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Abstract

Indoxyl sulphate (IS) and p-cresyl sulphate (PCS) are products of proteolytic bacterial fer-
mentation by gut microbiota. They accumulate in the sera of patients with chronic kidney 
disease (CKD) and have been associated with CKD progression and cardiovascular and 
all-cause mortality. Therapeutic strategies for lowering IS and PCS include increased clear-
ance (enhanced dialysis), gastrointestinal sequestration (oral adsorbents), reduced synthe-
sis (dietary protein restriction, dietary fibre augmentation and pre-, pro- or synbiotics), 
antioxidants and organic anion transporter modulators. This review will discuss the roles 
of IS and PCS as therapeutic targets and examine the clinical evidence for different treat-
ment options and their effects on CKD and cardiovascular disease risk. We will include 
our group’s research with pre-, pro- and synbiotic interventions to mitigate serum uraemic 
toxin accumulation and modify cardiovascular and renal risk.

Keywords: indoxyl sulphate, p-cresyl sulphate, uraemic toxins, chronic kidney disease, 
gut microbiome

1. Introduction

The reciprocal relationship observed between gut microbiota and chronic kidney disease 

(CKD) has led to the recent recognition of the ‘gut-kidney axis’. Patients with CKD, includ-

ing those with end-stage kidney disease (ESKD), often experience impaired uraemic toxin 

clearance, salt and water retention, dietary restrictions, anorexia, dysgeusia and malnutrition, 
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which in turn leads to quantitative and qualitative alterations in gut microbiome composition 

(gut dysbiosis). Further effects include gut wall oedema, intestinal barrier impairment, trans-

location of bacteria and endotoxins across the intestinal wall and resultant systemic inflamma-

tion [1–3]. Gut dysbiosis may in turn lead to the production of various toxins and metabolites 

that contribute to uraemic toxicity, cardiovascular disease and progressive kidney scarring 

and failure [4–6]. The central role of the gut microbiome in kidney health therefore makes it 

an appealing therapeutic target in patients with CKD [7, 8].

Two key nephrovascular toxins produced by proteolytic bacterial fermentation in the 

gut are indoxyl sulphate (IS) and p-cresyl sulphate (PCS). IS is produced by tryptophan 

metabolism facilitated by Escherichia coli and Clostridium sporogenes, while PCS is gen-

erated by break down of tyrosine and phenylalanine by intestinal anaerobes, such as 

Clostridium difficile, Faecalibacterium prausnitzii, Subdoligranulum and selected strains within 

the Bifidobacterium and Lactobacillus genus [8]. IS and PCS are both solely produced by 

the gut microbiota [9–12] and accumulate in the serum of patients with CKD due to both 

increased intestinal production and reduced glomerular filtration and proximal tubular 
secretion [12–14]. Elevated serum levels of IS and PCS have been reported to be associ-

ated with CKD progression [13] and increased risks of cardiovascular events and all-cause 

mortality [15].

Although IS and PCS levels can be lowered with various therapeutic modalities, how 

this impacts on the risks of mortality and cardiovascular outcomes remains unclear. This 

review will discuss the roles of IS and PCS as therapeutic targets and examine the clini-

cal evidence for different treatment options and their effects on CKD and cardiovascular 
disease risk.

2. Serum IS and PCS levels are elevated in CKD

Serum IS and PCS levels have been demonstrated to be elevated in patients with CKD, 

where IS levels may be more than 50 times and PCS levels more than 15 times the levels of 

those found in healthy people [12, 14]. Our group has demonstrated that IS and PCS levels 

are significantly elevated in patients with early-stage CKD compared with control subjects. 
These levels were seen to be progressively more elevated with advancing severity of CKD 

[13]. Increased circulating levels of IS and PCS have also been observed in living kidney 

donors, which were sustained at 2 years post-surgery [16]. Levels of IS and PCS appear to be 

most elevated in ESKD and are not effectively removed by haemodialysis [14]. In a sample 

of 45 haemodialysis patients, Itoh et al. observed IS and PCS levels were markedly elevated 

(2.99 ± 0.18 mg/dL and 3.71 ± 0.28 mg/dL, respectively) compared with the healthy subjects 
(0.05 ± 0.01 mg/dL and 0.22 ± 0.99 mg/dL, respectively), and these levels were only lowered 

by approximately 30% post-dialysis (2.02 ± 0.12 mg/dL and 2.60 ± 0.21 mg/dL, respectively). 

