
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 1

Reducing Neuroinflammation in Psychiatric Disorders:
Novel Target of Phosphodiesterase 4 (PDE4) and
Developing of the PDE4 Inhibitors

Chuang Wang, Zhen Wang, Mengmeng Li,
Chenli Li, Hanjie Yu, Dongsheng Zhou and
Zhongming Chen

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69154

Abstract

Multiple lines of evidence support the pathogenic role of neuroinflammation in psy‐
chiatric illness. Cyclic adenosine monophosphate (cAMP) is a critical regulator of 
microglia homeostasis; as the predominant negative modulator of cyclic AMP signal‐
ing within microglia, and phosphodiesterase 4 (PDE4) represents a promising target 
for modulating immune function. The approach for pharmacological manipulation of 
cAMP levels using specifc PDE4 inhibitors provokes an ant-iinflammatory response. 
Specifcally, PDE4 inhibitors have recently emerged as a potential therapeutic strategy for 
neuroinflammatory, neurodegenerative, and psychiatric diseases. Mechanistically, PDE4 
inhibitors produce an anti-inflammatory and neuroprotection effect by increasing the 
accumulation of cAMP and activating protein kinase A (PKA), the signaling pathway of 
which is thought to play an important role in the development of psychiatric disorders. 
This chapter reviews present knowledge of the relationship between neuroinflammation 
and classical psychiatric disorders (major depressive disorder (MDD), bipolar disorder 
(BD), and schizophrenia) and demonstrates the signaling pathways that underlie the use 
of PDE4 inhibitors in neuroinflammation. In addition, among the four subtypes (A-D) 
of PDE4, it remains unclear which one exerts suppressive effects on neuroinflammation. 
Understanding how PDE4 and neuroinflammation interact can reveal pathogenic clues 
and help target new preventive and symptomatic therapies for psychiatric illness. 

Keywords: cyclic adenosine monophosphate (cAMP), phosphodiesterase 4 (PDE4), 
psychiatric disorders, neuroinflammation
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1. Introduction: the possibility that inflammation is the common 
mediator of psychiatric disorders

Classical psychiatric disorders, including major depressive disorder (MDD), bipolar disor‐

der (BD), and schizophrenia, affect a significant percentage of the world population. More 
recently, inflammatory and immunological abnormalities have been documented in patients 
with classical psychiatric disorders, even though the exact mechanisms underlying this asso‐

ciation are not known. A growing body of evidence suggests that activation of the immune 
response following systemic infection often results in neuroinflammation and consequently 
induces psychiatric symptoms in animal models and humans (as shown in Figure 1) [1–6]. 

Specifically, inflammation in the context of the nervous system termed “neuroinflammation” 
has been reported in patients with psychiatric disorders [7] and is typically associated with 
microglial activation.

Microglia, the resident phagocytes of the CNS, are ubiquitously distributed in the brain and 
are usually the first to be activated in response to tissue damage or brain infections [14]. 

At the same time, microglia are important players in the maintenance and plasticity of 
 neuronal  circuits, contributing to the protection and remodeling of synapses [15–16]. They 
provide ongoing immune surveillance and regulate developmental synaptic pruning [17–18]. 

Microglial activation can be divided into two distinct types: a classical M1 and an alternative 
M2 activation. Proinflammatory cytokines include interleukin-1β (IL-1β), interleukin-2 (IL-2), 
interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), and they are 
secreted primarily by microglia [19–21]; [3]. In the M1 activation, microglial cells may become 

Figure 1. Summary of neuroinflammatory responses and microglial abnormalities observed in psychiatry disorders. 
A large body of evidence [8–13] supports the involvement of neuroinflammatory mechanisms, including microglial 
activation, downregulation of dendritic spines, neurogenesis, and neurotrophic factors in the pathophysiology of 
psychiatric disorders.
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hyperramified or ameboid/phagocytic [22], and may synthesize proinflammatory molecules, 
superoxide radicals, glutamate [23–24], and nitric oxide (NO) and ultimately clear infections 
and repair tissues. Alternatively, M2 activation, which can be triggered by cytokines such as 
IL-4, IL-13, or IL-25 [25]; [22], has been associated with a release of antiinflammatory cyto‐

kines (e.g. IL-10, insulin-growth factor-1(IGF-1), transforming growth factor-β (TGF-β), and 
neurotrophic factors) [22], which facilitate healing and limit neuronal injury [7]. Cytokine 
response phenotypes are classified as either proinflammatory T-helper 1 (Th1) or antiinflam‐

matory T-helper 2 (Th2) according to the immune functions they regulate. The key to neuro‐

inflammation effects on psychiatric disorders appears to lie within the dysregulation of the 
control and release of pro- and antiinflammatory cytokines. In fact, Th1 and Th2, which are 
responsible for pathogen elimination and antibody regulation, respectively, were also found 
to be altered in untreated depressed patients [26]. Microglia activation is one of the mecha‐

nisms by which peripheral immune challenges can alter brain functioning [27, 28]; [1]. In fact, 
patients with psychiatric disorders have been shown to present an increase in serum levels of 
proinflammatory cytokines [29–32]; [8]. Interestingly, investigations involving animal models 
of depression and postmortem dorsal anterior cingulate matter from individuals suffering 
from MDD delineate altered expression of microglial activation markers, as well as chronic‐

ity-dependent fluctuations in microglial concentration in areas of the brain associated with 
mood regulation [33–36]; [10, 13]. Additionally, microglial activation was also greater in the 
ventral prefrontal white matter in individuals who committed suicide [37]. Altogether, these 
studies suggest that microglial activation may be considered as an important marker in MDD.

Bipolar disorder is a severe mood disorder characterized by recurrent episodes of mania fol‐
lowed by depression. The pathophysiology of BD is yet to be well understood, while recent 
studies have indicated that abnormal immunological functions may be a contributing factor 
[38–42]. Recently, positron emission tomography (PET) studies have shown microglial overac‐

tivation in the brain of patients with various psychiatric disorders [43–45]; [9] including bipolar 
disorder [42]. Consistent with the previous studies, it was revealed that in BD, the immune sys‐

tem is chronically activated by microglia, which in turn produces cytokines that render the brain 
to a vulnerable and unstable state, precipitating mood disturbances [45–47]. In fact, higher levels 
of IL-1β were associated with dysfunction and increased suicide risk in patients with BD [48].

Schizophrenia is a chronic and debilitating disorder that affects 0.5–1% of the world population 
[49]. Evidence suggests that the dopamine dysfunction hypothesis [50–51] has defined schizo‐

phrenia for many years, a growing number of research investigations and scientific curiosity 
have developed around the immune system and the role of neuroinflammation in precipitating 
psychotic symptoms in a subset of patients with psychosis [52–55]; [5, 6], providing a detailed 
review of the theories and mechanisms that support a role for inflammation in schizophrenia.

2. Cyclic nucleotide signaling and neuroinflammation

Several mechanisms can account for the high comorbidity of neuroinflammation and psy‐

chiatric disorders. These mechanisms include direct effects of cytokines on the neuronal 
environment or indirect effects via downregulation of cyclic nucleotide signaling [56–58]. 
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Understanding cyclic nucleotide signaling mechanisms that underlie neuroinflammation and 
psychiatric disorder comorbidity may yield effective pharmaceutical targets that can treat 
both conditions simultaneously beyond traditional antipsychotic drugs. There is growing 
evidence that adenosine cyclic 3,5-monophosphate (cAMP) exerts many of its physiological 
effects by activating cAMP-dependent protein kinase (PKA), which in turn phosphorylates 
and regulates the functions of downstream protein targets including ion channels, enzymes, 
and transcription factors [59]. Specifically, cAMP is a ubiquitous regulator of the inflam‐

matory response and is also a key second messenger that influences glial activity [60, 61]. 

