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Abstract

This chapter deals with microgrids (μGs), i.e., a group of interconnected loads and dis-
tributed energy resources that act as a single controllable entity with respect to the grid.
The μGs can be classified into AC and DC μGs depending on the characteristics of
the supply voltage, with both solutions characterized by advantages and challenges.
Recently, hybrid AC/DC μGs have been developed with the aim to exploit the advan-
tages of both AC and DC solutions. Hybrid μGs require being properly controlled to
guarantee their optimal behavior, in both grid-connected and islanding mode. In this
chapter, we propose an optimal control strategy for a hybrid μG to be realized in an
actual Italian industrial facility. The control strategy operates with the aim to simulta-
neously minimize the energy costs and to compensate waveform distortions. The key
result of the chapter consists in evidencing the technical and economic advantages of the
proposed solution by means of real-time simulations of the hybrid μG performed
through Matlab/Simulink development tool in the different conditions (grid-connected
and islanding mode).

Keywords: hybrid microgrids, distributed energy resources, power quality, optimal
control strategies

1. Introduction

Nowadays distributed generators, storage systems, and controllable loads much more actively

and simultaneously contribute to an optimal operation of the electrical distribution systems in

the frame of the new concepts of smart grids (SGs) and microgrids (μGs).

In this exciting context, new technologies and services are being introduced to make the

electrical networks more reliable, efficient, secure, and environmentally friendly.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



This chapter deals with μGs that CIGRÉ C6.22 Working Group defines as electricity distribu-
tion systems containing loads and distributed energy resources that can be operated in a
controlled, coordinated way either while they are connected to the main power network
(grid-connected mode), or when operate in islanding mode [1].

As well known, μGs can be AC and DC μGs on the basis of the nature of the supplied
voltage [2–4]. AC μGs have the advantage of utilizing existing AC technologies as well as DC
μGs seem particularly suitable for supporting the current needs because most distributed
generation sources, such as photovoltaic plants, fuel cells, and storage systems, generate DC
power directly. Moreover, DC grids can also guarantee high power quality levels to AC
sensible loads, even though this provision requires the presence of additional DC/AC
converters.

Recently, hybrid AC/DC μGs have been developed with the aim to exploit the advantages of
both AC and DC solutions and, in particular, to accelerate the integration process of DC power
technologies into the existing consolidated AC systems [5–10].

As well known, several static converters are installed in the hybrid μGs, either to connect
renewable generation and storage systems to the AC or DC grids, or as an interface between
AC and DC grids. In this context, optimization strategies are required to perform the converters
optimal control with the aim of efficiently operating the whole hybrid μG. These control strate-
gies should take into account all goals and operating constraints of both DC and AC sections.

Motivated by the above requirements, in the following sections of this chapter, we propose an
optimal control strategy for a hybrid μG to be realized in an actual Italian industrial facility. In
particular, the static converters of the hybrid μG are controlled with the aim to simultaneously
minimize the energy costs and to compensate waveform distortions, thus ensuring an optimal
technical and economical behavior of the whole μG.

The remainder of the chapter is organized as follows. The electrical system of the actual Italian
industrial facility is briefly recalled in Section 2, where also the structure of the proposed
hybrid microgrid is shown. Section 3 deals with the proposed control strategy. Numerical
applications are shown in Section 4, Section 5 provides our conclusions, and some data of the
test system under study are explained in Appendix.

2. The electrical industrial system under study

The electrical industrial system under study was a hybrid AC/DC microgrid obtained by the
modification of the existing LV distribution system of an actual Italian industrial facility where
transformers are assembled. The simplified electrical scheme before the modification is
reported in Figure 1. The existing facility’s electrical distribution system is connected to the
MV grid through a 20/0.4–630 kVA transformer and includes four low-voltage feeders; each
feeder is dedicated to a different manufacturing process, i.e.: (i) tanks and boxes manufactory,
(ii) assembly, (iii) winding and coils and (iv) test. An automatically switched 120 kVAr capac-
itor bank with 10 kVAr step is installed at bus 3 to guarantee a power factor at PCC (bus 2)
equal to 0.95.
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The data of the lines, transformers and loads are reported in Appendix.