This degree of elevation and inefficient removal warrants exploration of the potential impact 
of these toxins in CKD.
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3. Serum IS and PCS levels are associated with adverse renal, metabolic 

and cardiovascular effects

3.1. Renal effects

Elevation of serum IS and PCS levels in patients with CKD is associated with CKD progres-

sion [17]. The mechanisms underpinning the adverse renal effects of IS and PCS are thought 
to be at least partly mediated by the production of reactive oxygen species, which in turn 

activate the nuclear factor kappa B pathway (NFκB) (Figure 1) [18]. In vitro studies have 

demonstrated that pro-inflammatory cytokine release and plasminogen activator inhibitor-1 
upregulation via the NFκB pathway subsequently led to inhibition of cell proliferation and 
induction of renal tubulointerstitial fibrosis [4, 5]. These observations have been similarly 

replicated in animal models, whereby oral administration of IS [6, 19] and PCS [20] caused 

renal function impairment, glomerular sclerosis and tubulointerstitial fibrosis. IS and PCS 
have also been shown both in vitro and in vivo to activate the intrarenal renin-angiotensin-

aldosterone system and promote renal tubular epithelial-to-mesenchymal transition, possi-

bly via increased expression of transforming growth factor-β and Snail [21].

In a prospective, observational study of 268 patients with varying stages of CKD, Wu and 
colleagues demonstrated a significant association between higher IS (hazard ratio [HR] 1.06, 
95% confidence interval [CI] 1.04–1.09, p < 0.001) and PCS levels (HR 1.09, 95% CI 1.06–1.13, p 
< 0.001) and CKD progression, defined as greater than 50% reduction in estimated glomerular 
filtration rate (eGFR) or progression to ESKD [17]. Serum PCS and IS remained independently 

associated with CKD progression after adjustment for patient demographic characteristics 
(age, gender, diabetes mellitus, p < 0.001) or baseline renal function (p < 0.001). Additionally, 
IS and PCS levels at baseline were significantly higher in those patients who died during 
follow-up (serum PCS 12.07 [<1–42.06] mg/L vs. 4.1 (<1–36.24) mg/L in survivors, p = 0.002; 
serum IS 4.78 [0.7–12.54] mg/L vs. 2.07 [<0.225–53.58] mg/dL, p = 0.05). Elevated serum total 
PCS was also found to be significantly associated with all-cause mortality on univariable anal-
ysis (HR 1.10, 95% CI 1.05–1.15, p < 0.001) and remained a predictor of mortality independent 
of other risk factors on multivariable analysis adjusted for patient demographic characteris-

tics, baseline renal function and biomarkers including highly sensitive C-reactive protein [17].

3.2. Metabolic effects

Elevated PCS has been associated with insulin resistance and may therefore predispose to 

the metabolic syndrome and its complications. In mouse models, the administration of PCS 

for 4 weeks has been observed to induce hyperglycaemia, insulin resistance, hypercholes-

terolaemia and fat redistribution to muscle and liver, similar to the metabolic derangements 

observed in CKD [22] (Figure 1). These metabolic effects appeared to be ameliorated by urae-

mic toxin-reducing therapy, as the use of the prebiotic agent, arabino-xylo-oligosaccharide, 

reduced serum PCS concentration and improved glucose tolerance, insulin resistance, dys-

lipidaemia and ectopic fat distribution in uraemic, subtotal nephrectomised mice [22].
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3.3. Cardiovascular effects and mortality

IS has been demonstrated to cause concentration-dependent vascular smooth muscle cell pro-

liferation [23] and aortic calcification with aortic wall thickening in rats [6]. This appears to 

apply similarly to humans, such that elevated serum IS levels have been shown to be  associated 