Additionally, recent findings have also suggested that cAMP/cAMP response element- 
binding (CREB)  signaling is closely involved in antiinflammatory responses [62] by suppress‐

ing the activation of glial cells (both microglia and astrocytes), decreasing the production 
of proinflammatory mediators, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, 
IL-6, IL-12, and nitric oxide, and increasing the expression of antiinflammatory factor IL-10 
[63–65]. Therefore, previous work has shown that the application of cAMP analogs, adeny‐

lyl cyclase (AC) activators, or PDE inhibitors, to increase the levels of intracellular cAMP, 
antagonizes the changes in microglial cell morphology and their production of proinflamma‐

tory cytokines when they are exposed to inflammatory stimuli [66–67]. Intracellular cAMP 
signaling has been well established in the mediation of memory [68–71] and depression-like 
behaviors [72, 73]; [57]). cAMP activates protein kinase A (PKA), which phosphorylates and 
activates the subsequent downstream target CREB protein [74, 75] and is important for medi‐
ating synaptic plasticity [76, 77]; [74]. In addition, increases in cAMP levels during inflam‐

mation inhibit the production of proinflammatory cytokines and stimulate the formation of 
IL-10, an antiinflammatory factor [78, 79]. Conversely, inflammatory molecules, including 
lipopolysaccharide (LPS), interferon (IFN)-γ, and TNF-α, can dramatically reduce cyclic AMP 
levels in microglia, leading to changes in their phenotype and function [80]; [56]. Therefore, 
cAMP/CREB signaling may play a beneficial role in inflammatory responses and apoptosis of 
psychiatric disorders. Given that cAMP levels are regulated by a balance between the activi‐
ties of two enzymes: AC and cyclic nucleotide phosphodiesterase (PDE), the pharmacological 
manipulation using specific PDE inhibitors, in particular, PDE4 inhibitors provoke profound 
antiinflammatory responses [81] and beneficial effects on psychiatric disorders [82]; [57]. 

Selective inhibitors of PDE4 are currently used in clinical practice for the treatment of car‐

diovascular disorders and erectile dysfunction, and other PDE inhibitors are under devel‐
opment for the treatment of CNS and inflammatory disorders. This chapter focuses on the 
development of PDE4 and PDE4 subtype inhibitors which have been reported as treatment 
for neuroinflammation.

3. PDE4 and specific PDE4 subtype inhibitors in neuroinflammation

3.1. PDE4 and the distribution of its subtypes in CNS

PDE4, one of the 11 PDE enzyme families, specifically catalyzes hydrolysis of cyclic AMP 
(cAMP); it has four subtypes (PDE4A–D) with at least 25 splice variants. Detailed analyses of 
the expression pattern of the human PDE4 isogenes have recently appeared [83, 84]. All four 
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subtypes, PDE4A, PDE4B, PDE4C, and PDE4D, are found in most tissues although, notably, 
PDE4C is absent in blood (as shown in Table 1). PDE4 plays a critical role in the control of 
intracellular cAMP concentrations. PDE4 gene members are distributed throughout the brain 
and are expressed in various neurons. PDE4 specifically hydrolyzes cAMP to inactive AMP. 
High levels of cytosolic cAMP lead to the activation of PKA and further induce the phosphor‐
ylation of transcription factors, such as CREB and cAMP-dependent transcription factor-1 
(ATF-1) to drive cAMP-driven genes, which involve in the regulation of proinflammatory 
and antiinflammatory pathways (as shown in Figure 2).However, the differential distribu‐
tion of the four PDE4 subtypes (PDE4A–D) in the brain [85] may be attributed to the different 
regulation of cAMP-mediated signaling in CNS. PDE4A and PDE4D are highly expressed in 
the cortex, olfactory bulb, hippocampal formation, and brainstem, whereas PDE4B is mainly 
expressed in the amygdala, striatum, and hypothalamus [86–88]. By contrast, PDE4C exhibits 
a distribution different from those of PDE4A and PDE4D and appears to be limited to the 
thalamus and cerebellum [89, 90]. Because of the unique distribution of PDE4 isoform and its 
significance in various physiological functions in CNS, PDE4 presents promising pharmaceu‐
tical drug target treatment for psychiatric disorders.

3.2. Traditional PDE4 inhibitors

The search for selective inhibitors of PDE4 as novel antiinflammatory drugs has continued 
for more than 40 years. Recent findings have also suggested that cAMP/CREB/brain-derived 
neurotrophic factor (BDNF) signaling is closely involved in antiinflammatory responses 
[66], depression, and antidepressant actions [91]; [68]. PDE4 inhibition has been a target 

Location Level of expression

PDE4A PDE4B PDE4C PDE4D

Brain ++ ++ ++ ++

Liver ++ ++ ++ ++

Lung ++ ++ ++ ++

Trachea ++ ++ ++ ++

Kidney ++ ++ ++ ++

Placenta ++ ++ ++ ++

Heart ++ ++ ++ ++

Blood ++ ++ − ++

Neutrophils ± ++ − ±

Eosinophils ++ ++ − ++

++, expression.
±, very weak expression.
−, no expression.

Table 1. Expression patterns of mRNAs for the human phosphodiesterase 4 (PDE4) subtype genes.
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of therapeutic drug research since the 1970s, with the prototypic PDE4 inhibitor, rolipram 
being tested in clinical trials in the 1980s [92]. Notably, PDE4 inhibitor rolipram that read‐
ily produces antidepressant-like actions [93, 94], which are associated with increased level 
of cAMP and its downstream targets of cAMP-dependent protein kinase A (PKA), CREB, 
and BDNF [95]; [68]. Therefore, the potential PDE4 inhibitors may be an efficient alternative 
strategy to play antidepressant action especially in depressive disorder induced by inflamma‐
tion. Consistent with this hypothesis, the previous studies have demonstrated that rolipram 
reduces neuroinflammation and promotes axonal regeneration and functional recuperation 
following spinal cord injury [96–98]; [62]. More evidence have shown that PDE4 inhibitor 
rolipram reduces the production of proinflammatory cytokines and modulates the activity 
of cAMP-mediated signaling and thus regulates CREB phosphorylation and the downstream 
effectors [99]; [62, 68], showing that potential PDE4 inhibitors may be suitable to antagonize 
psychiatric disorders. Unfortunately, the development of PDE4 inhibitor rolipram for thera‐
peutic purposes has been hindered by side effects, such as emesis [100, 101]. Based on the 

Figure 2. The antiinflammatory mechanisms of PDE4 and PDE4 subtype inhibitors. cAMP as a regulator of immunity. 
Adenylate cyclases (AC) produce cAMP from adenosin-tri-phosphate (ATP). High levels of cytosolic cAMP lead to the 
activation of protein kinase A (PKA) and further induce the phosphorylation of transcription factors, such as CREB and 
cAMP-dependent transcription factor-1 (ATF-1) to drive cAMP-driven genes. Phosphodiesterase 4 (PDE4) decreases 
intracellular cAMP levels and counterbalances the intracellular cAMP effect. However, PDE4 or subtype inhibitors block 
PDE4 or its subtypes. As PDE4 or subtypes degrade cAMP to AMP, cAMP levels rise during apremilast treatment. 
The elevation of intracellular cAMP leads to the activation of PKA. This results in the phosphorylation and activation 
of transcription factors like CREB and ATF-1. On the other hand, NF-κB is inactivated. This transcriptional regulation is 
responsible for the reduced production of proinflammatory mediators like IL-1β, IL-12, IL-17, IL-22, IL-23, TNF-α, and 
IFN-γ and the increased production of IL-6 and the antiinflammatory mediator IL-10.
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demonstration of significant efficacy in preclinical models, multiple PDE4 inhibitors have 
entered clinical development, and none have reached the market. Roflumilast and apremilast 
have been approved for peripheral inflammatory disorders, such as severe chronic obstruc‐
tive pulmonary disease (COPD) and psoriatic arthritis (PA), respectively; however, their full 
immunomodulatory activity is limited to doses which are estimated to inhibit PDE4 by 50% 
due to the incidence of nausea and emesis at higher exposures. Unfortunately, the two PDE4 
inhibitors (roflumilast and apremilast) approved for peripheral inflammatory disorders lack 
brain penetration and are dose limited by side effects making them unsuitable for modulat‐
ing microglial function. Despite the challenges and complications that have been encoun‐
tered during the development of PDE4 inhibitors, these drugs may provide a genuinely novel 
class of antineuroinflammatory agents, and there are several compounds in development that 
could fulfill that promise.

