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Abstract

Nanoparticles (NPs) are included in many products of daily life and present in the 
environment. Due to the potential of NPs to improve quality and stability of consumer 
and health and medical products, it is expected that the exposure of humans to engi-
neered NPs will rather increase than decrease in the future. Although NPs did not act 
acutely cytotoxic on these concentrations, they may cause adverse effects upon chronic 
exposure. Cytotoxicity testing in long-term cultures and analysis of organelle function 
could identify such effects. Cells take up NPs mainly via active mechanisms, and these 
routes deliver their payload predominantly to lysosomes. Acute exposure of cells to 
NPs can have adverse effects on lysosome morphology and function, but lysosomes are 
also potential targets for accumulation. The chapter explains the role of lysosomes and 
describes techniques for labeling and assessment of their function. Examples for co-local-
ization studies and vital dye staining are shown. A variety of techniques are available 
to characterize effects of NPs on lysosomes, but care has to be taken in the choice of the 
proper technique because NPs may interfere with the detection.

Keywords: cathepsins, intralysosomal pH, staining, nanoparticles, toxicity, fluorescence 
microscopy

1. Introduction

Screening for acute cytotoxicity is an established procedure in the evaluation of chemi-

cals, drugs, and medical devices and has also been used for the toxicological assessment of 

nanoparticles (NPs). Routine cytotoxicity testing detects changes in cell number, DNA, pro-

tein content, or metabolic activity of cells exposed to compounds applied in a broad concen-

tration range. Exposure is usually for 4–72 h. In the case of conventional compounds, effects at 
high concentrations can indicate the toxicological potential of the compound at lower doses. 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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This prediction is not possible for NPs because particle agglomeration is more prominent at 

higher particle concentrations and agglomerates usually act less toxic than single NPs [1]. The 

exposure times of routine cytotoxicity testing are also less representative for NPs. Exposure to 

NPs occurs by contact with food, by the environment, and by consumer products in low doses 

but for prolonged time. The lack of good prediction of NP toxicity by acute testing protocols 
is also due to the fact that NPs in these products are usually poorly biodegradable and may 

accumulate in cells [2]. To address this problem, culture systems have been developed that 

allow the evaluation of cellular effects over prolonged time [3, 4]. Another option to identify 

toxicity upon prolonged contact is the study of organelles that are likely targets for damage by 
NPs. Active cellular uptake, endocytosis, represents the most common mechanism for cellular 
entry of NPs. Since the main active uptake routes deliver their payload to lysosomes, these 
organelles are the most likely targets for NP accumulation, potentially leading to lysosome 
dysfunction and cell damage.

2. Lysosomes

Lysosomes are cell organelles with an acidic lumen and a single outer membrane consist-

ing of a phospholipid bilayer. They contain acid hydrolases, which enable the cell to process 

nutrients and destroy itself after death. Lysosomes are integrated in the mechanism of secre-

tion and degradation of macromolecules and linked by vesicle transport to other intracellular 
structures, such as endosomes, the endoplasmic reticulum, and the Golgi apparatus (Figure 1).

Mammalian cells, with exception of erythrocytes, possess lysosomes, and some cell types also 

contain lysosome-related organelles, namely, melanosomes in melanocytes, lytic granules in 

cytotoxic T cells, delta granules in platelets, and lamellar bodies in alveolar epithelial cells. 

Lysosomes have spherical or tubular shape and measure <1 μm in non-phagocytic cells [5]. 

In phagocytes, which have the ability to ingest particles up to 10 μm, lysosomes can reach 

several micrometers in size [6]. Lysosomes are transported in the cytoplasm by passive and 

active mechanisms. While diffusion is size dependent and smaller lysosomes move faster 
than larger ones, active transport is independent from size [7].