The modifications on the existing electrical system of Figure 1 and the applied control strategy

implemented in the centralized control system (CCS) are finalized (i) to improve the continuity

and quality of the energy delivered to the loads and (ii) to optimize the exchange of energy

between industrial plant and MV distribution grid.

The following modifications are effected (Figure 2): (i) a DC micro grid (DCμG) is connected at

AC bus 16 through an AC/DC grids interfacing converter; (ii) a Battery Energy Storage System

(BESS) is installed at AC bus 3 through a DC/AC static converter; and (iii) a dispatchable

micro-turbine is connected at AC bus 20 through an AC/AC static converter.1

The DC micro grid (DCμG) consists of a photovoltaic (PV) plant equipped with a maximum

power point tracker control system and connected to the DC grid through a DC/DC static

converter and three sensitive AC loads (Folding walls island robot, Sandblasting machine and

PLCs used to control the automation of the whole electromechanical process2) moved from the

original electrical scheme of Figure 1.

The sensitive loads are controllable in terms of start-up times; in particular, their working time

intervals are obtained by a day-ahead scheduling aimed at achieving the minimization of the

costs for the electricity purchase of the hybrid AC/DC μG [12].3

Figure 1. Electrical simplified scheme of the existing electrical distribution system of the industrial plant under study.

1In the following we will use the term micro-turbine, BESS and PV generators to indicate the system constituted by the

micro-turbine, BESS and PV panels together with their interfacing static converters.
2These loads were chosen in accordance with the technical operators of the industrial facility on the basis of a deep study

on the industrial process [11]
3An Uninterruptible Power Supply (UPS) system is dedicated for PLC power backup to provide a soft shut-down of the

load control devices in case AC μG out of service.
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The above modifications lead to a hybrid μG, which includes AC buses (ACμG) and DC buses

(DCμG).

The data of the newly added components are reported in Appendix.

Figure 2. Scheme of the hybrid AC/DC µG.
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3. The proposed control strategy

The proposed control strategy is based on the solution of optimization problems performed at

fundamental and at harmonic frequencies, where the efficient operation of the DC and AC

grids is guaranteed by a proper control of the static converters installed in the hybrid μG,

either to connect micro-turbine and storage system to the AC grid, or as interface between AC

and DC grids.

The control strategy allows the hybrid AC/DC μG to operate both in grid-connected and in

islanding mode as described in details in the following subsections.

3.1. Grid-connected mode

When the hybrid μG is in grid-connected mode, the converters are controlled with the aim to

simultaneously minimize: (i) the energy costs sustained for the electrical energy imported from

the main distribution network and the production cost of the micro-turbine and (ii) the

waveform distortions of the AC bus voltages.

The converter sizes have to be appropriately chosen to correctly perform both the required

services.

Two different optimization models are formulated and solved by CCS to provide the reference

signals for the energy cost minimization (reference signals at fundamental frequency) and for

the waveform distortion compensation (reference signals at harmonic frequencies), as shown

in Figure 3.

Figure 3. Optimal control strategy for grid-connected mode.
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3.1.1. Energy cost minimization

At the fundamental frequency, the real-time operation of the hybrid AC/DC µG is optimized

by controlling the active and reactive power of the BESS, the active and reactive power of the

micro-turbine and the reactive power provided by the AC/DC grids interfacing converter. The

reference signals for the converters, which minimize the total energy cost, are obtained solving

a non-linear constrained optimization problem, such as:

min f objðxÞ ð1Þ

s.t.

βhðxÞ ¼ 0 h ¼ 1,…, Neq ð2Þ

γkðxÞ ≤ 0 k ¼ 1,…, Nineq ð3Þ

where fobj is the objective function and βh and γk are the hth equality and the kth inequality

constraints to be met, respectively. The vector x includes the state and control variables.

Dividing the day into Nt time slots of the same duration ∆t, the optimization problem in

Eqs. (1)–(3) is repeatedly solved at each ith time slot and its solution furnishes the reference

signals needed at the successive time slot (i + 1)th for the controllers of micro-turbine, BESS and

AC/DC grids interfacing converters.