3.3. The novel potential PDE4 inhibitors

Notably, it has been recently reported that a pyrazolopyridine compound, etazolate, is 
a new-generation selective PDE4 inhibitor and is proven to be of particular significance 
in  neuropsychiatric conditions [102, 103]; [94]. Previous studies reported that etazolate 
belongs to PDE4 inhibitor family and that treatment with etazolate restored cAMP levels 
[66, 94, 103]. In most of the clinical phase II or Phase IIb studies, etazolate has shown that it 
could be a potential candidate for the treatment of Alzheimer’s disease [102]. Additionally, 
in several preclinical studies, etazolate has shown significant antidepressant- and anxio‐
lytic-like effects in acute and chronic rodent models [104, 105]; [66, 103]. Specifically, it 
is reported that the expression of PDE4A, PDE4B, and PDE4D in the hippocampus was 
significantly increased by lipopolysaccharide (LPS) in mice. In addition, an etazolate sig‐
nificantly reversed the elevated IL-1β expression in hippocampus and prefrontal cortex 
induced by LPS [103], indicating significant antineuroinflammatory response. Although 
limited preclinical studies have been conducted on etazolate, the recent clinical trial results 
on its safety and tolerance are encouraging [106]. However, in March 2014, the development 
of the etazolate was stopped as the company transformed into a specialty in vitro diagnos‐
tics company.

Recently, more and more novel selective PDE4 inhibitors (as shown in Table 2) have been 
designed and explored in different rodent models, displaying a safer profile compared to tra‐
ditional agents [107–111]; [66, 75], supporting further evaluation of these novel PDE4 inhibi‐
tors in a clinical setting.

3.4. PDE4 subtype inhibitors

Particular attention has been given to the PDE4 isoforms owing to the antiinflammatory 
effects observed after their inhibition in vitro and in vivo [81]. Of the four major phosphodi‐
esterase 4 (PDE4) subtypes, PDE4A, PDE4B, or PDE4D, all of which are found to some extent 
in every inflammatory cell type studied, could be important regulators of inflammatory pro‐
cesses. Only PDE4C, which is present in the lung [112] but has only rarely and inconsistently 
been reported in any isolated inflammatory cell type, can be eliminated on the basis of its 
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Novel PDE4 inhibitors Chemical structures Active indications Highest status

Etazolate Depression, anxiety, 
traumatic brain injury

Phase 2 clinical to 
discontinued

EPPA-1 In vitro and in vivo anti 
inflammatory potencies

Discovery

GSK256066 Antiinflammatory activities Phase 2 clinical to 
discontinued

LASSBio-448 Antiinflammatory activities Discovery

FFPM Reverses learning and 

memory deficits and 
appears to have potential 

antiinflammatory effects 
with little emetic potential

Discovery

Apremilast Ankylosing spondylitis; 
Atopic dermatitis; Behcet’s 
disease; Hidradenitis 
suppurativa; Psoriasis; 
Psoriatic arthritis; Ulcerative 
colitis

Launched

HT-0712 Cognitive disorder Phase 2 clinical

Roflumilast Alzheimer’s disease; 
Asthma; Chronic obstructive 
pulmonary disease; 
Schizophrenia

Launched

Ibudilast Alcoholism; Amphetamine 
dependence; Drug 
dependence; Neuropathic 
pain; Opiate dependence; 
Traumatic brain injury

Phase 2 clinical

Table 2. Development of novel PDE4 inhibitors.
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distribution. This distribution characteristic provides many opportunities for selective thera‐

peutic targeting [113, 114] and the potential to reduce the incidence of side effects attributed 
to PDE4 inhibition. The previous studies revealed that PDE4B might be the critical subtype 
that controls the inflammatory responses [115–117]. The work by Conti’s group [115] identi‐

fied PDE4B to be the primary PDE4 enzyme involved in proinflammatory responses to LPS in 
macrophages and leukocytes. Reports have suggested that mice deficient in PDE4A display 
anxiogenic-like behavior [118], while PDE4B is closely related with neuroinflammation [119]. 

Therefore, subtype selective inhibitors targeting PDE4B are of high interest given the criti‐
cal role PDE4B plays in immune function versus the association of PDE4D with nausea and 
emesis. However, it is difficult to directly link PDE4 inhibitor-mediated efficacy to changes 
specifically in microglial cell function, and even more so whether these effects selectively 
involve PDE4B. The difficulty in establishing these links is because these investigations 
have almost exclusively used pharmacological inhibitors that are administered systemically 
and which show similar affinity toward all PDE4 family members, being designed largely 
to inhibit enzyme activity by binding to the catalytic site. Recently, the crystal structures of 
PDE4B have been exploited to develop subtype-selective PDE4 inhibitors [120]. The novel 
PDE4B inhibitor A33, which has an IC50 of 32 nM against PDE4B1, is 49-fold more selective 
for PDE4B versus PDE4D and does not appreciably inhibit any other PDEs [121]. Specifically, 
A33 inhibits all PDE4B isoforms and is 49-fold more selective toward PDE4B compared with 
PDE4D and does not appreciably inhibit other PDEs [120, 121]. Interestingly, TNF-α levels 
at 6-hour postsurgery of traumatic brain injury (TBI) were significantly reduced by A33, sug‐

gesting that an inflammatory pathway mediated by PDE4B is inhibited with A33 [122]; [115] 

(Jin and Conti; Jin et al.). However, further studies to determine the antineuroinflammatory 
mechanisms of A33 may yield insights into the processes involved in the improvements of 
psychiatric disorders with A33 treatment.

4. Conclusions

A large body of evidence supports the involvement of neuroinflammatory mechanisms in the 
pathophysiology of psychiatric disorders. Drugs that interfere with these mechanisms, such 
as PDE4 inhibitors, could be a novel and important new pathway for the treatment of these 
disorders. Furthermore, continued drug discovery efforts to identify safe and well-tolerated, 
brain-penetrant PDE4 inhibitors are a reflection of the confidence in the rationale for modula‐

tion of this target to produce meaningful therapeutic benefit in a wide range of neurological 
conditions and injury.

Acknowledgements

This research was supported by National Natural Science Foundation of China 
(No. 81671337; No.81201050; No.81541087); Natural Science Foundation of Zhejiang prov‐

ince (No. LQ12H09001); Natural Science Foundation of Ningbo (No. 2012A610251); Ningbo 
municipal innovation team of life science and health (2015C110026); new-shoot Talents 

Reducing Neuroinflammation in Psychiatric Disorders: Novel Target of Phosphodiesterase 4...
http://dx.doi.org/10.5772/intechopen.69154

11



Program of Zhejiang province; and Student Research and Innovation Program of Ningbo 
University. This project is also sponsored by K.C. Wong Magna funded in Ningbo University 
and Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Development Fund, 
National 111 Project of China.