Lysosomes digest macromolecules taken up by endocytosis (heterophagy), degrade intracel-
lular macromolecules and organelles sequestered by autophagy, eliminate pathogens engulfed 

by phagocytosis, regulate metal ion levels, and sense nutrient availability. Lysosomal exocyto-

sis is an unconventional secretion relevant for plasma membrane repair, immune response, and 

bone resorption [8]. Antigen processing by lysosomes is essential for the presentation of anti-

genic proteins to T cells [9, 10]. Lysosomes regulate the metabolic (anabolic or catabolic) state of 

the cells by sensing the nutritional state of the cell and conveying this information to the nucleus 

[11]. Transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, co-localizes 

with mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal membrane. 

When nutrients are present, phosphorylation of TFEB by lysosomal surface-bound mTORC1 

inhibits TFEB activity. The active mTORC1 promotes biosynthetic pathways and blocks 
autophagy. Catabolic pathways are switched on upon release (combined with inactivation)  
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of bound mTORC1 from lysosomes in case of starvation or exercise, for instance. TFEB acts 

as a sensor of lysosomal state, when on the lysosomal surface, and as an effector of lysosomal 
function when translocated into the nucleus. Nuclear localization of TFEB is prevented when 

lysosome function is optimal. When TFEB has translocated into the nucleus, it upregulates the 

expression of genes encoding lysosomal proteins in order to improve lysosome function [12].

Normal lysosome function depends on an acid intralysosomal pH, and vacuolar/vesicular 

type H+-ATPase (v-ATPase) is the most important proton pump for the regulation. Variation in 

pH between lysosomes of the same cell is considerable because lysosomes display functional 

and structural heterogeneity. By labeling lysosomes with a pH-insensitive and a pH-sensitive 

dye, Johnson et al. found that peripheral lysosomes had more alkaline pH values than peri-
nuclear lysosomes [13]. The group also reported that the increase of the intralysosomal pH 

was linked to a change in the intracellular localization. The cellular volume of lysosomes is 
regulated in such a way that accumulation of undigested material induces increase in size and 

number of lysosomes to compensate reduced lysosome function.

Although lysosomes are involved in synthesis and recycling of macromolecules, their main 

role is usually seen in degradation. Degradation of extracellular material occurs after active 

Figure 1. Integration of lysosomes in the cellular vesicle network. Ingested macromolecules or particles from the 
extracellular space reach the lysosomes (L) via early endosomes (EE) and late endosomes (LE) and can be degraded 

there. Macromolecules can be recycled through vesicle transfer to the Golgi apparatus and endoplasmic reticulum. 

Secretion products are synthesized at the rough endoplasmic reticulum and Golgi apparatus and are exported for 

constitutive secretion, like transport to the plasma membrane, or are included in secretory vesicles (SV) for regulated 
secretion into the extracellular space.
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uptake (Figure 2). With the exception of caveolin-dependent uptake, all routes deliver 
their cargo exclusively to lysosomes. Caveolin-mediated uptake can deliver macromole-

cules to the Golgi apparatus, endoplasmic reticulum, and lysosomes [14]. Endocytosis is 

relatively fast, and the maturation of endosomes to lysosomes takes approximately 40 min 
[5]. Lysosomes are also involved in the degradation of intracellular macromolecules and 

organelles, which occurs as microautophagy, chaperone-mediated autophagy, and mac-

roautophagy (usually referred to as autophagy). Autophagy includes the following steps: 

vesicle nucleation (phagophore formation), vesicle expansion (autophagosome formation), 

maturation (fusion with multivesicular bodies (MVBs) or lysosomes), and degradation 

[15, 16]. Degradation can only occur when lysosomes are active. The increased presence of 

autophagosomes may be due to excessive induction of autophagy or to blockade of auto-

some degradation (autophagy flux).

Macropinocytosis, clathrin-mediated uptake, caveolin-mediated, and clathrin- and caveolin-
independent uptake ingest NPs although with different size preferences (for more detail, see, 
for instance, Ref. [17]). Particles larger than 500 nm are taken up by phagocytosis (Figure 3).

Figure 2. Interaction of lysosomes with uptake routes and autophagy. Payload of the active uptake routes micropi-
nocytosis, caveolin-dependent, clathrin-dependent, and clathrin- and caveolin-independent routes is delivered to early 

endosomes (EEs), late endosomes (LEs), multivesicular bodies (MVBs), and lysosomes (Ls). EEs can recycle to the 

plasma membrane as recycling endosomes (REs). Macroautophagy is started by the formation of the phagophore (PP) 

and forms the autophagosome (AP). PPs can contain parts of cytoplasm and organelles, for instance, mitochondria (M). 