Input and output data, the objective function and the constraints structure are listed in the

following.4

The input and output data of the optimization problem are:

Input data:

• the state of charge of the BESS at the end of the ith time slot and at the end of the day (i.e.,

at the end of time slot Nt). In particular, the value at the end of the ith time slot is obtained

as result of the optimization problem in Eqs. (1)–(3) solved at the previous (i-1)th time slot;

the value at the end of the day is fixed on the basis of the desired value at the beginning of

the successive day;

• the forecasted powers of the PV system and of the non-controllable loads, all provided by

proper forecasting tools for all the time slots from (i + 1)th to Nt [13–15];

• the power required by the controllable loads5;

• the energy charge;

4It should be noted that a fixed value is assigned to the energy stored in the battery at the last time slot of the day (Nt),

thus influencing the battery power profile over the whole day; then, the optimization problem becomes multi-period with

the consequence that, at the ith time slot, objective function and constraints must be formulated along all the rest of the day

(i.e., time slots included in {i+1,…, Nt}).
5The real time control procedure follows a day ahead scheduling procedure (performed off-line), as the one proposed

in [12], finalized to schedule the powers of DCµG controllable loads.
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• the charge and discharge periods of the BESS in ACµGwhich are fixed a-priori in function

of the energy hourly tariff (typically, the discharge period is during the hours of peak

energy tariff).

Output data:

• the active and reactive power of the BESS and the corresponding State of Charge (SOC);

• the active and reactive powers of the microturbines;

• the reactive power of the interfacing power converter.

All the output data are calculated from the (i + 1)th time slot to the end of the day, but,

obviously, only the values of the (i + 1)th time slot are sent to the controllers of the ACµG

BESS, micro-turbine and AC/DC grids interfacing converter.

The objective function in Eq. (1) to be minimized is the daily total costs sustained by the

industrial facility for the electrical energy. This cost is the sum of the cost for the energy

imported from the MV electrical distribution grid and of the production cost of the micro-

turbine. The objective function fobj(x) results in:

f objðxÞ ¼
XNt

k¼iþ1
ðPrE,k P

grid
k Δtþ CmTG

k ΔtÞ ð4Þ

In Eq. (4), P
grid
k is the active power furnished by the distribution grid at the kth time interval,

PrE,k and CmTG
k are the energy charge and the production cost of the micro-turbine generator at

the kth time interval, expressed as [16]:

CmTG
k ¼ amTG � ðPmTG

20,k Þ
2 þ bmTG,nP

mTG
20,k þ cmTG uðkÞ, k ¼ iþ 1,…, Nt ð5Þ

In Eq. (5), amTG, bmTG and cmTG are the cost coefficients of the micro-turbine, PmTG
20,k is the power

injected by the micro-turbine connected at busbar 20, u(k) is equal to 1 (if the micro-turbine is

switched ON) or 0 (if the micro-turbine is switched OFF). The start-up cost is not considered in

Eq. (5) [17].

The equality and inequality constraints related to the DCµG, the ACµG, and the AC/DC grids

interfacing converter are illustrated in Tables 1–3, respectively.

With reference to the DCµG constituted by MDC buses (Table 1), the equality constraints are

the DC load flow Eq. (6), while the inequality constraints refer to limits on bus voltage

magnitudes Eq. (7) and line currents Eq. (8).

In Eq. (6), PDC
s,k is the active power injected in the sth DC bus at the kth time slot, VDC

s,k is the sth

bus voltage magnitude in the kth time slot, Gsd is the s-d element of the conductance matrix.6

6The terms of the conductance matrix don’t depend on the time interval, since no time variation of the DCµG topology is

assumed.
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In particular, PDC
s,k with s = 2,…, MDC is the scheduled active power of the controllable loads at

load busbars and the active power injected by PV generator. In particular, at busbars 2, 3 and 4

only loads are connected and their active powers are the ones reported in Table A. VI of

Appendix (with minus sign) corresponding to the busbars 17, 9 and 22 of the actual industrial

system shown in Figure 1; at bus 5, only PV generator is connected and the active power is

equal to the value obtained by forecasted PV solar irradiance; at bus 1, the voltage VDC
1,k ¼ VDC

sp ,

for each kth time slot, since AC/DC interfacing converter controls the DC voltage at the

constant value VDC
sp .