Author details

Chuang Wang1,2,3,4*, Zhen Wang6*, Mengmeng Li1,2,3, Chenli Li1,2,3, Hanjie Yu1,2,3, 
Dongsheng Zhou1,5 and Zhongming Chen1,5

*Address all correspondence to: wangchuang@nbu.edu.cn

1 Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 
Ningbo, Zhejiang, P.R. China

2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of 
Medicine, Ningbo, Zhejiang, P.R. China

3 Department of Physiology and Pharmacology, Ningbo University School of Medicine, 
Ningbo, Zhejiang, P.R. China

4 Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo 
University, Ningbo, Zhejiang, P.R. China

5 Ningbo Kangning Hospital, Ningbo, Zhejiang, P.R. China

6 CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese 
Academy of Sciences, Shanghai, China

References

[1] Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation 
to sickness and depression: When the immune system subjugates the brain. Nature 
Reviews Neuroscience. 2008;9(1):46-56. DOI: 10.1038/nrn2297

[2] Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin 
MR.Inflammation-induced anhedonia: Endotoxin reduces ventral striatum responses 
to reward. Biological Psychiatry. 2010;68(8):748-754. DOI: 10.1016/j.biopsych.2010.06.010

[3] Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychophar‐
macology: Translational implications of the impact of inflammation on behavior. 
Neuropsychopharmacology. 2012;37(1):137-162. DOI: 10.1038/npp.2011.205

[4] Cho HJ, Eisenberger NI, Olmstead R, Breen EC, Irwin MR. Preexisting mild sleep dis‐
turbance as a vulnerability factor for inflammation-induced depressed mood: A human 
experimental study. Translational Psychiatry. 2016;6:e750. DOI: 10.1038/tp.2016.23

Mechanisms of Neuroinflammation12



[5] Notter T, Coughlin JM, Gschwind T, Weber-Stadlbauer U, Wang Y, Kassiou M, Vernon 
AC, Benke D, Pomper MG, Sawa A, Meyer U. Translational evaluation of translocator 
protein as a marker of neuroinflammation in schizophrenia. Molecular Psychiatry. 2017. 
DOI: 10.1038/mp.2016.248

[6] Miller BJ, Goldsmith DR. Towards an immunophenotype of schizophrenia: Progress, 
potential mechanisms, and future directions. Neuropsychopharmacology. 2017;42(1):299-
317. DOI: 10.1038/npp.2016.211

[7] Najjar S, Pearlman DM, Devinsky O, Najjar A, Zagzag D. Neurovascular unit dysfunc‐
tion with blood-brain barrier hyperpermeability contributes to major depressive dis‐
order: A review of clinical and experimental evidence. Journal of Neuroinflammation. 
2013;10:142. DOI: 10.1186/1742-2094-10-142

[8] Schiepers OJ, Wichers MC, Maes M. Cytokines and major depression. Progress in 
Neuro-Psychopharmacology & Biological Psychiatry. 2005;29(2):201-217. DOI: 10.1016/j.
pnpbp.2004.11.003

[9] Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, Yoshihara 
Y, Omata K, Matsumoto K, Tsuchiya KJ, Iwata Y, Tsujii M, Sugiyama T, Mori N. 
Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry. 
2013;70(1):49-58. DOI: 10.1001/jamapsychiatry.2013.272

[10] Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased 
microglial priming and macrophage recruitment in the dorsal anterior cingulate white 
matter of depressed suicides. Brain, Behavior, and Immunity. 2014;42:50-59. DOI: 
10.1016/j.bbi.2014.05.007

[11] Cattaneo A, Cattane N, Begni V, Pariante CM, Riva MA. The human BDNF gene: 
peripheral gene expression and protein levels as biomarkers for psychiatric disorders. 
Translational Psychiatry. 2016;6(11):e958. DOI: 10.1038/tp.2016.214

[12] Apple DM, Fonseca RS, Kokovay E. The role of adult neurogenesis in psychiatric and cog‐
nitive disorders. Brain Research. 2017;1655:270-276. DOI: 10.1016/j.brainres.2016.01.023

[13] Churchward MA, Tchir DR, Todd KG. Microglial function during glucose deprivation: 
Inflammatory and neuropsychiatric implications. Molecular Neurobiology. 2017. DOI: 
10.1007/s12035-017-0422-9

[14] Stertz L, Magalhaes PV, Kapczinski F. Is bipolar disorder an inflammatory condition? 
The relevance of microglial activation. Current Opinion in Psychiatry. 2013;26(1):19-26. 
DOI: 10.1097/YCO.0b013e32835aa4b4

[15] Ji K, Akgul G, Wollmuth LP, Tsirka SE. Microglia actively regulate the number of func‐
tional synapses. PLoS One. 2013;8(2):e56293. DOI: 10.1371/journal.pone.0056293

[16] Mosser CA, Baptista S, Arnoux I, Audinat E. Microglia in CNS development: Shaping 
the brain for the future. Progress in Neurobiology. 2017;149‐150:1-20. DOI: 10.1016/j.
pneurobio.2017.01.002

Reducing Neuroinflammation in Psychiatric Disorders: Novel Target of Phosphodiesterase 4...
http://dx.doi.org/10.5772/intechopen.69154

13



[17] Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. 
Physiological Reviews. 2011;91(2):461-553. DOI: 10.1152/physrev.00011.2010

[18] Tremblay MÈ1, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. The role of 
microglia in the healthy brain. Journal of Neuroscience. 2011;31(45):16064-16069. DOI: 
10.1523/JNEUROSCI.4158-11.2011

[19] Ehrhart J, Obregon D, Mori T, Hou H, Sun N, Bai Y, Klein T, Fernandez F, Tan J, Shytle 
RD. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. 
Journal of Neuroinflammation. 2005;2:29. DOI: 10.1186/1742-2094-2-29

[20] Mattei D, Djodari-Irani A, Hadar R, Pelz A, de Cossio LF, Goetz T, Matyash M, Kettenmann 
H, Winter C, Wolf SA. Minocycline rescues decrease in neurogenesis, increase in microg‐
lia cytokines and deficits in sensorimotor gating in an animal model of schizophrenia. 
Brain, Behavior, and Immunity. 2014;38:175-84. DOI: 10.1016/j.bbi.2014.01.019

[21] Yu Z, Fukushima H, Ono C, Sakai M, Kasahara Y, Kikuchi Y, Gunawansa N, Takahashi 
Y, Matsuoka H, Kida S, Tomita H. Microglial production of TNF-alpha is a key ele‐
ment of sustained fear memory. Brain, Behavior, and Immunity. 2017;59:313-321. DOI: 
10.1016/j.bbi.2016.08.011

[22] Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identifi‐
cation in the human brain. Neuropathology and Applied Neurobiology. 2013;39(1):3-18. 
DOI: 10.1111/nan.12011

[23] Barger SW, Goodwin ME, Porter MM, Beggs ML. Glutamate release from activated 
microglia requires the oxidative burst and lipid peroxidation. Journal of Neurochemistry. 
2007;101(5):1205-1213. DOI: 10.1111/j.1471-4159.2007.04487.x

[24] Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K. L-glutamate released from 
activated microglia downregulates astrocytic L-glutamate transporter expression in 
neuroinflammation: The ‘collusion’ hypothesis for increased extracellular L-glutamate 
concentration in neuroinflammation. Journal of Neuroinflammation. 2012;9:275. DOI: 
10.1186/1742-2094-9-275

[25] Maiorino C, Khorooshi R, Ruffini F, Lobner M, Bergami A, Garzetti L, Martino G, Owens 
T, Furlan R. Lentiviral-mediated administration of IL-25 in the CNS induces alternative 
activation of microglia. Gene Therapy. 2013;20(5):487-496. DOI: 10.1038/gt.2012.58

[26] Song C, Halbreich U, Han C, Leonard BE, Luo H. Imbalance between pro- and anti-inflam‐

matory cytokines, and between Th1 and Th2 cytokines in depressed patients: the effect 
of electroacupuncture or fluoxetine treatment. Pharmacopsychiatry. 2009;42(5):182-188. 
DOI: 10.1055/s-0029-1202263