Figure 1. Mechanisms and potential effects of indoxyl sulphate (IS) and p-cresyl sulphate (PCS) on renal, metabolic and 
cardiovascular outcomes.
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with aortic calcification measured by multislice spiral computed tomography [24]. Likewise, 

total and free PCS levels have been linked with vascular disease [25]. Not surprisingly, ele-

vated serum levels of both toxins have been reported to be predictors of cardiovascular events 

and mortality. Higher serum IS levels independently predicted overall mortality (HR 2.47, 
95% CI 1.62–3.77), but not CV mortality, in 139 patients with stage 2–5 CKD participating in a 

study performed by the European Uraemic Toxin Work Group (EUTox) [24]. Similar results 

were reported in a prospective, observational cohort study of 521 US incident haemodialysis 

patients whereby serum IS concentrations above the median value of 1.6 mg/dL were inde-

pendently associated with all-cause mortality (HR 1.30, 95% CI 1.01–1.69) after adjustment for 
age, sex, race, comorbidity score, baseline serum albumin, obesity and serum creatinine [26]. 

Elevated free PCS concentration has also been demonstrated to be an independent predictor 

of cardiovascular events [27, 28] and overall cardiovascular mortality [25] in CKD patients, 

including those ESKD receiving dialysis.

A meta-analysis by Lin and colleagues of 11 observational studies involving 1572 patients with 

stages 1–5 CKD followed for 0.83 to 5 years found that all-cause mortality was significantly 
associated with both free PCS (pooled odds ratio [OR] 1.16, 95% CI 1.03–1.30, p = 0.013) and 
free IS levels (pooled OR 1.10, 95% CI 1.03–1.17, p = 0.03) [15]. However, there was a moderate 
level of heterogeneity with I2 values of 71.5% (p = 0.004), and 74.2% (p = 0.004) for PCS and 
IS, respectively. Furthermore, there was a concern about publication bias based on an asym-

metrical funnel plot and significant Egger’s test (p = 0.005). Following subsequent adjustment 
for the effect of publication bias, the adjusted point estimate of the OR reduced from 1.16 to 
1.03 (95% CI 0.93–1.16), thereby raising concern about exaggeration of the observed effect size 
in the primary analysis. The study also reported a significantly increased risk of cardiovas-

cular events with elevated levels of free PCS (pooled OR 1.28, 95% CI 1.10–1.50, p = 0.002), 
although this result was again limited by a high level of heterogeneity (I2 = 80.7%, p < 0.001). 
Furthermore, there was evidence of publication bias, such that when analysis was repeated 

using Duval and Tweedie’s trim-and-fill method, the estimate was no longer statistically sig-

nificant with an adjusted OR of 1.10 (95% CI 0.93–1.27).

4. Therapeutic opportunities for reducing serum IS and PCS levels

Given the numerous deleterious, multi-system effects that have been associated with elevated 
serum IS and PCS concentrations, much interest has been generated in developing thera-

peutic options to reduce the levels of these nephrovascular toxins with the aim of improving 

clinical outcomes in patients with CKD. Potential therapeutic strategies to reduce IS and PCS 

levels in patients with CKD may involve reducing gut synthesis, gastrointestinal sequestra-

tion, reduced proximal tubular retention and increased dialytic clearance (Table 1).

4.1. Reduced gut synthesis

Since increased dietary protein load can result in heightened generation of uraemic toxins 

by the gut microbiota, prescription of very low-protein diets has experienced a resurgence of 

interest. Marzocco and colleagues performed a post-hoc analysis of a very low vs. low-protein 
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diet cross-over study [29]. Thirty-two patients with a creatinine clearance between 20 and 55 

ml/min were included and randomized to receive either a very low-protein diet (VLPD; 0.3 g/
kg/day) or a low-protein diet (LPD; 0.6 g/kg/day) in the first week, then switched to the other 
in the second week. There was no wash-out period. The authors found that patients treated 

with a VLPD experienced a significant 36% reduction in serum IS levels compared with those 
treated with a LPD (7.12 ± 3.89 μM during VLPD vs. 11.1 ± 6.6 μM during LPD, p < 0.0001). 
Although a meta-analysis has identified reduction in the occurrence of renal death with a low-
protein intake in CKD patients, the overall value of these diets remains a subject of debate, 
given that the risks of malnutrition may present a greater danger [30–32]. Furthermore, poor 

compliance is also likely to be an issue, as participants often did not meet dietary targets even 

with the intensive support provided within a trial setting.

