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Abstract

This chapter presents an improved multi-particle swarm co-evolution optimization
algorithm (IMPSCO) to detect structural damage. Firstly, IMPSCO is integrated with
Newmark’s algorithm for damage detection and system identification, which just need few
sensors. In addition, for reducing the searching parameters, a two-stage damage detection
method based on modal strain energy and IMPSCO is presented. In order to validate the
proposed method, a seven-story steel frame experiment in laboratory conditions is per-
formed and a comparison is made between the proposed approach and genetic algorithm
(GA). The results show that: (1) the proposed methods can not only effectively locate
damage location but also accurately quantify the damage severity. Besides, it has excellent
noise-tolerance and adaptability; (2) for integrating IMPSCO and Newmark’s algorithm, it
implements only by using any kinds of structural time-series responses and the excitation
force; (3) comparedwith genetic algorithm, IMPSCO ismore efficient and robust for damage
detectionwith a better noise-tolerance.

Keywords: structural damage detection, improved multi-particle swarm co-evolution
optimization (IMPSCO) algorithm, time-domain, frequency-domain, modal strain energy,
Newmark’s algorithm

1. Introduction

Structural health monitoring (SHM) and damage detection are taking an increasingly impor-

tant role in civil engineering structures. As the main part of SHM programmes, damage

localization and quantification strategies can provide basic information about the health of

structural systems. Numerous methods have been developed and employed for damage

detection based on vibration data. It can be divided in two major groups [1]. The First group

are approaches in which a direct methodology is introduced for damage detection. Such an

aim was achieved by performing signal processing-based procedures [2] and mathematical

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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analysis [3]. The Second group are defining damage detection problem as an inverse prob-

lem and solving it by employing optimization procedures [4, 5].

During the last two decades, standard particle swarm optimization (PSO) and its corresponding

approaches [6–9] have been applied to damage detection problems due to the virtues in global

optimization. For example, Begambre and Laier [10] proposed PSOSmodel-based damage detec-

tion algorithm using frequency domain data to locate the damage location and quantify the

damage extent. Therein, the minimization function is based on the frequency response functions

of the system. Furthermore, Mohan et al. [11] also evaluated the use of frequency response

function with the help of PSO for structural damage identification, which verified by beam plane

frame structures.Nanda et al. [5] proposed unified particle swarmoptimization (UPSO) technique

for solving crack assessment problems in frame-like structures. In recent years, the multi-particle

swarm co-evolution optimization (MPSCO) by integrating the collaborative theory in ecology

with the principle of automatic adjustment has become a popular hotspot [12–14]. Nevertheless,

such efforts cannot completely solve the problem of local optimum. Therefore, many scholars

proposed many multi-stage damage detection methods, namely, firstly using other relevant

method to initially locate damage location and utilizing optimization algorithm to accuracy

identify damage. For instance, Seyedpoor [15] presented a two-stage damage detection method

based onmodal strain energy and PSO to identify damage. Vo-Duy et al. [16] presented a two-step

approach based onmodal strain energymethod and an improved differential evolution algorithm

for damage detection in laminated composite structures.

However, during practical applications, there exist some drawbacks. For example, standard

PSO algorithm and improved PSO are computationally intensive because they must deal with

a great number of damage variables. Therefore, an improved MPSCO algorithm called

IMPSCO is proposed and applied to structural damage detection. In IMPSCO, the evolution-

ary theory is integrated with MPSCO as to reduce the possibility of falling into the local

optimum. Furthermore, IMPSCO integrates with Newmark’s algorithm in time-domain for

damage detection. Because it just uses any kinds of structural time-series responses and only

requires very few sensors in practical applications. In addition, this chapter also presents a

two-stage method based on modal strain energy change ratio and IMPSCO algorithm for the

purpose of reducing the complexity to localize and quantify the structural damage.

The organization of the chapter is as follows: Section 2 provides the basic theory of IMPSCO.

Section 3 describes the damage detection strategy based on IMPSCO in time domain. Section 4

describes the two-stage damage methods based on modal strain energy and IMPSCO. Exper-

imental study is presented in Section 5. Section 6 gives the concluding remarks.

2. Improved multi-particle swarm co-evolution optimization algorithm

With basic MPSCO, multi-subpopulations are divided into two layers. All particles from the

upper-layer follow the optimum of the entire population so as to obtain a faster convergence

speed, while all particles from the lower layer follow the optimum of the subpopulation to

which it belongs, so as to ensure the population diversity. Although the performance of basic

MPSCO is better than standard PSO in some aspects, the subpopulations in lower-layer still

perform the process of standard PSO, which makes its falling into the local optimum possible.
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To solve this problem, the IMPSCO algorithm is proposed and applied to locate and quantify

damage of a structure in this study.

