rodent model showed no neuronal loss, implying that loss of function is 

not the disease mechanism or that other autophagy adaptors are able to compensate for its loss 

in vivo. Transgenic animals with the ALS/FTLD‐associated UBQLN2 mutations produce ubiq‐

uitin, p62, and UBLQN2‐positive puncta accompanied by neuronal loss, cognitive defects, and 
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motor impairment [129–131]. Increased expression of the wild‐type UBQLN2 also causes neuro‐

degeneration in a rodent model [132]. Thus, unlike mutations in p62, UBQLN2 mutations appear 

to have a gain of function mechanism that impairs proper protein degradation by autophagy.

In addition to its function in the autophagy pathway, UBLQN2 binds to the proteasome 

through its ubiquitin‐like (UBL) domain to deliver polyubiquitinated proteins and ERAD 

substrates to the proteasome for degradation [133]. A role of UBQLN2 in delivering protein 

aggregates to proteasome‐mediated degradation via HSP70 has been recently demonstrated 

[134]. UBQLN2 also function together with other ALS/FTLD‐related proteins, such as regulat‐

ing endosome constitution with OPTN [135] and delivering ERAD substrates to the protea‐

some with VCP [136].

3.3. Optineurin (OPTN)

Rare mutations in OPTN are also associated with both ALS [97, 99]as well as FTLD [101]. 

These mutations are expected to decrease the level of OPTN protein, suggesting a loss of func‐

tion resulting in disease [101]. In total, 1–4% of familial ALS cases are linked to mutations in 

OPTN [137]. OPTN, like p62 and UBQLN2, binds to polyubiquitin‐labeled proteins via a UBA 

domain [138]. OPTN also binds LC3 through an LIR to connect cargo to autophagosomes. 

Damaged mitochondria specifically recruit OPTN to induce mitophagy [139]. In support of a 

loss of function model for OPTN, depletion of OPTN in zebrafish causes motor defects [140].

OPTN also interacts with several other proteins associated with ALS. The E3 ubiquitin ligase 

HACE1 ubiquitinates OPTN to promote binding to p62, which forms a complex that enhances 

autophagic flux [141]. Similarly, phosphorylation of OPTN by TBK1 increases the interaction of 

OPTN and p62 to the same effect [138, 142]. OPTN also binds directly to SOD1 aggregates inde‐

pendently of ubiquitination. Mutations in OPTN do not affect this interaction, but do impair 
autophagic clearance of SOD1 protein aggregates through an unknown mechanism [138, 140].

Mutation in OPTN had previously been linked to primary open‐angle glaucoma (POAG) 

where these mutations were shown to decrease basal autophagy and inhibit autophagic flux 
upon autophagy induction [143]. Thus, mutations in OPTN have clear links to multiple neu‐

rodegenerative disease with consistent impairment in the autophagy pathway. How muta‐

tions in the same gene and similar cellular impairments can lead to distinct clinical outcomes 

remains unclear.

3.4. TBK1

TBK1 has recently been associated with both ALS and FTLD [96, 98, 101, 110, 111, 144–147]. 

TBK1 has functions in autophagy and in inflammation [148]. Regarding its function in 

autophagy, TBK1 phosphorylates p62 and OPTN to increase their binding to LC3 and ubiqui‐

tin, respectively [138, 142]. Many of the discovered disease‐associated mutations are expected 

to decrease TBK1 protein level, suggesting a loss of function model [96, 101].

While TBK1 interacts with both p62 and OPTN, TBK1 and OPTN share several addi‐

tional connections. Like OPTN, some mutations in TBK1 also cause glaucoma [149]. 
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Furthermore, the mutation in OPTN that causes POAG enhances the binding of OPTN to 

TBK1, which may sequester TBK1 and prevent it from carrying out its normal function 

[142]. Finally, both TBK1 and OPTN are required specifically for mitophagy, with deple‐

tion of either component or expression of an ALS‐associated mutant impairing mitoph‐

agy [150]. Taken together, mutations in TBK1 cause decreased protein expression and 

defects in p62 and OPTN regulation again supporting a role of autophagy in preventing 

ALS and FTLD.

4. C9orf72

The most common known cause of both ALS and FTLD was discovered to be a hexanucleo‐

tide intronic repeat expansion in the gene C9orf72 [151–153]. This repeat expansion is found 

in 18–25% of familial FTLD, 40% of familial ALS, and 4–8% of sporadic ALS and FTLD com‐

bined [154, 155]. While patients with C9orf72 mutations display TDP‐43‐positive aggregates, 

they also have separate inclusions unique to this genetic mutation. These ubiquitin, p62, and 

occasionally UBQLN2‐positive inclusions also contain dipeptide repeats generated from the 

repeat expansion [156–160]. Three molecular mechanisms of disease have been proposed: 

toxic gain of function of RNA repeats, gain of function of dipeptide repeats (DPRs) produced 

by repeat‐associated non‐ATG translation, and haploinsufficiency of the C9orf72 protein.