There is newer evidence to suggest that dietary fibre may in fact be more important than 
dietary protein intake in terms of managing uraemic toxin levels. A single-centre, cross-sec-

tional study of 40 patients with CKD measured baseline total and free serum IS and PCS levels 

and correlated this with dietary factors including dietary fibre, protein and protein-fibre index 
[10]. In this study, dietary fibre was found to be inversely associated with free and total serum 
PCS (r = −0.42 and r = −0.44, both p < 0.01) whereas dietary protein was not (r= −0.14, p = 0.38). 
Protein-fibre index was significantly associated with both total PCS (r = 0.43, p = 0.005) and 
total IS (r = 0.40, p = 0.012) levels. Increased dietary fibre as an intervention has been shown to 
result in significantly reduced free plasma IS in haemodialysis patients [33]. Moreover, a pro-

spective cohort study of 390 Swedish men between the age of 70 and 71 years found an asso-

ciation between protein-fibre intake ratio and cardiovascular events (adjusted HR 1.33, 95% 
CI 1.08–1.64). These findings suggest that dietary intervention focusing on protein-fibre ratio 
has the potential to influence clinical outcomes [34], mediated via uraemic toxin production.

Strategy Intervention Outcome

Reduced gut synthesis Very low-protein diet [29] Reduced serum IS levels

Dietary fibre [10, 33, 34] Reduced serum IS and PCS levels

Pre-, pro- and synbiotics [35–41] Reduced IS and PCS levels

Gastrointestinal sequestration AST-120 (Kremezin) [51–56] Reduced renal disease progression

Ai Xi Te [54] Reduced renal disease progression

Niaoduqing granules [54] Reduced renal disease progression

Reduced proximal tubular retention OAT^ modulators [11, 58, 61] Reduced proximal tubular uptake 
of IS

Increased dialytic clearance Extended dialysis (long dialysis, 

short daily dialysis) [65, 66]

No clear benefit

Haemodiafiltration [67, 68] Reduced serum IS and PCS levels

Super-flux cellulose triacetate 
membranes [69]

Reduced serum IS levels

Nanoporous monolith dialysis [70] Reduced serum IS and PCS levels

^OAT: organic anion transporters

Table 1. Potential therapeutic interventions targeting indoxyl sulphate (IS) and p-cresyl sulphate (PCS).

Chronic Kidney Disease - from Pathophysiology to Clinical Improvements186



Probiotics and prebiotics represent another strategy for reducing uraemic toxin synthesis. 

Preparations of lactic-acid bacteria, simulating a probiotic, have been shown to decrease 

serum IS concentrations by 30% and also reverse aerobic bacterial overgrowth [35]. Their 

use has been demonstrated to result in a significant decrease in urinary PCS and an increase 
in faecal bifidobacteria [36]. Synbiotics, which represent a combination of pre- and probiot-

ics, have similarly been demonstrated to reduce serum IS and PCS levels in CKD and hae-

modialysis patients [37–39]. More recently, the use of synbiotics for reducing uraemic toxin 

levels has been evaluated in the SYNbiotics Easing Renal failure by improving Gut micro-

biologY (SYNERGY) trial [40, 41]. In this single-centre, double-blind, placebo-controlled, 

cross-over trial, 37 pre-dialysis patients with stage 4 or 5 CKD were randomized to receive 
either synbiotic supplements or placebo for 6 weeks, followed by a 4-week wash-out period, 

followed by treatment with the alternative therapy for a further 6 weeks. Thirty-one par-

ticipants completed both treatments. Although the study failed to demonstrate a significant 
change in total serum IS levels (−2 mmol/L, 95% CI −5 to 1 mmol/L, p = 0.12), the change 
in serum PCS levels did reach a level of statistical significance, with a 13% reduction in 
the treatment group (−14 mmol/L, 95% CI −27 to −2 mmol/L, p = 0.03). Furthermore, after 
excluding the 10 participants who had received antibiotic therapy during the trial, which 