In nature, some species disappear because of environmental variation, while some new species

will emerge at the same time so that the species diversity is balanced. Accordingly, the searching

procedure of PSO can be regarded as a nature evolution procedure. More specifically, if a particle

is recorded as the worst particle many times, it indicates that this particle is unable to meet the

current requirement and needs to be eliminated. Consequently, the improved multi-particle

swarm co-evolution optimization algorithm is presented, in which the particles to be deleted are

replaced with the gravity position of the selected excellent particles in current entire population.

After the replacement, the particles can quickly get out of the local optimum. All in all, the

proposed IMPSCO algorithm is shown in Figure 1.

Step 1: (population initialization). Generate m subpopulations randomly, and then divide them

into the upper layer with only one subpopulation and the lower layer with m � 1 subpopula-

tions. For each subpopulation, it contains n particles. Meanwhile, set the iteration index k to zero.

Step 2: (fitness calculation). Calculate the fitness values of each particle and save the personal best

values and its corresponding particle’s location as gbestj and gbestvalj (j = 1, 2… m), respectively.

Meanwhile, record the best individual in the entire population and its corresponding fitness as

gbestval and gbest.

Step 3: (particles updating). Update the particles in the upper layer and the lower layer according

to Eqs. (1) and (2), respectively, and the worst particle in the entire population is recorded:

vkþ1
i ¼ ωvki þ c1r1ðpi � zki Þ þ c2r2ðpg � zki Þ

zkþ1
i ¼ zki þ vkþ1

i

ð1Þ

vkþ1
i ¼ ωvki þ c1r1ðpi � zki Þ þ c2r2ðplg � zki Þ

zkþ1
i ¼ zki þ vkþ1

i

ð2Þ

where i is the particle’s index in the swarm; zi and vi represent the position and velocity of the

particle, respectively; pi represents the optimal position of the particle; pg and p1g represent the

optimal position of the entire population and the subpopulation to which the particle belongs,

respectively; r1 and r2 are the random numbers between zero and one; c1 and c2 are the

learning factors; ω is the inertia weight.

Additionally, the maximum velocity of each particle cannot exceed Vmax which is set to be 20%

of the length of the search space.

Step 4: (optimum updating). Calculate the fitness of each updated particle and compare it with

the values above. If it is preferable, then update pbest, pbestval, gbest, gbestval, gbestj and

gbestvalj, correspondingly. Let k = k+1.

Step 5: (worst particle replacement). Repeat Steps 3 and 4. When the particle is recorded as the

worst for the predetermined times, Iw replaces it withGg as shown in Eq. (3), and its worst record

returns to zero:

Gg ¼

Xs

j¼1
zj

s
ð3Þ

where s and zj represent the number of the selected excellent particles and their position, respectively.
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Step 6: Go to Step 3, and repeat until the maximum iteration times kmax is reached.

Compared with MPSCO, IMPSCO added the process of worst particle replacement, which is

able to avoid the problem of local optimum. Moreover, it can increase computing efficiency.

Figure 1. The flow chart of the IMPSCO algorithm.
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3. Damage detection strategy based on time-domain

On the basis of the abovementioned, this section proposes a time-domain damage detection

strategy by integrating the IMPSCO and Newmark’s algorithm. It contained two steps, namely,

determination of damage threshold and parameter identification with IMPSCO and

Newmark’s algorithm [17]. For parameter identification, it involves parameters encoding,

establishment of fitness function and parameters setting. The schematic diagram of the dam-

age detection strategy based on time-domain is depicted in Figure 2.

3.1. Determination of damage threshold

It is difficult and significant task to determine the damage threshold because the threshold is

usually used to judge damage. If the identification results are higher than the threshold, it

indicates that the damage occurs; otherwise the damage is excluded because of the inevitable

measurement noise. Eventually, the damage detection is performed. In this study, the damage

threshold is set to 2% validated by the statistical hypothesis testing. The details can be seen in

Ref. [18].