APs may fuse with MVBs to build amphisomes (ASs) or with Ls to form autolysosomes (ALs). ALs mature to degrading 

autolysosomes (DAs), which can also arise by the fusion of ASs with Ls.
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Silica (SiO
2
), gold, iron oxide, polystyrene particles, and quantum dots have been detected in 

lysosomes in the absence of obvious morphological damage [18–28]. They can reach the lyso-

somes by different uptake routes, and it appears that particle size, and cell-specific expression 
of the different uptake routes determines the preferential uptake mechanism [29]. Cellular 

excretion of NPs is estimated to be low, and therefore, accumulation of NPs in lysosomes and 

chronic impairment of lysosome function may occur [30].

3. Symptoms and causes of lysosome dysfunction

Garnett and Kallinteri [31] suggested that accumulation of NPs might interfere with lysosomal 

function and cause similar symptoms as lysosomal storage diseases. The deficiency of specific 
lysosomal enzymes, mainly lysosomal sulfatases arylsulfatase A, B, and G, causes lysosomal 

storage diseases [32] with neurological, pulmonary, and cardiac impairment [33]. Lysosomal 

dysfunction, however, can also be caused by accumulation of pharmaceutical compounds. 

Several drugs, such as nonsteroidal anti-inflammatory drugs, statins, antidepressants, beta-
blockers, tyrosine kinase inhibitors, anti-histamines,  and so on, are sequestered in lysosomes 
and may cause drug-induced lysosomal damage, termed phospholipidosis. Phagocytic cells, 

alveolar and peritoneal macrophages, are more sensitive than non-phagocytic cells, and damage 

causes the histopathological image of “foamy macrophages” [34]. The intracellular accumula-

tion of membranous material shows analogies to inherited lysosomal storage disorder [35] and 

suggests that external factors may also cause analogous symptoms. Molecules, which cause 

lysosomal damage, are typically organic amines, such as chloroquine, amiodarone, perhexiline,  

aminoglycosides, and chlorphentermine. These compounds accumulate in endosomes and can 

cause swelling and disruption of lysosomes with subsequent cell death [36].

Figure 3. Overview of size preferences of the different active uptake routes for particles.
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Impaired lysosomal function may also lead to abnormal autophagy. The role of autophagy 

in diseases is not completely clear. Reduced autophagy promotes cell transformation and 

development of cancer, whereas in later stages, increased autophagy allows the cancer cells 

to survive regardless of deprivation of nutrients. Disruption of autophagy has also a promot-

ing role in neurodegenerative diseases [37]. Drugs act on autophagy mainly by alteration of 

lysosomal enzyme activity and of intralysosomal pH [38]. The epoxysuccinyl compound E64d 

and Pepstatin A inhibit cysteine and aspartic proteases, whereas chloroquine, hydroxychloro-

quine, Lys05, NH
4
Cl, matrine, momensine, and lucanthone increase intralysosomal pH, and 

bafilomycin A1, azithromycin, and concanamycin A inhibit v-ATPase.

Inactive non-digested material as part of normal biological aging can accumulate in the form 

of the autofluorescent pigment lipofuscin. This accumulation of lipids, carbohydrates, and 
aldehyde-crosslinked proteins increases cellular susceptibility to oxidative stress, alters intra-

lysosomal pH and lysosomal membrane permeability, and impairs lysosomal function [39].