is known to affect the balance of bacterial species in the gut [8, 42], the changes in serum 

levels with synbiotic therapy for both total IS (−5 mmol/L, 95% CI −8 to −1 mmol/L, p = 0.03) 
and PCS (−25 mmol/L, 95% CI −38 to −12 mmol/L, p = 0.001) were significant. The changes 
in free IS and PCS levels were also significant amongst antibiotic-free completers. Synbiotic 
therapy additionally had an effect on the stool microbiome, with significantly increased 
abundance of Bifidobacterium spp. (3.2%, p = 0.003) and Lachnospiraceae (2.1%, p = 0.01) and 
decreased abundance of Ruminococcaceae (4.3%, p = 0.01). Interestingly, albuminuria was 
observed to significantly increase with synbiotic therapy, which contradicted the reports of 
a beneficial effect on proteinuria from animal studies using other uraemic toxin-lowering 
therapies, such as AST-120 [43, 44]. Due to the short duration and small participant numbers 

of synbiotic trials to date, the effects of treatment on patient-level clinical outcomes remain 
unknown [2].

Lastly, the use of acarbose for lowering serum levels of gut-derived uraemic toxins has been 

investigated. Acarbose, an alpha-glucosidase inhibitor, causes increased delivery of undi-

gested carbohydrate to the colon, which may drive gut bacterial fermentation towards a sac-

charolytic pathway and away from proteolytic fermentation and toxin production. In a pilot 

pre-test/post-test study involving nine healthy volunteers, Evanepoel et al. demonstrated that 

treatment with oral acarbose 300 mg per day for 3 weeks resulted in significant reductions 
in both serum p-cresol concentration (1.14–1.11 mg/L, p = 0.047) and urinary excretion of 
p-cresol (29.93–10.54 mg/day, p = 0.03), suggesting reduced colonic generation of p-cresol, the 
precursor of PCS [45]. Further studies confirming this finding are required.

4.2. Gastrointestinal sequestration

IS and PCS absorption from the gut may also be prevented by the use of oral intestinal adsor-

bents, such as AST-120 (Kremezin), which bind uraemic toxins and their precursors thereby 
sequestering them in the gut and allowing them to be excreted via the faeces. Oral administra-

tion of AST-120 has been shown to result in a dose-dependent decrease in serum IS and PCS 
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in both human [46–48] and animal studies [19, 49], and its use is associated with slower pro-

gression of renal dysfunction [44, 50] and reduction of proteinuria [43, 44] in animal models of 

CKD. It has also been demonstrated to slow progression of renal dysfunction in early non-ran-

domized and randomized studies in pre-dialysis patients [51–53]. In a subsequent Cochrane 

systematic review and meta-analysis of eight randomized controlled trials (RCTs) of AST-120 
plus routine care compared with routine care alone in patients with stages 1–5 (non-dialysis) 

CKD, Wu et al. [54] reported that AST-120 treatment resulted in a significant reduction in the 
rate of decline in creatinine clearance (2 studies, 486 participants; standardized mean differ-

ence [SMD] 0.39, 95% CI 0.21–0.57; I2 = 0%), but did not significantly affect reciprocal serum 
creatinine slope over time (2 studies, 76 participants; mean difference [MD] 0.07 dL/mg/month, 
95% CI −0.12 to 0.26; I2 = 69%), doubling of serum creatinine concentration (1 study, 460 partici-
pants; relative risk [RR] 0.55, 95% CI 0.19 to 1.62), ESKD incidence (3 studies, 504 participants; 
RR 0.70, 95% CI 0.15–3.35; I2 = 11%) or all-cause mortality (1 study, 460 participants; RR 0.70, 
95% CI 0.19–1.62). In three separate placebo-controlled RCTs, AST-120 treatment did not sig-

nificantly affect changes in serum creatinine, slope of reciprocal serum creatinine over time or 
creatinine clearance [54].