3.2. Parameters encoding

The first task is to encode parameters involving the IMPSCO. For a frame, generally, the floor

stiffness is encoded directly as the parameter to be optimized in the intact state. However, the

actual stiffness values cannot be obtained accurately, so we turn to focus on detecting the

stiffness reduction for damage scenarios. Therefore, the floor stiffness ratio of the damaged

structure to the undamaged structure, which is defined as the rigidity coefficient, is introduced

and encoded to make the detection results simple and clear. In addition, with the Rayleigh

Figure 2. The schematic diagram of the damage detection strategy based on time-domain.
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damping taken into consideration, the mass and stiffness damping coefficients α and β should

also be encoded.

3.3. Parameters setting in IMPSCO

In this study, the parameters are set as follows: the total number of subpopulation m = 3; each

population size n = 10; learning factors c1 = c2 = 2; limited times for the worst record Iw = 10;

maximum iteration times kmax = 60; the number of the selected excellent particles s = 6; the

inertia weight w is linearly decreased from 0.9 to 0.4 before the 45th iteration and afterwards it

maintains at 0.4 to enhance the local search capability.

3.4. Establishment of fitness function

The most important task is to determine the fitness function for the IMPSCO. Firstly, the

structural mass matrix M, stiffness matrix K and damping matrix C are constructed with the

generation of particles. And then the simulated time-series responses can be obtained by using

Newmark’s constant-average acceleration method. Only if the analytical responses are close to

the measured ones can it be determined that the structural properties represented with the

particles agree well with actual damage situations. Consequently, the fitness function can be

represented with

FðθÞ ¼
1

XN

i

XL

l
ðXmea

i, l � Xsim
i, l Þ

2
ð4Þ

where θ is the parameters vector; N is the number of measuring points; L is the length of

response data and Xmea
i, l and Xsim

i, l are the measured and simulated time-series responses,

respectively.

When F(θ) reaches the maximum, the values of θ are the optimal solution.

4. Two-stage damage detection strategy based on modal strain energy and

IMPSCO

Just as it is mentioned above, IMPSCO integrated with Newmark’s algorithm can locate

damage location and quantify damage severity. However, for structural damage detection,

the damage variables are always in great number. Therefore, just used IMPSCO to detection

damage can lead to time consuming. For the sake of reducing the number of optimization

variables in structural damage detection using IMPSCO, this chapter also presents a novel

two-stage structural damage detection method by the means of combination of modal strain

energy (MSE) and IMPSCO. More specifically, in the first stage, the modal strain energy is used

to exclude the possible healthy variables. In the second stage, IMPSCO, regarded structural

frequency as fitness function, is applied to precisely locate and quantify damage. The sche-

matic diagram of the two-stage damage detection based on modal strain energy and IMPSCO

is depicted in Figure 3.
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4.1. The first stage: modal strain energy

The purpose of modal analysis here is to obtain the modal parameters of the structure, such as

natural frequencies and mode shapes. So, it has the mathematical form of [19]

ðK� ω2
i MÞφ

i
¼ 0 ð i ¼ 1, ::::::, nÞ ð5Þ

where K and M are the stiffness and mass matrices of the structure, respectively; ωi and φi are

the i-th circular frequency and mode shape vector of the structure, respectively. Also, n is the

total degrees of freedom of the structure. Mode shapes are usually normalized with respect to

the mass matrix and the relations are thus established.

The modal strain energy of the i-th element in mode j can be expressed as:

Figure 3. The schematic diagram of the two-stage damage detection based on modal strain energy and IMPSCO.
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MSEu
ij ¼ fφu

j g
T
½Ku

i �fφ
u
j g ð6Þ

MSEd
ij ¼ fφd

j g
T
½Kd

i �fφ
d
j g ð7Þ

where Ki is the stiffness matrix of the i-th element of the structure and φj is the vector of

corresponding nodal displacements of element i in mode j; u and d are undamaged and dam-

aged structures, respectively.

The modal strain energy change ratio between initial structure and damage structure is used to

exclude the possible undamaged elements, which can be seen as follows:

MSECij ¼ MSEu
ij �MSEd

ij ¼ fφd
j g

T
½Ku

i
�fφd

j g � fφu
j g

T
½Ku

i
�fφu

j g ð8Þ

MSECRij ¼
jMSECijj

MSEu
ij

ð9Þ

MSECRi ¼ max
1

m

X

m

j¼1

MSECRij

MSECRj,max
, 0

2

4

3

5 ð10Þ

where MSECij is the modal strain energy change of the i-th element in mode j; MSECRij is the

modal strain energy change ratio of the i-th element in mode j; MSECRi is the modal strain

energy change ratio of the i-th element; MSECRj,max is the maximum of the absolute value of

the MSECRij in mode j.