Accumulation in lysosomes has a prominent influence on the elimination of drugs from the 
body [40]. Based on the assumption that drugs that are trapped in lysosomes (lysosomotropic 

drugs) and non-lysosomotropic drugs have a plasma concentration of 1mg/L and no physical 

binding to blood or tissues occurs, the distribution volume of non-lysosomotropic drugs is 42L 

for the average 70kg person. To determine the distribution volume of lysosomotropic drugs, the 
lysosome volume has to be added. It was calculated as 0.5 L based on the assumption that the 

body contains 15 trillion cells with a volume of 3.4 × 10−9 cm3 (average hepatocyte volume) and 

1% of which represent lysosomes. To be factored into the total body volume, drug concentration 

must be the same as in plasma. The apparent lysosome volume, therefore, is 500L, which means 

~10 times greater than the distribution volume of a non-lysosomotropic drug. This estimation 

appears not unrealistic since accumulation of chloroquine in rat tissues at typical therapeutic 

concentrations was 800 higher than values in plasma, and cells were able to accumulate propran-

olol 1000-fold compared to extracellular concentrations. Based on these calculations, a 10 times 

longer half-life for lysosomotropic compared to non-lysosomotropic drugs is expected. A long 

persistence in tissues has also been reported for NPs in several studies (e.g., in Refs. [41, 42]).

4. Lysosomal damage by nanoparticles

In contrast to nuclear membrane and plasma membrane, lysosomes possess only a single 

phospholipid bilayer for resistance against the around 60 different intralysosomal hydrolases. 
More than 50% of the lysosomal membrane proteins of late endosomes and lysosomes consist 

of lysosome-associated membrane proteins (LAMPs). LAMPs are the most densely glycosyl-

ated proteins (>60% of total mass) and form the inner lining of the lysosomal membrane. It is 

postulated that the composition with high glycosylation and low content of cholesterol rep-

resents a better protection against the action of lysosomal hydrolases than the composition of 
conventional membranes [9].

Despite the good protection against hydrolases, lysosomal membranes can be acutely damaged 

by NPs [43, 44]. Depending on the extent of the damage, cell death via different mechanisms 
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ensues [45]. Partial permeabilization, in general, results in reactive oxygen species (ROS) genera-

tion and apoptotic cell death, whereas massive permeabilization induces cytosolic acidification 
and necrosis. Iron oxide NPs induced cytotoxicity through generation of ROS by lysosomes. 

Toxic ions released by partial degradation of particles in lysosomes were the main toxic mecha-

nism of zinc oxide (ZnO) and copper oxide (CuO) NPs [46]. Quantum dots in lysosomes caused 

swelling of lysosomes linked to morphological alterations [47], and cationic cerium oxide (CeO
2
) 

NPs and polystyrene particles induced disruption of lysosomes [48]. As toxic mechanism of cat-

ionic NPs, buffering of H+ with increased lysosomal pH is assumed [49]. Multiwalled carbon 

nanotubes (CNTs) increased lysosomal permeability by direct action on lysosomal membranes 

[50]. The increase in autophagosomes is a common finding in the cellular action of NPs, such 
as fullerenes, gold NPs, iron oxide NPs, rare-earth oxide NPs, quantum dots, CNTs, titanium 

dioxide (TiO
2
) NPs, and SiO

2
 NPs [51–61]. In addition to decreased phagosome degradation, 

impaired lysosomal trafficking by disruption of the actin cytoskeleton may be a reason for the 
increased presence of autophagosomes [37]. Since all NPs, despite different compositions and 
surface functionalities, increased cellular autophagosome content, it is suspected that increase 

in autophagy is inherently linked to the small size of these particles.

Subtle changes in lysosome physiology without obvious morphological alterations have also 

been reported. Exposure to 15–200 nm TiO
2
 and 10 nm ZnO NPs induced changes in pH and 

enzyme activities in epithelial cells [43, 62, 63], while polystyrene and TiO
2
 NPs increased 

intralysosomal pH of macrophages [62, 64]. In addition to increasing intralysosomal pH, 

polystyrene particles interfered with lysosomal enzyme activity [65]. By increasing the intra-

lysosomal pH, silver NPs decreased the pH-dependent uptake of fluorescent indicator dyes 
[66]. Increased expression of CatB protein was observed in SiO

2
 NP-treated cells [51]. Based 

on the finding that accumulation of undigested material leads to upregulation of lysosome 
size and number [5, 67, 68], the increase of lysosomal activity may represent a compensation 

mechanism for impaired lysosome function caused by SiO
2
 NPs.