In the following year, the Evaluating Prevention of Progression in CKD (EPPIC)-1 and EPPIC-2 

trials [55] reported on the effects of AST-120 (9 g/day) or placebo on CKD progression in 2035 
patients with non-dialysis-dependent CKD treated at 239 sites in 13 countries. No significant 
difference was observed in time to primary end point (composite of doubling of serum creati-
nine, dialysis initiation and kidney transplantation) between treatment arms (pooled analysis 

HR 0.97, 95% CI 0.83–1.12, p = 0.64). Furthermore, the treatment group did not experience any 
difference in proteinuria or quality of life compared with the placebo group. Similarly, a sub-

sequent prospective, open-label, randomized controlled trial of 579 patients with stage 3 or 4 
CKD from 11 Korean centres reported that oral administration of AST (6 g/day of AST-120 in 

3 divided daily doses) did not significantly affect time to the primary composite outcome of 
doubling of serum creatinine, eGFR decrease >50%, or initiation of renal replacement therapy 
(HR 1.12, 95% CI 0.85–1.48) [56]. There was no significant difference in change in serum IS 
levels over time between the intervention and control group (p = 0.29). The treatment also 
did not result in a significant difference in mortality, health-related quality of life or serious 
adverse effects.

A Cochrane systematic review of alternative oral adsorbents, Ai Xi Te and Niaoduqing gran-

ules, reported positive effects on CKD progression, but were limited by small samples sizes 
and poor methodologic quality with unclear or high risks of bias [54].

4.3. Reduced proximal tubular retention

Renal proximal tubular cells contain multiple transporters that perform basolateral uptake or 
luminal excretion of various substances, including uraemic toxins. Such transporters include 

the organic anion transporters (OAT)1, OAT3 and OATP4C1, as well as the organic cation 

transporter (OCT)2, the multidrug and toxin extrusion proteins (MATEs), the breast cancer 

resistance protein (BCRP) and the adenosine triphosphate (ATP)-binding cassette transporter 
family [57]. Anionic substances, such as IS, enter renal proximal tubule cells via basolateral 
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OAT, particularly OAT1 and OAT3, and are excreted into the tubular lumen by luminal OATs 

[58, 59]. Using cultured kidney tubule cells (LLC-PK1) and rat kidney slices, Deguchi et al. 

demonstrated that p-aminohippurate (OAT1 inhibitor), pravastatin (OAT3 inhibitor) and 

benzylpenicillin (OAT3 inhibitor) inhibited the renal tubular uptake of indoxyl sulphate to 
comparable extents [60]. In a 5/6-nephrectomized rat model of CKD, Enomoto et al. demon-

strated that administration of IS resulted in IS accumulation in proximal tubule cells express-

ing OAT1 and OAT3, and was associated with more rapid CKD progression, as measured by 

creatinine clearance [58]. Furthermore, addition of IS to cultured rat proximal tubule (S2) cells 

reduced their viability, although this nephrotoxicity was abrogated by administration of the 

OAT1 inhibitor, probenecid [58]. Thus, OAT inhibitors, such as probenecid and statins, might 

be a potential strategy for preventing proximal tubule cell accumulation of IS and ensuing 

nephrotoxicity and CKD progression. In addition, as OATs are expressed widely throughout 

the body, these transporters may play a role in uraemic toxin-induced pathology in various 

organs. For example, Liu and colleagues demonstrated that administration of 10 µM IS to 

cultured Sprague-Dawley cardiac myocytes and fibroblasts stimulated myocyte hypertrophy 
and collagen synthesis, which was abrogated by probenecid (OAT1 antagonist) and cilastatin 

(OAT3 antagonist) [61].

Therapeutic manipulation of efflux transporters, such as OAT polypeptide 4C1 (SCLO4C1), 
may also lead to enhanced excretion of uraemic retention solutes into the urine [62]. For exam-

ple, Toyohara et al. demonstrated that overexpression of SLCO4C1 in rat kidney decreased 

plasma levels of uraemic toxins and reduced inflammation, hypertension and cardiomegaly 
[11]. Moreover, renal clearance of uraemic toxins was also increased by pravastatin, which is 

known to upregulate proximal tubular SLCO4C1 [11].

The activities of multidrug resistance protein (MRP) 4 and BRCP efflux transporters have also 
been demonstrated to be downregulated by PCS in vitro [63] and may be potential therapeutic 

targets.