In Eq. (7), VDC
sLB

and VDC
sUB

are the lower and upper bounds of voltage amplitude of the sth DC

bus. In Eq. (8), IDC
l,k is the value of current flowing in the lth line during the kth time slot, LDC is

the number of the DC grid lines and IDC
l,max is the ampacity of the lth line.

With reference to the ACµG constituted by MAC buses (Table 2), the equality constraints are

the AC load flow in Eq. (9) and the balance equation of the energy stored in the BESS at the end

of the day (Eq. (16)), while the inequality constraints refer to limits on bus voltage magnitudes

(Eq. (10)), line currents (Eq. (11)), active and reactive power at PCC (Eq. (12)), MV/LV trans-

formers apparent power (Eq. (13)), micro-turbine active and apparent power (Eqs. (14) and

(15)), energy stored, charging/discharging powers and apparent power of BESS in the generic

time slot (Eqs. (17)–(19)).

In Eq. (9), PAC
s,k ðQ

AC
s,k Þ is the active (reactive) power injected in busbar s at the kth time slot; Vs,k ϑs,k

are themagnitude and argument of the voltage of sth AC bus at the kth time slot, respectively,Gs,j

(Bs,j) is the s-j term of the conductance (susceptance) matrix.7 The first busbar of the grid in

Load flow equations

PDC
s,k ¼

XMDC

d¼1

VDC
s,k V

DC
d,kGsd , k ¼ iþ 1,…, Nt, s ¼ 1,…, MDC ð6Þ

Voltage magnitudes

VDC
sLB

≤VDC
s,k ≤V

DC
sUB

, k ¼ iþ 1,…, Nt, s ¼ 2,…, MDC ð7Þ

Line currents

IDC
l,k ≤ IDC

l,max, k ¼ iþ 1,…, Nt, l ¼ 1,…, LDC ð8Þ

Table 1. DCµG’s constraints.

7The terms of the conductance and susceptance matrix don’t depend on the time interval, since no time variation of the

AC microgrid topology is assumed.
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AC grid

Load flow equations

PAC
s,k ¼ VAC

s,k

X

MAC

j¼1

VAC
j,k ½Gs, j cos ðϑs,k � ϑj,kÞ þ Bs, jsinðϑs,k � ϑj,kÞ�

QAC
s,k ¼ VAC

s,k

X

MAC

j¼1

VAC
j,k ½Gs, j sin ðϑs,k � ϑj,kÞ � Bs, jcosðϑs,k � ϑj,kÞ�

k ¼ iþ 1,…, Nt s ¼ 1,…,MAC

ð9Þ

Voltage magnitudes

VAC
sLB

≤VAC
s,k ≤V

AC
sUB

, k ¼ iþ 1,…, Nt s ¼ 2, …, MAC ð10Þ

Line currents

IACl,k ≤ IACl,max , k ¼ iþ 1,…, Nt l ¼ 1,…, LAC ð11Þ

PPCC powers

PAC
2�3,k ≤P

Max
PCC ð12Þ

QAC
2�3,k ≥ 0 , k ¼ iþ 1,…, Nt

MV/LV transformer apparent power

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ptr,k
2 þQtr,k

2
p

≤ STR , k ¼ iþ 1,…, Nt ð13Þ

Micro-turbine

Active and apparent power

PmTG
min uðkÞ ≤PmTG

20, k ≤ PmTG
max uðkÞ, k ¼ iþ 1,…, Nt ð14Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PmTG
20, k

2 þ QmTG
20, k

2

q

≤ SmTG
nom , k ¼ iþ 1,…, Nt ð15Þ

BESS

Energy stored at the end of the day

Ei � Δt
X

Nt

k¼iþ1

γk P
BESS
3,k ¼ Ein

sp , γk ¼

1

ηbess
if PBESS

3,k ≥ 0

ηbess if PBESS
3,k < 0

8

>

<

>

:

ð16Þ
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Figure 1 is the slack busbar. Then, VAC
1,k ¼ VAC

sp and ϑ1,k = 0, for each kth time slot, where VAC
sp is

the fixed slack voltage magnitude. In particular, with reference to each kth time slot:

• at the load bus bars, PAC
s,k and QAC

s,k are the forecasted active and reactive powers of the

non-controllable loads, whose rated powers are reported in Table A. VI;