5. Marker for interaction with lysosomes and its morphology, integrity, 

and function

A panel of methods is available to assess lysosome morphology and function. Area measure-

ments can be performed by image analysis of (fluorescence-labeled) lysosomes. Morphological 
changes can be identified by transmission electron microscopy (TEM). Lysosomal function 
can be determined by changes in the expression of lysosome-related genes or proteins, while 

fluorescent substrates or fluorescent dyes indicate changes in enzyme activities or pH. Not 
all assays, however, are suitable for the assessment of NPs because colorimetric, fluorescent, 
and luminescent assays are prone to interference with NPs [69]. Interference can cause false-

positive and false-negative results. In cytotoxicity testing with assays, where enzymatic activ-

ity is determined by absorbance of a colored product, colored NPs can mask cell loss because 
the absorbance caused by NPs leads to an overestimation of viable cells. Examples for over-

estimation of cell damage are membrane permeability assays with fluorescence-based assays. 
The increase of the signal by NPs with inherent fluorescence indicates more cell damage than 
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actually present. High concentrations of NPs, on the other hand, may quench the fluorescent 
signal, and it is often appropriate to compare reader data with microscopical observation 

(Figure 4). In general, the parallel assessment by several techniques (plate reader and micros-

copy) and the switch to another detection method (fluorescence instead of absorbance) help 
to avoid false conclusions due to interference.

Microscopic techniques are frequently used for the assessment of NPs because they allow 

the correlation of intracellular localization and cellular effects. Examination by TEM can-

not only reveal organelle damage but can also be used for co-localization studies because 

NPs contained in food, consumer products, and cosmetics can generally be visualized by 

TEM. Fluorescence microscopy using life stains and immunocytochemistry serves for area 

measurements. In combination with fluorescent particles, co-localization studies and intra-

cellular tracking can be performed. Cells transduced/transfected with fluorescent protein-
LAMP-1 constructs can also be used for these studies. The commercially available technology 

Organelle Lights™ uses a targeted fluorescent protein with viral delivery (http://web.mit.
edu/rkarimi/www/Special/Other/Protocol/Organelle%20Lights_%20Intracellular%20
Targeted%20Fluorescent%20Proteins.pdf) for transduction of mammalian cells. By using 

LAMP-1 transfected cells, it was found that small 20 nm carboxyl-functionalized polysty-

rene particles were preferentially located in the perinuclear region, whereas 200 nm particles 

were detected to a greater extent in the cellular periphery (Figure 5). Given the fact that 

perinuclear lysosomes have a more acidic pH than peripheral lysosomes [13], the uptake 
in different types of lysosomes may cause different cellular effects. For co-localization with 

lysosomes also immunocytochemical detection with antibodies against LAMP-1, LAMP-2, 

and LAMP-3 can be used.

Lysosome markers, such as gold-coupled albumin and fluorescence-labeled dextran, use 
active uptake for the labeling [70]. Since NPs may interfere with active uptake routes, these 
markers are less suitable for NP studies. Information on lysosome function can be obtained 
by detection of enzymatic activity or pH-dependent dyes.

Activity measurement of acid phosphatase, β-glucuronidase, and β-hexosaminidase, which 
have been released from lysosomes, can be used as marker for lysosome function but needs 
isolation of the organelles. NPs that were located outside the lysosomes can get access to the 

assay compounds during the isolation procedure and cause artificial effects. Such interfer-

ence occurred when cathepsin B (CatB) activity of cells exposed to polystyrene particles was 

detected in homogenates [65]. In situ assays, where cells are not homogenized, can avoid this 

problem because only NPs located inside lysosomes get access to the substrate. For quanti-

fication of enzyme activity, in situ substrates for sulfatases and cathepsins are available. The 
substrate SulfGreen is metabolized by all lysosomal sulfatases (http://www.markergene.com/
product_sheets/pis1377.pdf) and fluorescent substrates, for instance, CV-(RR)

2
 for CatB and 

MR-(FR)
2
 for cathepsin L indicate protease activity [65, 71].