It should be noted that the damaged elements are still unknown for a damaged structure in this

stage; therefore, the element stiffness matrix of the intact structure is used for estimating the

parameter MSECRij in this chapter. So a damage threshold calculation method as shown in Ref.

[19] is utilized to determine the modal strain energy change ratio threshold. In other words, the

MSECRi will be less than the threshold for an undamaged variable, but greater than the thresh-

old for the possible damaged variable.

4.2. The second stage: identifying the damage accurately

In this stage, IMSPCO presented in Section 2 is used to identify the damaged elements accurately

as well as to determine the extent of damage. In addition, the procedure and parameters of

IMSPCO are the same as Section 3. But the minimization objective function is using the error of

frequencies between measured and analysed. The details can be seen as follows:

F ¼
1

X

r

j¼1

ðω�
j � ωjÞ

2

ð11Þ

where ωj
* denotes the measured circular frequency of the j-th mode, which is calculated from

vibration testing; ωj is the analytical circular frequency of the j-th mode, which can be calcu-

lated as follows:
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ω2
j ¼

fφjg
T ½Ku � ΔK�fφjg

fφjg
T ½M�fφjg

ð12Þ

Where φj is the experimental mode shape vector of the j-th mode; Ku and M are the stiffness

and mass matrices of the intact structure, respectively; ΔK is the stiffness matrix changes due

to structural damage, which can be represented with:

ΔKi ¼ bi � K
u
i

ð13Þ

in which, bi is the damage extent of i-th element of the structure, which can be represented with:

bi ¼
Ku
i � Kd

i

Ku
i

� 100% ð14Þ

5. Experimental study

5.1. Steel frame

A seven-floor steel frame of 1.4125 m in height is constructed and tested in the laboratory [20].

The model is designed with flexible columns and relatively rigid beams to simulate a shear

building, as shown in Figure 4. The cross-section properties of the structural members are

listed in Table 1. The mass of the structure is concentrated at the floors, and the structural

model is regarded as a lumped mass model. Therefore, the steel frame can be simplified as a 7

degree of freedom spring-mass system with the masses M1……M6 = 3.78 kg and M7 = 3.3 kg.

Figure 4. Seven-floor steel frame model.
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5.2. Dynamic test

1. Damage scenarios: As the structure is constructed with six columns per floor, damage is

simulated by cutting the centre column partially or completely to keep the symmetry of

the model. Small damage is produced by four partial cuts near the top and bottom of the

column, whereas large damage is simulated by a complete cut at the mid-height of the

column, as indicated in Figure 5. The expected reduction of floor stiffness due to the small

damage is estimated by the software of ABAQUS. The finite element models of both the

undamaged and damaged columns are established, and the displacements under the

same nodal loads are calculated and compared to determine the change in column stiff-

ness. As there are six columns in each floor, the small damage results in a reduction in the

floor stiffness with 4.1%. As for the case of large damage, the column damage is 100%

resulting in a reduction in floor stiffness of 1/6 ≈ 16.7%. More details can be seen in the

literature [20]. The two damage scenarios are shown in Table 2.

2. Experimental data acquisition: Figure 6 illustrates the dynamic testing and data acquisi-

tion system. For ease of setup, the model is mounted horizontally and excited by vibration

exciter vertically at the seventh floor. The force generated is measured by an Integrated

Circuit Piezoelectric (ICP) force sensor (model PCB-208C02). Meanwhile, the structural

responses are measured using the ICP accelerometers mounted at each floor. The data are

recorded at a sampling frequency of 5,000 Hz.

5.3. Damage detection using IMPSCO combined with Newmark’s algorithm

5.3.1. Identification of undamaged structure (Case 1)

Firstly, 500 data points of the acceleration responses at each floor and the corresponding force are

extracted by the installed sensors when the structure is intact. Then follow the steps presented in

Figure 1. Consequently, the floor stiffness is identified for the intact structure.

Parameter Beams Columns

Sectional dimension 25 � 25 � 3 mm (SHS) 25 � 4.6 mm

Cross-sectional area A (m2) 264 � 10�6 115 �10�6

Cross-sectional moment of inertia I (m4) 2.17 � 10�8 2.03 � 10�10

Elasticity modulus E (Pa) 206 � 109 206 � 109

Density ρ (kg/m3) 7850 7850

Table 1. Structural properties.