[27] Godbout JP, Moreau M, Lestage J, Chen J, Sparkman NL, O’Connor J, Castanon 
N, Kelley KW, Dantzer R, Johnson RW. Aging exacerbates depressive-like behav‐
ior in mice in response to activation of the peripheral innate immune system. 
Neuropsychopharmacology. 2008;33(10):2341-2351. DOI: 10.1038/sj.npp.1301649

Mechanisms of Neuroinflammation14



[28] Patterson SL. Immune dysregulation and cognitive vulnerability in the aging brain: 
Interactions of microglia, IL-1β, BDNF and synaptic plasticity. Neuropharmacology. 
2015;96(Pt A):11-18. DOI: 10.1016/j.neuropharm.2014.12.020

[29] Talaei A, Tavakkol Afshari J, Fayyazi Bordbar MR, Pouryousof H, Faridhosseini F, 
Saghebi A, Rezaei Ardani A, Talaei A, Tehrani M. A study on the association of inter‐
leukin-1 cluster with genetic risk in bipolar i disorder in Iranian patients: A case-control 
study. Iranian Journal of Allergy, Asthma and Immunology. 2016;15(6):466-475.

[30] Dunne PW, Roberts DL, Quinones MP, Velligan DI, Paredes M, Walss-Bass C. 
Immune markers of social cognitive bias in schizophrenia. Psychiatry Research. 
2017;251:319-324. DOI: 10.1016/j.psychres.2017.02.030

[31] Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan 
catabolite alterations in psychiatric patients: Comparisons between schizophrenia, bipo‐
lar disorder, and depression. Schizophrenia Bulletin. 2017. DOI: 10.1093/schbul/sbx035

[32] Yoshimura R, Katsuki A, Atake K, Hori H, Igata R, Konishi Y. Influence of fluvoxamine on 
plasma interleukin-6 or clinical improvement in patients with major depressive disorder. 
Neuropsychiatric Disease and Treatment. 2017;13:437-441. DOI: 10.2147/NDT.S123121

[33] Hinwood M, Morandini J, Day TA, Walker FR. Evidence that microglia mediate the 
neurobiological effects of chronic psychological stress on the medial prefrontal cortex. 
Cerebral Cortex. 2012;22(6):1442-1454. DOI: 10.1093/cercor/bhr229

[34] Wohleb ES, Fenn AM, Pacenta AM, Powell ND, Sheridan JF, Godbout JP. Peripheral innate 
immune challenge exaggerated microglia activation, increased the number of inflam‐

matory CNS macrophages, and prolonged social withdrawal in socially defeated mice. 
Psychoneuroendocrinology. 2012;37(9):1491-1505. DOI: 10.1016/j.psyneuen.2012.02.003

[35] Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier 
SF, Yirmiya R. Dynamic microglial alterations underlie stress-induced depressive-like 
behavior and suppressed neurogenesis. Molecular Psychiatry. 2014;19(6):699-709. DOI: 
10.1038/mp.2013.155

[36] Lehmann ML, Cooper HA, Maric D, Herkenham M. Social defeat induces depressive-
like states and microglial activation without involvement of peripheral macrophages. 
Journal of Neuroinflammation. 2016;13(1):224. DOI: 10.1186/s12974-016-0672-x

[37] Schnieder TP, Trencevska I, Rosoklija G, Stankov A, Mann JJ, Smiley J, Dwork 
AJ. Microglia of prefrontal white matter in suicide. Journal of Neuropathology & 
Experimental Neurology. 2014;73(9):880-890. DOI: 10.1097/NEN.0000000000000107

[38] Altamura AC, Buoli M, Pozzoli S. Role of immunological factors in the pathophysiol‐
ogy and diagnosis of bipolar disorder: Comparison with schizophrenia. Psychiatry and 
Clinical Neurosciences. 2014;68(1):21-36. DOI: 10.1111/pcn.12089

[39] Barbosa IG, Machado-Vieira R, Soares JC, Teixeira AL.The immunology of bipolar disor‐
der. Neuroimmunomodulation. 2014;21(2-3):117-122.

Reducing Neuroinflammation in Psychiatric Disorders: Novel Target of Phosphodiesterase 4...
http://dx.doi.org/10.5772/intechopen.69154

15



[40] Miklowitz DJ, Portnoff LC, Armstrong CC, Keenan-Miller D, Breen EC, Muscatell KA, 
Eisenberger NI, Irwin MR. Inflammatory cytokines and nuclear factor-kappa B activa‐
tion in adolescents with bipolar and major depressive disorders. Psychiatry Research. 
2016;241:315-322. DOI: 10.1016/j.psychres.2016.04.120

[41] Nowakowski J, Chrobak AA, Dudek D. Psychiatric illnesses in inflammatory bowel 
diseases—psychiatric comorbidity and biological underpinnings. Psychiatria Polska. 
2016;50(6):1157-1166. DOI: 10.12740/PP/62382

[42] Ohgidani M, Kato TA, Haraguchi Y, Matsushima T, Mizoguchi Y, Murakawa-Hirachi T, 
Sagata N, Monji A, Kanba S. Microglial CD206 gene has potential as a state marker of 
bipolar disorder. Frontiers in Immunology. 2017;7:676. DOI: 10.3389/fimmu.2016.00676

[43] van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema 
G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS. Microglia activation in recent-
onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography 
study. Biological Psychiatry. 2008;64(9):820-822. DOI: 10.1016/j.biopsych.2008.04.025

[44] Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R, Okubo Y, Suhara 
T. Peripheral benzodiazepine receptors in patients with chronic schizophrenia: A 
PET study with [11C]DAA1106. International Journal of Neuropsychopharmacology. 
2010;13(7):943-950. DOI: 10.1017/S1461145710000313

[45] Dong XH, Zhen XC. Glial pathology in bipolar disorder: potential therapeutic implica‐
tions. CNS Neuroscience & Therapeutics. 2015;21(5):393-397. DOI: 10.1111/cns.12390

[46] Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, Kapczinski F, Quevedo 
J. The role of inflammation and microglial activation in the pathophysiology of psychi‐
atric disorders. Neuroscience. 2015;300:141-154. DOI: 10.1016/j.neuroscience.2015.05.018

[47] Klapal L, Igelhorst BA, Dietzel-Meyer ID. Changes in neuronal excitability by acti‐
vated microglia: Differential Na(+) current upregulation in pyramid-shaped and 
bipolar neurons by TNF-α and IL-18. Frontiers in Neurology. 2016;7:44. DOI: 10.3389/
fneur.2016.00044

[48] Monfrim X, Gazal M, De Leon PB, Quevedo L, Souza LD, Jansen K, Oses JP, Pinheiro 
RT, Silva RA, Lara DR, Ghisleni G, Spessato B, Kaster MP. Immune dysfunction in 
bipolar disorder and suicide risk: is there an association between peripheral corticotro‐
pin-releasing hormone and interleukin-1β? Bipolar Disorder. 2014;16(7):741-747. DOI: 
10.1111/bdi.12214

[49] Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia, “just the facts” what we know 
in 2008. 2. Epidemiology and etiology. Schizophrenia Research. 2008;102(1-3):1-18. DOI: 
10.1016/j.schres.2008.04.011

[50] Brunelin J, Fecteau S, Suaud-Chagny MF. Abnormal striatal dopamine transmission in 
schizophrenia. Current Medicinal Chemistry. 2013;20(3):397-404.