4.4. Increased dialytic clearance

IS and PCS are highly (>90%) protein bound and are therefore not easily removed with con-

ventional haemodialysis and peritoneal dialysis [14, 59, 64]. Long dialysis, short daily dialysis 

and high-flux haemodialysis have been investigated as potential methods of improving clear-

ance of protein-bound molecules, but have failed to show clear benefit [59, 65, 66].

In contrast to conventional haemodialysis, which mainly depends on diffusion to clear solutes, 
haemodiafiltration combines convection and diffusion, which is potentially very useful in facili-
tating removal of larger molecules, such as protein-bound solutes. Haemodiafiltration has been 
shown in prospective cross-over studies to be superior to high-flux haemodialysis in removing 
IS and PCS [67, 68]. In this respect, the effectiveness of pre- and post-dilution haemodiafiltration 
was comparable [67, 68]. The mechanism for the improved clearance of protein-bound solutes 

is not well understood but seemed to be dependent on a combination of both diffusion and 
convection since haemofiltration (which does not involve diffusion) reduced the serum levels 
of protein-bound solutes but not to the same extent as haemodiafiltration [67].
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The use of super-flux cellulose triacetate membranes has also been evaluated and found 
to be superior to low-flux haemodialysis with respect to removing IS and most protein-
bound compounds, although this might be at least partly explained by an increase in 

removal of albumin [69]. Similarly, dialysis with the use of a nanoporous carbon monolith 

(pores 2–100 nm) was able to almost completely remove IS and PCS, whereas the use of a 

microporous monolith (<2 mm) resulted in only partial removal, and standard high-flux 
haemodialysis resulted in insignificant removal [70]. A potential issue with enhanced dial-

ysis of toxins is the rebound release of further toxins from tissues, which is observed with 

water-based solutes. However, Martinez and colleagues demonstrated that the rebound 
movement of PCS and protein solutes in the first 30 minutes post-dialysis appeared to be 
negligible [71].

Eloot and colleagues utilised kinetic modelling to try to determine optimal dialysis parameters 

to facilitate protein-bound solute removal, and found that regardless of longer or more frequent 

dialysis, increased volume of blood processing per week was required to increase clearance 

[72].

In a cross-over study of 14 patients, high-clearance dialysis (high dialysate flow rate and 
large dialyzer) resulted in significantly greater PCS and IS clearance compared with low-
clearance dialysis (PCS 23 ± 4 ml/min vs. 12 ± 3 ml/min, p < 0.001; IS 30 ± 5 ml/min vs. 
17 ± 4 ml/min, p < 0.001). However, there was no significant change in serum PCS levels 
with high-clearance dialysis although there was a significant decrease in IS levels [73]. The 

authors suggested that this lack of reduction in serum PCS levels may be due to concurrent 

PCS generation, and thus treatment to suppress PCS production would be required in order 

to achieve significant reductions in serum PCS.

5. Summary and future directions

In summary, IS and PCS are products of bacterial metabolism within the gut. Serum IS and 

PCS levels are increased in patients with CKD and have been associated with CKD progres-

sion, vascular disease acceleration, adverse metabolic profile and poorer cardiovascular and 
overall mortality. There are several methods of lowering serum IS and PCS levels, including 

reduced intestinal bacterial production through dietary modification of protein and/or fibre 
intake or pre-, pro- and synbiotic use, gastrointestinal sequestration through oral adsorbent 

use, reduced cellular uptake of IS through OAT inhibition, and increased clearance through 

enhanced dialysis. Though these treatments have been shown in some studies to successfully 

reduce IS and PCS levels in sera and/or cells, it is less clear whether this translates into mean-

ingful and sustained improvements in clinical outcomes. The studies conducted to date have 

been limited by small patient numbers, relatively short follow-up duration and poor method-

ologic quality. Given the biological plausibility and clinical importance of the adverse health 

outcomes thought to be mediated by these toxins, further high-quality studies are needed to 

evaluate the short- and long-term effects of IS and PCS lowering treatments on patient-level 
clinical outcomes.
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