Figure 5. Damage applied to the column.
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Identification of undamaged structure: For the intact structural model, each floor stiffness and

damping coefficient are encoded as θ = [K1, K2,…K7, α, β]. The search range of Ki (i = 1, 2,…, 7)

is within the interval of [0–800 kN/m], and the search range of α and β is within the intervals of

[0–4] s�1 and [0–0.001]s, respectively. By following the steps presented in Section 3, the floor

stiffness of the intact structure can be identified.

Because the IMPSCO algorithm is a probabilistic optimization algorithm, the evolutionary

process is always accompanied with randomness. Consequently, it is difficult to judge whether

the detection result is correct from a single test.

The detection process is repeated for 15 times using the same method in order to improve the

identification precision. The average values for the 15 times are regarded as the final results, as

shown in Table 3.

It canbe seen fromTable 3 that the identification result of k1 is significantly lower, and this is due to

the less rigid connection at the base of the structure or themodelling errors of the initial numerical

model. In addition, the identification results ofα andβ are 0.75102223 and0.00000286, respectively.

Case no. Small damage Large damage

Case 0 – –

Case 2 – Story 4

Case 3 Story 6 Story 4

Table 2. Damage scenarios.

Figure 6. Test setup.
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Then the acceleration responses can be calculated by the identified results according toNewmark’s

algorithm,which is plotted alongwith themeasured values inFigure 7. For the simplicity, only the

comparison results of the secondand fifth floors are given as shown inFigure7. It indicates that the

identified and measured acceleration responses are in good agreement, which validates the rea-

sonability of applying the identified floor stiffness of the undamaged structure to the detection of

the rigidity coefficients under the different damage scenarios.

5.3.2. Identification of damaged structure

The identification procedure is similar to that of intact structure in Section 5.3.1, except that the

parameters encoded are replaced with θ = [R1, R2, …, R7], in which Ri ¼ 1� bi ði ¼ 1, 2,…, 7Þ

represents the rigidity coefficient and belongs to [0, 1].The final identification results are listed

in Table 4.

It is seen from Table 4 that the maximum relative error of identification results is 1.4%, which

occurs in the second floor for the Case 2. As the rigidity coefficient introduced in the parameter

encoding reflects the structural stiffness reduction, the effect on the damage identification

results owing to the modelling error of the initial numerical model can be reduced to a great

extent. This implies that the proposed structural damage detection strategy is effective and

reliable.

5.3.3. Comparison and discussion

A comparison is made among the theoretical damage extent, identification results by genetic

algorithm (GA) and IMPSCO, and the results are shown in Figure 8.

On the basis of damage threshold determined in Ref. [16], the floor whose damage extent is

lower than 2% is intact. It is found from Figure 8 that damage locations can be correctly localized

Floor stiffness K1 K2 K3 K4 K5 K6 K7

Identification (kN/m) 300 626 553 566 547 574 519

Table 3. Identification results of floor stiffness in intact state.

Figure 7. The comparison results of acceleration response. (a) The second floor; (b) the fifth floor.
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Damage scenarios R1 R2 R3 R4 R5 R6 R7

Case 2

Identification 0.993 0.986 0.993 0.839 0.999 0.993 0.998

Theoretical values 1.000 1.000 1.000 0.833 1.000 1.000 1.000

Relative error (%) 0.7 1.4 0.7 0.7 0.1 0.7 0.2

Case 3

Identification 0.994 0.994 0.995 0.843 0.992 0.966 1.000

Theoretical values 1.000 1.000 1.000 0.833 1.000 0.959 1.000

Relative error (%) 0.6 0.6 0.5 1.2 0.8 0.7 0.0

Table 4. Identification results of all damage scenarios.

Figure 8. Identification results of all damage scenarios.

Structural Damage Detection Based on Improved Multi-Particle Swarm Co-Evolution Optimization Algorithm
http://dx.doi.org/10.5772/intechopen.68385

59



using IMPSCO and GA for all damage scenarios. In addition, the detection of damage extent is

also accurate and reliable using the two optimization methods. Furthermore, IMPSCO is more

efficient and accurate than GA in general. Although GA is capable of detecting damage, it costs

more running time than IMPSCO.

All in all, the proposed damage detection strategy can not only localize the damage correctly

but also quantify damage precisely.