[51] Laruelle M. Schizophrenia: From dopaminergic to glutamatergic interventions. Current 
Opinion in Pharmacology. 2014;14:97-102. DOI: 10.1016/j.coph.2014.01.001

Mechanisms of Neuroinflammation16



[52] Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E. Inflammatory cytokine 
alterations in schizophrenia: a systematic quantitative review. Biological Psychiatry. 
2008;63(8):801-808. DOI: 10.1016/j.biopsych.2007.09.024

[53] Drexhage RC, Knijff EM, Padmos RC, Heul-Nieuwenhuijzen LV, Beumer W, Versnel 
MA, Drexhage HA. The mononuclear phagocyte system and its cytokine inflammatory 
networks in schizophrenia and bipolar disorder. Expert Review of Neurotherapeutics. 
2010;10(1):59-76. DOI: 10.1586/ern.09.144

[54] Upthegrove R, Manzanares-Teson N, Barnes NM. Cytokine function in medication-naive 
first episode psychosis: A systematic review and meta-analysis. Schizophrenia Research. 
2014;155(1-3):101-108. DOI: 10.1016/j.schres.2014.03.005

[55] Inta D, Lang UE, Borgwardt S, Meyer-Lindenberg A, Gass P. Microglia activation and 
schizophrenia: Lessons from the effects of minocycline on postnatal neurogenesis, 
neuronal survival and synaptic pruning. Schizophrenia Bulletin. Schizophr Bull. 2017; 
43(3):493-496. DOI:10.1093/schbul/sbw088 

[56] Patrizio M. Tumor necrosis factor reduces cAMP production in rat microglia. Glia. 
2004;48(3):241-249. DOI: 10.1002/glia.20074

[57] Garcia AM, Martinez A, Gil C. Enhancing cAMP levels as strategy for the treatment of neu‐
ropsychiatric disorders. Current Topics in Medicinal Chemistry. 2016;16(29):3527-3535.

[58] Ghosh M, Xu Y, Pearse DD. Cyclic AMP is a key regulator of M1 to M2a phenotypic 
conversion of microglia in the presence of Th2 cytokines. Journal of Neuroinflammation. 
2016;13:9. DOI: 10.1186/s12974-015-0463-9

[59] Yang H, Yang L. Targeting cAMP/PKA pathway for glycemic control and type 2 dia‐
betes therapy. Journal of Molecular Endocrinology. 2016;57(2):R93-R108. DOI: 10.1530/
JME-15-0316

[60] Taskén K, Aandahl EM. Localized effects of cAMP mediated by distinct routes of protein 
kinase A. Physiological Reviews. 2004;84(1):137-167. DOI: 10.1152/physrev.00021.2003

[61] Liou JT, Liu FC, Hsin ST, Yang CY, Lui PW. Inhibition of the cyclic adenosine monophos‐
phate pathway attenuates neuropathic pain and reduces phosphorylation of cyclic ade‐
nosine monophosphate response element-binding in the spinal cord after partial sciatic 
nerve ligation in rats. Anesthesia & Analgesia. 2007;105(6):1830-1837. DOI: 10.1213/01.
ane.0000287652.42309.5c

[62] Wang C, Yang XM, Zhuo YY, Zhou H, Lin HB, Cheng YF, Xu JP, Zhang HT. The 
phosphodiesterase-4 inhibitor rolipram reverses Aβ-induced cognitive impairment 
and neuroinflammatory and apoptotic responses in rats. International Journal of 
Neuropsychopharmacology. 2012;15(6):749-766. DOI: 10.1017/S146114711000836

[63] Ottonello L, Morone MP, Dapino P, Dallegri F. Cyclic AMP-elevating agents down-
regulate the oxidative burst induced by granulocyte-macrophage colony-stimulat‐
ing factor (GM-CSF) in adherent neutrophils. Clinical & Experimental Immunology. 
1995;101(3):502-506.

Reducing Neuroinflammation in Psychiatric Disorders: Novel Target of Phosphodiesterase 4...
http://dx.doi.org/10.5772/intechopen.69154

17



[64] Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT, Bunge MB. cAMP 
and Schwann cells promote axonal growth and functional recovery after spinal cord 
injury. Nature Medicine. 2004;10(6):610-616. Epub 2004 May 23. DOI: 10.1038/nm1056

[65] Min KJ, Yang MS, Jou I, Joe EH. Protein kinase A mediates microglial activation induced 
by plasminogen and gangliosides. Experimental & Molecular Medicine. 2004;36(5):461-
467. DOI: 10.1038/emm.2004.58

[66] Guo J, Lin P, Zhao X, Zhang J, Wei X, Wang Q, Wang C. Etazolate abrogates the lipo‐

polysaccharide (LPS)-induced downregulation of the cAMP/pCREB/BDNF signal‐
ing, neuroinflammatory response and depressive-like behavior in mice. Neuroscience. 
2014;263:1-14. DOI: 10.1016/j.neuroscience.2014.01.008

[67] Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M. Cyclic AMP: Master reg‐

ulator of innate immune cell function. The American Journal of Respiratory Cell and 
Molecular Biology. 2008;39(2):127-132. DOI: 10.1165/rcmb.2008-0091TR

[68] Li YF, Cheng YF, Huang Y, Conti M, Wilson SP, O’Donnell JM, Zhang HT. 
Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance 
memory and increase hippocampal neurogenesis via increased cAMP signaling. Journal 
of Neuroscience. 2011;31(1):172-183. DOI: 10.1523/JNEUROSCI.5236-10.2011

[69] Poppinga WJ, Muñoz-Llancao P, González-Billault C, Schmidt M. A-kinase anchoring 
proteins: cAMP compartmentalization in neurodegenerative and obstructive pulmo‐

nary diseases. British Journal of Pharmacology. 2014;171(24):5603-5623. DOI: 10.1111/
bph.12882

[70] Lee D. Global and local missions of cAMP signaling in neural plasticity, learning, and 
memory. Frontiers in Pharmacology. 2015;6:161. DOI: 10.3389/fphar.2015.00161

[71] Peng S, Yang X, Liu GJ, Zhang XQ, Wang GL, Sun HY. From the camp pathway to 
search the ketamine-related learning and memory. European Review for Medical and 
Pharmacological Sciences. 2015;19(1):161-164.

[72] Zhou L, Ma SL, Yeung PK, Wong YH, Tsim KW, So KF, Lam LC, Chung SK. Anxiety and 
depression with neurogenesis defects in exchange protein directly activated by cAMP 
2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac. 
Translational Psychiatry. 2016;6(9):e881. DOI: 10.1038/tp.2016.129

[73] Zhang C, Xu Y, Zhang HT, Gurney ME, O’Donnell JM. Comparison of the pharmaco‐

logical profiles of selective PDE4B and PDE4D inhibitors in the central nervous system. 
Scientific Reports. 2017;7:40115. DOI: 10.1038/srep40115

[74] Li QQ, Shi GX, Yang JW, Li ZX, Zhang ZH, He T, Wang J, Liu LY, Liu CZ. Hippocampal 
cAMP/PKA/CREB is required for neuroprotective effect of acupuncture. Physiology & 
Behavior. 2015;139:482-490. DOI: 10.1016/j.physbeh.2014.12.001

[75] Guo H, Cheng Y, Wang C, Wu J, Zou Z, Niu B, Yu H, Wang H, Xu J. FFPM, a PDE4 inhibi‐
tor, reverses learning and memory deficits in APP/PS1 transgenic mice via cAMP/PKA/ 

Mechanisms of Neuroinflammation18



CREB signaling and anti-inflammatory effects. Neuropharmacology. 2017;116: 
260-269. DOI: 10.1016/j.neuropharm.2017.01.004

[76] Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M. Amyloid beta 
-peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility 
by drugs that enhance cAMP signaling. Proceedings of the National Academy of Sciences 
of the United States of America. 2002;99(20):13217-13221. DOI: 10.1073/pnas.172504199

[77] Forero DA, Herteleer L, De Zutter S, Norrback KF, Nilsson LG, Adolfsson R, Callaerts 
P, Del-Favero J. A network of synaptic genes associated with schizophrenia and bipolar 
disorder. Schizophrenia Research. 2016;172(1-3):68-74. DOI: 10.1016/j.schres.2016.02.012

[78] Kast RE.Tumor necrosis factor has positive and negative self regulatory feed back 
cycles centered around cAMP. International Journal of Immunopharmacology. 
2000;22(11):1001-1006.