Changes in intralysosomal pH value can be studied using pH-dependent dyes (acridine 

orange and neutral red retention). Acridine orange has been used for many years to visual-

ize organelles with acidic pH. The dye stains lysosomes in green and red fluorescence at 
low extracellular concentrations (2.6 μM). When the concentration of the dye in the stain-

ing solution is higher (26–37 μM), stacks can be formed and lysosomes show red fluores-

cence. Unfortunately, the red stacks bleach very fast and only the monomeric (green) form 
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Figure 4. Detection of apoptosis and necrosis caused by 200 nm amidine-functionalized polystyrene (APS) particles in 

EAhy926 endothelial cells Staining in the different channels (green, upper left; red, upper right; bright field, lower left) 
and overlay (merged, lower right) is shown. Despite particle sedimentation (dark precipitates), the staining with YoPro-1 

(green channel, upper left) for apoptosis and propidium iodide (red channel, upper right) for necrosis is visible. Lower 

concentrations (25 μg/mL) of the particles caused apoptosis and necrosis, whereas the higher concentration (50 μg/mL) 

induced only necrotic cell death.
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Figure 5. Confocal fluorescence images of 20 nm and 200 nm green-yellow fluorescently labeled carboxyl-functionalized 
(green) polystyrene NPs in RFP-LAMP-1 transfected EAhy926 endothelial cells (red). Staining in the different channels 
(green, upper left; red, upper right) and overlay (merged, lower right) is shown. Lysosomes are seen throughout the 

cells with exclusion of the nucleus (N). Uptake in non-transfected cells (indicated with squares in the green channel) 
was not obviously different from transfected cells. Small polystyrene particles (a) co-localized to a greater extent with 
perinuclear lysosomes than larger (b) particles. Abbreviation: RFP, red fluorescent protein. Scale bar, 20 μm.
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remains [72]. In addition to that, acridine orange is phototoxic and induces burst of dye-

loaded vesicles. Quinacrine also accumulates in lysosomes with acid pH, but the loading is 

accompanied with morphological alterations (swelling), which makes the staining less suit-
able for physiological studies. The probe LysoTracker™ Red DND-99, a lipophilic amine 
with logP 2.10 and pK

a
 7.5, is another marker for accumulation in lysosomes [73]. Although 

it acts not markedly phototoxic, its usefulness as lysosome marker is limited by bleaching. 
Neutral red can be used as indicator for functional lysosomes [74] but is less sensitive than 

fluorescent dyes and more often used as viability screening test. Membrane permeant dyes, 
such as LysoTracker™ and LysoSensor™ probes, label lysosomes in living cells [75]. They 

are more selective than the classical neutral red and acridine orange dyes. The compound 

commercialized as Lyso-ID® is a cationic amphiphilic tracer that accumulates in acidic 

organelles. It can be used as indication for lysosome size and number and is used in the 

drug screening for lysosomal damage [76] (Figure 6a, b). Increased staining indicates swell-

ing of lysosomes and increase in lysosome number. This increase is seen as adaptation to 

insufficient intracellular degradation capacity.

Figure 6. Lyso-ID staining in the cytoplasm (red channel) of untreated EAhy926 cells (a) is low but increased when cells are 

exposed to 25 μM chloroquine (b). Nuclei are stained with Hoechst 33342 (blue channel). Lysosomes also increased in size 

upon chloroquine treatment. Massive lysosome damage changed the staining pattern with Lucifer yellow in the cytoplasm 

from punctuate in untreated cells (c) to diffuse in chloroquine-treated cells (d).
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Figure 7. Co-staining with markers for enzyme activity and pH demonstrates interlysosomal heterogeneity of untreated 
EAhy926 endothelial cells. Lysosomes irrespective of their functional activity are identified by immunocytochemical 
staining with anti-lysosome-associated membrane protein 1 (LAMP-1) antibody or transduction with RFP-LAMP-1. 