5.4. Damage detection using model strain energy and IMPSCO

5.4.1. Identification of undamaged structure

Because the advantage of the two-stage damage detection method based on model strain

energy and IMPSCO is that it can filter the undamaged elements. For modal updating, all

elements are the possible variables. Therefore, in this section, we just used the result in Section

5.3.1 as intact structure.

5.4.2. Identification of damaged structure

5.4.2.1. Case 2

In the first stage, the modal strain energy change ratio of 7 elements is analysed, and then the

index MSECR is evaluated. Specifically, the circular frequencies and mode shapes in intact

and damaged cases are obtained by Fast Fourier Transform (FFT), and then the MSECR of

the first four modes are calculated by Eq. (10) and depicted as in Figure 9(a). Therein, the

first four modes are used to calculate modal strain energy. The line of the MSECR threshold

also plotted in Figure 9(a). The value is set to 0.14 [21]. We can see from Figure 9(a) that the

possible damaged elements are both elements 4 and 5 for Case 2.

In the second stage, IMPSCO is then employed to solve the reduced damage elements optimi-

zation detection problem to precisely locate damage location and quantify damage severity.

Therein, the searching elements in IMPSCO algorithm are the possible damaged elements

located in the first stage, namely elements 4 and 5. Figure 9(b) shows the final damage

identification result. It is observed from Figure 9(b) that the identified damage is 0.171 for

element 4 and the induced damage is 0.167 for element 4. The relative error between identified

and induced damage is 2.4%. This indicates that the proposed IMPSCO algorithm can detect

damage correctly.

5.4.2.2. Case 3

Case 3 is a multi-damage pattern that involves large damage scenarios in element 4 and small

damage scenarios in element 6. As detection of the process for Case 2, the first four modes of

the MSECR values are presented in Figure 10(a), from which it can be seen that the values of

MSECR for elements 4, 5 and 6 exceed the MSECR threshold. Therefore, it can be concluded

that the possible damaged elements are elements 4, 5 and 6.

After roughly determining damage locations, IMPSCO is then utilized to accurately identify

damage. The identification results for Case 3 are depicted in Figure 10(b). The identified
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damaged severity is close to that of the induced damage, and the relative errors are 1.2 and

4.2% for element 4 and 6, respectively. This indicates that the proposed method is effective in

precisely locating and quantifying damage.

5.4.3. Discussion

It can be seen from Figures 9 and 10 that element 5 (Story 5) experienced an incorrect location in

the first stage. There are two possible reasons for the misdetection. The first one is that the

element 5 is adjacent to damaged elements (element 4 for Case 2 as well as elements 4 and 6 for

Case 3) and thus its values of modal strain energy may be higher than that of other undamaged

elements. In addition, the modal strain energy threshold is ensured by sampling survey, which is

performed by numerical simulation. The precision of the threshold is also related to the sample

size. The second reason is that subtle differences exist in the modal parameters between the finite

Figure 10. Identification results for Case 3. (a) Value of MSECR; (b) ientification results.

Figure 9. Identification results for Case 2. (a) Value of MSECR; (b) ientification results.
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model and experimental one for the intact structure. All in all, the efficiency of the proposed two-

stage damage detection method depends on the precision of the finite element model and sample

size in ensuring modal strain energy threshold.

From Figures 9(b) and 10(b), the damage severity is 0 for element 5. Specifically, this is the

damage detection results by use of IMPSCO in the second stage. As a consequence, it can be

concluded that IMPSCO can accurately locate and quantify damage. In summary, the proposed

two-stage damage detection method is applicable to identify damage location and its severity.

6. Concluding remarks

This chapter proposes an improved multi-particle swarm co-evolution optimization (IMPSCO),

and combined it with Newmark’s algorithm. In addition, this chapter also presents a novel two-

stage damage detection method based on modal strain energy and IMPSCO to locate damage

location and quantify damage extent. The following conclusions can be made:

1. The performance comparison has proved that IMPSCO algorithm is more precise and

faster than standard MPSCO in damage detection. Moreover, it has better noise-tolerance

and robustness than standard MPSCO.

2. The proposed IMPSCO algorithm integrated with Newmark’s algorithm is applicable and

effective for detecting and quantifying damages using the noise polluted measured data.

It is noted that the proposed strategy is implemented only by using any kinds of structural

time-series responses and the excitation force.

3. The combination of modal strain energy and IMPSCO algorithm can provide an efficient

and fast tool for properly detecting damage in simulation test and experimental example.

4. Compared with genetic algorithm, IMPSCO is more efficient and robust for damage

detection with a better noise-tolerance.
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