[79] Miao Y, He T, Zhu Y, Li W, Wang B, Zhong Y. Activation of Hippocampal CREB by 
Rolipram partially recovers balance between TNF-α and IL-10 levels and improves cog‐

nitive deficits in diabetic rats. Cell Molecular Neurobiology. 2015;35(8):1157-1164. DOI: 
10.1007/s10571-015-0209-3

[80] Patrizio M, Costa T, Levi G. Interferon-gamma and lipopolysaccharide reduce cAMP 
responses in cultured glial cells: Reversal by a type IV phosphodiesterase inhibitor. Glia. 
1995;14(2):94-100. DOI: 10.1002/glia.440140204

[81] Banner KH, Trevethick MA. PDE4 inhibition: A novel approach for the treatment of 
inflammatory bowel disease. Trends in Pharmacological Sciences. 2004;25(8):430-436. 
DOI: 10.1016/j.tips.2004.06.008

[82] Duinen MV, Reneerkens OA, Lambrecht L, Sambeth A, Rutten BP, Os JV, Blokland A, 
Prickaerts J. Treatment of cognitive impairment in schizophrenia: Potential value of 
phosphodiesterase inhibitors in prefrontal dysfunction. Current Pharmaceutical Design. 
2015;21(26):3813-3828.

[83] Engels P, Fichtel K, Lübbert H. Expression and regulation of human and rat phosphodi‐
esterase type IV isogenes. FEBS Letters. 1994;350(2-3):291-295.

[84] Bolger GB, Rodgers L, Riggs M. Differential CNS expression of alternative mRNA iso‐

forms of the mammalian genes encoding cAMP-specific phosphodiesterases. Gene. 
1994;149(2):237-244.

[85] Pérez-Torres S, Miró X, Palacios JM, Cortés R, Puigdoménech P, Mengod G. 
Phosphodiesterase type 4 isozymes expression in human brain examined by in situ 
hybridization histochemistry and[3H]rolipram binding autoradiography. Comparison 
with monkey and rat brain. Journal of Chemical Neuroanatomy. 2000;20(3-4):349-374.

[86] Miró X, Pérez-Torres S, Artigas F, Puigdomènech P, Palacios JM, Mengod G. Regulation of 
cAMP phosphodiesterase mRNAs expression in rat brain by acute and chronic fluoxetine 
treatment. An in situ hybridization study. Neuropharmacology. 2002;43(7):1148-1157.

Reducing Neuroinflammation in Psychiatric Disorders: Novel Target of Phosphodiesterase 4...
http://dx.doi.org/10.5772/intechopen.69154

19



[87] Fatemi SH, King DP, Reutiman TJ, Folsom TD, Laurence JA, Lee S, Fan YT, Paciga SA, 
Conti M, Menniti FS. PDE4B polymorphisms and decreased PDE4B expression are asso‐

ciated with schizophrenia. Schizophrenia Research. 2008;101(1-3):36-49. DOI: 10.1016/j.
schres.2008.01.029

[88] Reyes-Irisarri E, Pérez-Torres S, Miró X, Martínez E, Puigdomènech P, Palacios JM, 
Mengod G. Differential distribution of PDE4B splice variant mRNAs in rat brain and the 
effects of systemic administration of LPS in their expression. Synapse. 2008;62(1):74-79. 
DOI: 10.1002/syn.20459

[89] Zhang KY, Ibrahim PN, Gillette S, Bollag G. Phosphodiesterase-4 as a poten‐

tial drug target. Expert Opinion on Therapeutic Targets. 2005;9(6):1283-1305. DOI: 
10.1517/14728222.9.6.1283

[90] Zhang HT. Cyclic AMP-specific phosphodiesterase-4 as a target for the development of 
antidepressant drugs. Current Pharmaceutical Design. 2009;15(14):1688-1698.

[91] D’Sa C, Duman RS. Antidepressants and neuroplasticity. Bipolar Disorder. 2002;4(3): 
183-194.

[92] Bertolino A, Crippa D, di Dio S, Fichte K, Musmeci G, Porro V, Rapisarda V, Sastre-y-
Hernández M, Schratzer M. Rolipram versus imipramine in inpatients with major, 
“minor” or atypical depressive disorder: a double-blind double-dummy study aimed 
at testing a novel therapeutic approach. International Clinical Psychopharmacology. 
1988;3(3):245-253.

[93] Fujita M, Hines CS, Zoghbi SS, Mallinger AG, Dickstein LP, Liow JS, Zhang Y, Pike VW, 
Drevets WC, Innis RB, Zarate CA Jr. Downregulation of brain phosphodiesterase type 
IV measured with 11C-(R)-rolipram positron emission tomography in major depressive 
disorder. Biological Psychiatry. 2012;72(7):548-554. DOI: 10.1016/j.biopsych.2012.04.030

[94] Jindal A, Mahesh R, Bhatt S. Type 4 phosphodiesterase enzyme inhibitor, rolipram res‐

cues behavioral deficits in olfactory bulbectomy models of depression: Involvement of 
hypothalamic-pituitary-adrenal axis, cAMP signaling aspects and antioxidant defense 
system. Pharmacology Biochemistry & Behavior. 2015;132:20-32. DOI: 10.1016/j.
pbb.2015.02.017

[95] Manji HK, Duman RS. Impairments of neuroplasticity and cellular resilience in 
severe mood disorders: implications for the development of novel therapeutics. 
Psychopharmacology Bulletin. 2001;35(2):5-49.

[96] Atkins CM, Oliva AA Jr, Alonso OF, Pearse DD, Bramlett HM, Dietrich WD. Modulation 
of the cAMP signaling pathway after traumatic brain injury. Experimental Neurology. 
2007;208(1):145-158. DOI: 10.1016/j.expneurol.2007.08.011

[97] Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regen‐

eration after spinal cord injury. Experimental Neurology. 2008;209(2):321-332. DOI: 
10.1016/j.expneurol.2007.06.020

Mechanisms of Neuroinflammation20



[98] Whitaker CM, Beaumont E, Wells MJ, Magnuson DS, Hetman M, Onifer SM. Rolipram 
attenuates acute oligodendrocyte death in the adult rat ventrolateral funiculus following 
contusive cervical spinal cord injury. Neuroscience Letters. 2008;438(2):200-204. DOI: 
10.1016/j.neulet.2008.03.087

[99] Reneerkens OA, Rutten K, Steinbusch HW, Blokland A, Prickaerts J. Selective phosphodi‐
esterase inhibitors: A promising target for cognition enhancement. Psychopharmacology 
(Berl). 2009;202(1-3):419-43. DOI: 10.1007/s00213-008-1273-x

[100] Robichaud A, Savoie C, Stamatiou PB, Tattersall FD, Chan CC. PDE4 inhibitors induce 
emesis in ferrets via a noradrenergic pathway. Neuropharmacology. 2001;40(2):262-269.