RNA‐repeats transcribed from the repeat expansion form nuclear foci and sequester many 

RNA‐binding proteins, including several RNA‐binding proteins already implicated in ALS 

and FTLD [151, 161–163]. In addition the RNA foci disrupt nucleocytoplasmic transport [164, 

165]. Furthermore, five distinct DPRs are translated and can also alter nucleocytoplasmic 

transport ‐ [167, 168] as well as disrupt membrane‐less, phase‐separated organelles such as the 

nucleolus, nuclear pore, and stress granules [169]. Nuclear translocation of TDP‐43 has been 

shown to be blocked by both RNA repeats and DPRs [166‐168] , allowing TDP‐43 to accumu‐

late and aggregate in the cytosol, which is observed in ALS/FTLD with C9orf72 mutations.

Haploinsufficiency was also proposed as a disease mechanism [153, 151, 170–172]. Early C9orf72‐

depletion models in Caenorhabditis elegans and zebrafish showed motor dysfunction, supporting 
this model [173, 174]. However, a neuronal‐specific C9orf72 knockout mouse showed no such 
phenotype [175]. Complete C9orf72 knockout mice also do not show much neurodegeneration, 

but instead exhibit severe immune problems similar to autoimmune disorders [176–181].

Interestingly, C9orf72 has been reported to play a role in autophagy and lysosome regulation. 

While many of the reports suggest that C9orf72 and its binding partners, SMCR8 and WDR41, 

play a role in regulating autophagy initiation or maturation, likely via the FIP200/ULK1 complex,  

the precise mechanism remains uncertain [179, 182–186]. Other reports suggests that C9orf72 

plays a role in  mammalian Target of Rapamycin (mTOR) and Transcription Factor EB (TFEB) 

signaling [186, 187], in stress granule assembly [188], or in actin dynamics [189].
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5. RNA‐binding proteins

The RNA‐binding proteins TDP‐43 and FUS have been closely associated with ALS and 

FTLD. Pathogenic TDP‐43 or FUS aggregates are present in both conditions, though muta‐

tions in these genes result primarily in ALS [190]. Both proteins travel between the nucleus 

and cytoplasm as they regulate gene splicing, mRNA stability and trafficking, and stress 
granule dynamics [191, 192].

As both TDP‐43 and FUS regulate the RNA from thousands of genes, many cellular problems 

could be anticipated. However, several lines of evidence have pointed out a role in regulating 

and challenging the autophagy pathway [193].

5.1. TDP‐43

The identification of TDP‐43 as the main component of protein aggregates in both ALS and 
FTLD spurred the awareness that ALS and FTLD had some underlying similarities [16, 17]. 

Interestingly, mutations in TARDBP (TAR DNA binding protein), the gene encoding TDP‐43, 

lead overwhelmingly to ALS or ALS/FTLD, but not to FTLD alone [194, 195]. While soluble 

TDP‐43 can be cleared by chaperone‐mediated autophagy through its interaction with Hsc70 

[196], TDP‐43‐positive stress granules and aggregates are cleared by macroautophagy [197, 198].

In addition being a substrate of autophagy, TDP‐43 may play a direct role in regulating autoph‐

agy through its transcriptional regulation of ATG7 [199]. As TDP‐43 is sequestered in protein 

aggregates, it can no longer regulate ATG7 transcription, impairing autophagy initiation, and fur‐

ther promoting TDP‐43 accumulation [198, 199]. In a similar manner, TDP‐43 also regulates the 

mRNA for Regulatory‐Associated Protein of mTOR (RPTOR) and Dynactin subunit 1 (DCTN1) 

[197]. RPTOR encodes a component of the mTOR complex, and loss of RPTOR due to TDP‐43 

loss of function upregulates lysosome and autophagy biogenesis [197]. However, TDP‐43 loss of 

function also results in reduced DCTN1 mRNA, which encodes dynactin, a key component of 

autophagosome‐lysosome fusion, leading to the accumulation of autophagosomes, preventing 

the turnover of aggregated TDP‐43 [197].

TDP‐43 additionally plays an important role in stress granule dynamics and mutations in 

TARDBP have been shown to increase the stability of stress granules, possibly allowing them 

to become irreversible protein aggregates [198, 200–203]. In support of this prolonged stress 

granule hypothesis, mutations in VCP decrease stress granule turnover by autophagy, lead‐

ing to TDP‐43‐positive inclusion [92].

The interaction of TDP‐43 with autophagy suggests a complex regulatory balance between the 

two under normal conditions. In disease states, a feedforward mechanism of TDP‐43 seques‐

tration into stress granules and aggregates followed by impaired autophagy could drive 

pathogenesis of ALS and FTLD [9, 202].
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5.2. FUS

Like TARDBP, mutations in FUS have been linked more closely to ALS, though positive pro‐

tein aggregates for FUS appear in both ALS and FTLD [9]. FUS‐positive inclusions account for 

about 5–10% of FTLD cases [9] and 1% of ALS cases [15]. Several proposed mechanisms link 

FUS to disruption of the autophagy‐lysosome pathway. First, the presence of FUS‐positive 

aggregates in both familial and sporadic cases of ALS and FTLD suggests FUS may be par‐

ticularly susceptible to aggregation. FUS is also involved in autoregulation, which could allow 

for a feedforward cycle of increased FUS production followed by cytosolic accumulation and 

aggregation [198, 204].