Staining in the different channels (blue, upper left; green, upper right; red, lower left) and overlay (merged, lower 
right) is shown. The nuclear stain with Hoechst 33342 is seen in the blue channel. (a) LAMP-1-immunoreactivity (green 

channel)/CatB staining (red channel), (b) LysoSensor (Lyso) staining (green channel)/RFP-LAMP-1 (red channel), No 

nuclear staining has been performed. (c) Sulf staining (green channel)/LAMP-1-immunoreactivity (red channel), and 

(d) Lyso (green channel)/CatB (red channel) staining. Abbreviations: CatB, cathepsin B; LAMP-1, lysosome-associated 
membrane protein 1; Lyso, LysoSensor dye; RFP, red fluorescent protein; and Sulf, lysosomal sulfatases.
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Finally, alterations of the staining pattern with Lucifer yellow from punctuate to diffuse stain-

ing can identify lysosome damage. The dye is accumulated and retained in healthy lysosomes 

but leaks out when the integrity of lysosome membranes is lost (Figure 6c, d).

Co-staining with combinations of different lysosomal proteins, pH, and enzyme activity can 
reveal the heterogeneity of lysosomes and may identify changes in amount and quality of lyso-

somes. In EAhy926 endothelial cells, LAMP-1-immunoreactive (ir)/CatB-negative lysosomes 

were seen more frequently than CatB-positive/LAMP-1-not ir structures (Figure 7a) and RFP-

LAMP-1 positive/Lyso-negative more frequent than Lyso-positive/RFP-LAMP-1-negative 

structures (Figure 7b). Similarly, LAMP-1-ir/Sulf-negative structures were more often seen 

than Sulf-positive/LAMP-1-not ir structures (Figure 7c). This findings can be explained by the 
fact that RFP-LAMP-1 and LAMP-1 antibodies label all late endosomes and lysosomes, but 

low pH and prominent enzyme activity are only present in a particular subgroup. LysoSensor 

and CatB activity stain did also not completely co-localize. CatB-positive vesicles were located 

more at the cell periphery, while LysoSensor-positive structures were preferentially located 

in the perinuclear region (Figure 7d). This corresponds to the finding that lysosomes with 
low pH are preferentially located in the perinuclear region [13]. Activity of cathepsin L is also 

mainly seen in the perinuclear region, but CatB is active over a broader range of pH [77] and 

can be detected also in peripheral lysosomes.

Lysosomal activity is important for the execution of autophagy, and cellular increase of 

autophagosomes may indicate impaired lysosomal function. Microtubule-associated protein 

1A/1B light chain 3 (LC3) is a cytosolic protein, which, during formation of autophagosomes, 

is conjugated to phosphatidylethanolamine. The conjugate is first recruited to autophago-

somal membranes and, after fusion of autophagosomes with lysosomes, degraded by lyso-

somal proteases [78]. Immunoblotting or immunocytochemical detection of LC3 has become 
the most common screening marker for autophagy. Increase of LC3 immunoreactivity indi-
cates an increased content of autophagosomes. Despite the strong link to lysosomes, LC3 and 
LAMP-1 are not co-localized (Figure 8).

Figure 8. Co-localization of LC3-ir and LAMP-1-ir structures in EAhy926 endothelial cells. Staining in the different 
channels (blue, nuclei, upper left; green, LC3- ir, upper right; red, LAMP-1-ir, lower left) and overlay (merged, lower 
right) is shown. Abbreviations: LC3, microtubule-associated protein 1A/1B light chain 3 and LAMP-1, lysosome-

associated membrane protein 1.
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6. Conclusions

Based on the existing literature, lysosomes may be acutely damaged by high concentrations 

of NPs. Due to the accumulation in the endosomal-lysosomal system, it is supposed that NPs 

can damage lysosomes upon prolonged exposure. TEM can identify morphological changes, 

and a panel of vital stains allows the determination of intralysosomal pH and activity of lyso-

somal enzymes. While TEM analysis is time-consuming and lacks physiological information, 
immunocytochemical staining combined with cellular life stains is a good option to study 

lysosome function. In combination with fluorescent (labeled) NPs, uptake and localization in 
different parts of the endosomal-lysosomal system can be shown. Given the heterogeneity of 
lysosomes, particle localization in peripheral or perinuclear lysosomes may cause different 
cellular effects.
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