[101] Dyke HJ, Montana JG. Update on the therapeutic potential of PDE4 inhibitors. Expert 
Opinion on Investigational Drugs. 2002;11(1):1-13. DOI: 10.1517/13543784.11.1.1

[102] Drott J, Desire L, Drouin D, Pando M, Haun F. Etazolate improves performance in 
a foraging and homing task in aged rats. The European Journal of Pharmacology. 
2010;634(1-3):95-100. DOI: 10.1016/j.ejphar.2010.02.036

[103] Jindal A, Mahesh R, Bhatt S, Pandey D. Molecular modifications by regulating cAMP 
signaling and oxidant-antioxidant defence mechanisms, produce antidepressant-like 
effect: A possible mechanism of etazolate aftermaths of impact accelerated traumatic 
brain injury in rat model. Neurochemistry International. 2016. pii: S0197-0186(16)30114-0. 
DOI: 10.1016/j.neuint.2016.12.004

[104] Jindal A, Mahesh R, Gautam B, Bhatt S, Pandey D. Antidepressant-like effect of etazo‐
late, a cyclic nucleotide phosphodiesterase 4 inhibitor—an approach using rodent 
behavioral antidepressant tests battery. The European Journal of Pharmacology. 
2012;689(1-3):125-131. DOI: 10.1016/j.ejphar.2012.05.051

[105] Jindal A, Mahesh R, Bhatt S. Etazolate rescues behavioral deficits in chronic unpredict‐
able mild stress model: modulation of hypothalamic-pituitary-adrenal axis activity and 
brain-derived neurotrophic factor level. Neurochemistry International. 2013;63(5):465-
475. DOI: 10.1016/j.neuint.2013.08.005

[106] Vellas B, Sol O, Snyder PJ, Ousset PJ, Haddad R, Maurin M, Lemarié JC, Désiré L, 
Pando MP; EHT0202/002 study group. EHT0202 in Alzheimer’s disease: A 3-month, 
randomized, placebo-controlled, double-blind study. Current Alzheimer Research. 
2011;8(2):203-212.

[107] Davis TG, Peterson JJ, Kou JP, Capper-Spudich EA, Ball D, Nials AT, Wiseman J, 
Solanke YE, Lucas FS, Williamson RA, Ferrari L, Wren P, Knowles RG, Barnette MS, 
Podolin PL. The identification of a novel phosphodiesterase 4 inhibitor, 1-ethyl-5-{5-
[(4-methyl-1-piperazinyl)methyl]-1,3,4-oxadiazol-2-yl}-N-(tetrahydro-2H-pyran-4-
yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (EPPA-1), with improved therapeutic index 
using pica feeding in rats as a measure of emetogenicity. Journal of Pharmacology and 
Experimental Therapeutics. 2009;330(3):922-931. DOI: 10.1124/jpet.109.152454

Reducing Neuroinflammation in Psychiatric Disorders: Novel Target of Phosphodiesterase 4...
http://dx.doi.org/10.5772/intechopen.69154

21



[108] Tralau-Stewart CJ, Williamson RA, Nials AT, Gascoigne M, Dawson J, Hart GJ, Angell 
AD, Solanke YE, Lucas FS, Wiseman J, Ward P, Ranshaw LE, Knowles RG. GSK256066, 
an exceptionally high-affinity and selective inhibitor of phosphodiesterase 4 suitable 
for administration by inhalation: In vitro, kinetic, and in vivo characterization. Journal 
of Pharmacology and Experimental Therapeutics. 2011;337(1):145-154. DOI: 10.1124/
jpet.110.173690

[109] Zhang MZ, Zhou ZZ, Yuan X, Cheng YF, Bi BT, Gong MF, Chen YP, Xu JP. Chlorbipram: 
a novel PDE4 inhibitor with improved safety as a potential antidepressant and cog‐
nitive enhancer. The European Journal of Pharmacology. 2013;721(1-3):56-63. DOI: 
10.1016/j.ejphar.2013.09.055

[110] Rutter AR, Poffe A, Cavallini P, Davis TG, Schneck J, Negri M, Vicentini E, Montanari 
D, Arban R, Gray FA, Davies CH, Wren PB.GSK356278, a potent, selective, brain-pene‐
trant phosphodiesterase 4 inhibitor that demonstrates anxiolytic and cognition-enhanc‐
ing effects without inducing side effects in preclinical species. Journal of Pharmacology 
and Experimental Therapeutics. 2014;350(1):153-163. DOI: 10.1124/jpet.114.214155

[111] Nunes IK, de Souza ET, Cardozo SV, Carvalho VF, Romeiro NC, Silva PM, Martins 
MA, Barreiro EJ, Lima LM. Synthesis, pharmacological profile and docking stud‐
ies of new sulfonamides designed as phosphodiesterase-4 inhibitors. PLoS One. 
2016;11(10):e0162895. DOI: 10.1371/journal.pone.0162895

[112] Obernolte R, Ratzliff J, Baecker PA, Daniels DV, Zuppan P, Jarnagin K, Shelton ER. 
Multiple splice variants of phosphodiesterase PDE4C cloned from human lung and 
testis. Biochimica et Biophysica Acta. 1997;1353(3):287-297.

[113] Siuciak JA, Chapin DS, McCarthy SA, Martin AN. Antipsychotic profile of rolipram: 
Efficacy in rats and reduced sensitivity in mice deficient in the phosphodiesterase-
4B (PDE4B) enzyme. Psychopharmacology (Berl). 2007;192(3):415-424. DOI: 10.1007/
s00213-007-0727-x

[114] Contreras S, Milara J, Morcillo E, Cortijo J. Selective inhibition of phosphodiesterases 
4A, B, C and D isoforms in chronic respiratory diseases: Current and future evidences. 
Current Pharmaceutical Design. 2017. DOI: 10.2174/1381612823666170214105651.

[115] Jin SL, Conti M. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essen‐
tial for LPS-activated TNF-alpha responses. Proceedings of the National Academy 
of Sciences of the United States of America. 2002;99(11):7628-7633. DOI: 10.1073/
pnas.122041599

[116] Ma H, Shi J, Wang C, Guo L, Gong Y, Li J, Gong Y, Yun F, Zhao H, Li E. Blockade of 
PDE4B limits lung vascular permeability and lung inflammation in LPS-induced acute 
lung injury. Biochemical and Biophysical Research Communications. 2014;450(4):1560-
1567. DOI: 10.1016/j.bbrc.2014.07.024

[117] Huang H, Hong Q, Tan HL, Xiao CR, Gao Y. Ferulic acid prevents LPS-induced up-
regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells. 
Acta Pharmacologica Sinica. 2016;37(12):1543-1554. DOI: 10.1038/aps.2016.88

Mechanisms of Neuroinflammation22



[118] Hansen RT 3rd, Conti M, Zhang HT. Mice deficient in phosphodiesterase-4A display 
anxiogenic-like behavior. Psychopharmacology (Berl). 2014;231(15):2941-2954. DOI: 
10.1007/s00213-014-3480-y

[119] Pearse DD, Hughes ZA. PDE4B as a microglia target to reduce neuroinflammation. 
Glia. 2016;64(10):1698-1709. DOI: 10.1002/glia.22986

[120] Naganuma K, Omura A, Maekawara N, Saitoh M, Ohkawa N, Kubota T, Nagumo 
H, Kodama T, Takemura M, Ohtsuka Y, Nakamura J, Tsujita R, Kawasaki K, Yokoi 
H, Kawanishi M. Discovery of selective PDE4B inhibitors. Bioorganic & Medicinal 
Chemistry Letters. 2009;19(12):3174-3176. DOI: 10.1016/j.bmcl.2009.04.121

[121] Fox D 3rd, Burgin AB, Gurney ME. Structural basis for the design of selective phosphodi‐
esterase 4B inhibitors. Cell Signal. 2014;26(3):657-663. DOI: 10.1016/j.cellsig.2013.12.003

[122] Jin SL, Lan L, Zoudilova M, Conti M. Specific role of phosphodiesterase 4B in lipo‐
polysaccharide-induced signaling in mouse macrophages. The Journal of Immunology. 
2005;175(3):1523-1531

Reducing Neuroinflammation in Psychiatric Disorders: Novel Target of Phosphodiesterase 4...
http://dx.doi.org/10.5772/intechopen.69154

23