Additionally, mutations in FUS have been linked to altered stress granule dynamics [205, 206]. 

FUS‐positive stress granules were found to be degraded by autophagy; however, stress gran‐

ules containing mutant FUS were more stable and prevented stress granules disassembly [198]. 

As with TDP‐43, stabilized stress granules may promote insoluble aggregate formation [202, 

207–209]. This increases the burden on the autophagy pathway and may drive further cell dam‐

age. A recent study also found that ALS‐associated mutant FUS was able to inhibit the early 

steps of autophagosome formation, leading to impaired autophagy flux [210]. Many of these 

studies found that enhancing autophagy, genetically or pharmaceutically, was able to reduce 

FUS‐positive inclusions and prevent cellular toxicity [198, 205, 210]. While less well understood 

than TDP‐43, the RNA‐binding protein FUS seems to play a similar cellular role as TDP‐43, 

including regulating the dynamics of stress granules. Besides increased burden on autophagy 

due to stabilized stress granules, FUS may also play a more direct role in autophagy impairment.

6. Microtubule‐associated protein tau

Thirty percent of familial FTLD cases are caused by mutations in Microtubule‐Associated 

Protein Tau (MAPT), encoding the protein tau [211]. These cases are characterized by the 

presence of tau aggregates positive for ubiquitin and p62, suggesting impaired degradation 

of accumulated tau [121, 212]. Genetic disruption of autophagy cargo selection is sufficient to 
cause aggregation of pathogenic tau [213]. The tau protein is mostly well‐known for its asso‐

ciation with Alzheimer’s disease, when it also forms aggregates and is accompanied by neu‐

rodegeneration of the hippocampus [214]. How Alzheimer’s disease and FTLD patients have 

overlapping cellular pathology but develop different clinical symptoms remains unclear.

Full length tau can be degraded by the UPS in an ubiquitin‐dependent and independent man‐

ner [121, 215, 216], whereas misfolded or phosphorylated tau is sent to the autophagy path‐

way [217]. Generally, tau aggregation and toxicity correlates with autophagy activity, where 

enhanced autophagy rescues neurodegeneration and impairment exacerbates the symptoms 

[218–221]. Likewise, modulating TFEB to increase lysosome biogenesis prevents the accumu‐

lation of tau [222].

Tau is a microtubule‐binding protein that helps to stabilize axonal microtubules [223, 224]. 

Small increases in unbound tau induces aggregation, suggesting that even mild impairment 
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of the UPS or autophagy‐lysosome pathway could lead to pathological tau accumulation [225, 

226]. In support of this idea, Niemann‐Pick disease, another lysosome storage disorder, also 

develops tau aggregates [227, 228]. These studies suggest that tau clearance is highly depen‐

dent on autophagy and lysosome function and disruption of this pathway may drive tau 

aggregation. Furthermore, tau has a role in microtubule stability and disrupted cytoskeletal 

dynamics and trafficking have also been proposed as a disease mechanism. Since lysosomes, 
endosomes, MVB, and autophagosomes all move along microtubules, any disruptions would 

affect their ability to maintain proteostasis [229].

7. Discussion

ALS and FTLD are distinct clinical disorders that share overlapping symptoms, pathol‐

ogy, and genetics. Many of the causative genetic mutations and risk factors result in dis‐

ruption of the lysosome‐autophagy pathway (Figure 1). Some disease‐associated mutants 

or alleles directly impact lysosomal function through yet unknown mechanisms, such as 

PGRN and TMEM106B, or through disruption of the late stages of the endolysosome path‐

way, as VCP and CHMP2B mutations are proposed to do. Beyond the lysosome, there 

are also many mutations in adaptor proteins that impair selective autophagy, including 

p62/SQSTM1, OPTN, and UBQLN2. The misregulation of these adaptors is sufficient to 
induce neurodegeneration, as seen with TBK1 mutants. Finally, some mutations have a 

more intricate relationship to the autophagy‐lysosome pathway that future research will 

have to address, including C9orf72 protein, repeat‐associated RNA foci, and dipeptide 

repeats, as well as the microtubule‐binding protein tau and the RNA‐binding proteins 

TDP‐43 and FUS.

Identifying the underlying cellular problems that lead to disease is an important step in being 

able to distinguish disorders and subtypes that may ultimately require distinct diagnosis and 

treatment. The genetic analysis of ALS and FTLD has improved our understanding of this 

disease spectrum and may inform us of the broad problems that underlie both familial and 

sporadic ALS and FTLD. The consistent impairment of cellular clearance pathways by ALS 

and FTLD‐associated mutations points to a disease mechanism that is likely to be shared in 

undiscovered genetic causes, as well as environmental risk factors, that account for the cases 

of ALS and FTLD that have no known cause.
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