• at bus 3, PAC
3,k is the sum of the active power of the BESS ðPBESS

3,k Þ and the forecasted active

power of the non-controllable load connected at bus 3 while QAC
3,k is the sum of the reactive

power of the BESS ðQBESS
3,k Þ, the forecasted reactive power of the non-controllable load

connected at bus 3 and the reactive power injected by capacitor bank;

• at bus 20, PAC
20,k and QAC

20,k are, respectively, the active ðPmTG
20,k Þ and reactive ðQmTG

20,k Þ powers

of the micro-turbine;

• at bus 16, PAC
16,k and QAC

16,k are the active and reactive power injected by the AC/DC grids

interfacing converter;

• at buses, where no generation or loads are connected, the PAC
s,k and QAC

s,k values are zero.

In Eq. (10), VAC
sLB

and VAC
sUB

are the values of lower and upper bounds of voltage at the sth AC

bus, respectively.

In Eq. (11), IACl,k is the value of current flowing in the lth line at the kth time interval, LAC is the

number of lines of the AC grid and IACl,max is the ampacity of the lth line.

In Eq. (12), the active power PAC
2�3,k at the PCC busbar during the kth time interval (coincident

with P
grid
k in Eq. (4)) is limited by contractual active power PMax

PCC and the reactive power QAC
2�3,k

AC grid

Energy stored in the generic time slot

Elb
sp ≤Ek�1 � Δt PBESS

3,k ≤Eub
sp , k ¼ iþ 1,…, ðNt � 1Þ : ð17Þ

Charging and discharging power in the generic time slot

�Pch
max ≤PBESS

3,k ≤ 0 k ∈ Ωch,k

0 ≤PBESS
3,k ≤Pdch

max k∈ Ωdch,k

ð18Þ

Apparent power

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PBESS
3,k

2 þQBESS
3,k

2
q

≤ SBESSnom , k ¼ iþ 1,…, Nt ð19Þ

Table 2. ACµG’s constraints.

Development and Integration of Microgrids30



at the PCC busbar during the kth time interval has to be positive since reactive power cannot

be injected into distribution network. The power flows PAC
2�3,k and QAC

2�3,k can be expressed in a

simple way using state variables.

In Eq. (13), Ptr,k and Qtr,k are the values of active and reactive power flowing through the

transformer at the kth time interval which can be expressed in function of state variables; STR
is the size of transformer (630 kVA).

In Eq. (14), the active power produced by micro-turbine ðPmTG
20,k Þ is within a normal operating

interval [PmTG
min , PmTG

max ].

In Eq. (15), QmTG
20,k is the reactive power injected by converter of the micro-turbine and SmTG

nom is

its nominal apparent power.

In Eq. (16), Ei is the energy stored in the BESS at the ith time interval, PBESS
3,k is the BESS power at

the kth time slot, Ein
sp is the desired energy stored in the BESS at the end of the day that is equal

to the desired energy at the beginning of the successive day, ηbess is the battery efficiency in

charging/discharging mode.

In Eq. (17), the upper value Eub
sp is the battery size while the lower value Elb

sp must be specified

on the basis of the maximum allowable depth of discharge, thus preserving an adequate value

of the battery lifetime [18]. Ek–1 is BESS energy stored at the end of (k-1)th time slot.

In Eq. (18), Pch
max and Pdch

max are the maximum power rates in charging and discharging modes;

Ωdch,k and Ωch,k are the set of time slots from (i + 1)th to Ntth in which the BESS is allowed to

discharge and charge, respectively.

In Eq. (19), QBESS
3,k is the reactive power injected by converter of the BESS and SBESSnom is its

nominal apparent power.

With reference to AC/DC grids interfacing converter (Table 3), the equality constraints are the

DC and AC voltage balance equation (Eq. (20)) and the DC and AC active power balance

equation (Eq. (21)), while an inequality constraint (Eq. (22)) refers to a limit on apparent power

flowing through the AC/DC grids interfacing converter.

In Eq. (20),ma,k is the amplitude modulation ratio of the PWM interfacing converter, VAC
16,k is the

RMS voltage of the bus at AC side of converter and VDC
1,k is the voltage amplitude of the bus at

DC side of converter (the first node of the DCµG) at the kth time slot. As before mentioned,

VDC
1,k , for each kth time slot, is equal to VDC

sp .

In Eq. (21), ηrect (ηinv) is the converter efficiency in rectifier (inverter) operation of the power

converter.

In Eq. (22), the active (PAC
16,kÞ and reactive (QAC

16,k) powers injected by the converter from DCµG

to AC µG are limited by its size (Sconvnom ) at the kth time slot.

Distributed Energy Resources to Improve the Power Quality and to Reduce Energy Costs of a Hybrid AC/DC…
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3.1.2. Waveform distortion compensation

At harmonic frequencies, the centralized control system furnishes reference current signals

that ACµG power converters have to be injected in order to compensate waveform distortions

at AC busbars. These reference currents are obtained as the solution of an optimization

problem in the frequency domain, based on the optimal control theory [19–21]. The optimiza-

tion problem consists of minimizing the voltage harmonics at AC busbars without signifi-

cantly oversizing of the converters employed for the compensation.

The Fourier transform U of the converters reference currents to be injected is obtained by

minimizing the following system index:

J ¼
ðþ∞

�∞
ðY� �Q � Y þU

� � R �UÞdω ð23Þ

In Eq. (23), Y is the Fourier transform of the complex output vector y, which includes the

harmonic voltages at all network buses and at all considered harmonic frequencies; Q and R

are weight matrices and the symbol * indicates the complex conjugate.

The analytical Fourier transform of the vector of the injected currents U corresponding to the

minimization of index of Eq. (23) is given by [20]:

U ¼ � _G
�1 � _P �D ð24Þ

where _G ¼ ðL � C � _Φ � BÞ� � L � C � _Φ � Bþ R and _P ¼ ðL � C � _Φ � BÞ� � L � C � _Φ � F.

Interfacing converter

DC and AC voltage

VDC
1,k ¼ 2

ffiffiffi

2
p

ma,k

ffiffiffi

3
p VAC

16,k , k ¼ iþ 1,…, Nt ð20Þ

DC and AC active power

PAC
16,k ¼ �ξkP

DC
1,k ξk ¼

1

ηrect
if PAC

16,k ≤ 0

ηinv if PAC
16,k > 0

, k ¼ iþ 1,…, Nt

8

<

:

ð21Þ

Apparent power

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAC
16,k

2 þQAC
16,k

2

q

≤ Sconvnom , k ¼ iþ 1,…, Nt ð22Þ

Table 3. Constraints on AC/DC grids interfacing converter.
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D is the vector of the disturbances (harmonic currents injected at buses where non-linear loads

are present at all considered harmonic frequencies) and Φ ¼ ðjωI� AÞ�1 being I the identity

matrix and Q factorized in Q = L*L.

The matrices A, B, C, and F are the system state equation matrices obtained from the following

linear state space model, derived from the application of the Kirchoff’s laws in the time domain

to the ACµG [21]:

dx

dt
¼ Axþ Buþ Fd

y ¼ Cx

8

<

:

ð25Þ

where x is the state vector (inductor currents and capacitor voltages), d is the vector of the

disturbances, u is the vector of the compensating currents injected by the converters for voltage

harmonic compensation, and y is the output vector. A, B, C, and F depend on the parameters of

the distribution network (matrices A and C) and on the busbars where the disturbing loads

and the converters participating to system harmonic compensation are connected (matrices F

and B).

It should be noted that the values of the element of vectorD elements are estimated thanks to a

disturbance-estimation algorithm based on a Kalman Filter [22, 23].

It should be also noted that the values of the weight matrix Q elements depend on targets

assigned to the waveform distortion compensation levels at the nodes, with the rule that the

values of the weights are assigned greater in the busbars where particularly sensitive loads are

connected (area compensation). The values of the weights of matrix R elements are assigned

on the basis of targets on the rate of converter sizes used for the harmonic compensation:

greater values of the R elements correspond to the smaller rate of the converter and vice

versa [19]. With reference to the considered industrial study system, the converters installed

at buses 3, 16 and 20 participate, using a part of their size, to harmonic compensation.

3.2. Islanding mode

In addition, the control strategy applied by CCS is able to disconnect the hybrid μG from the

distribution network when abnormal conditions occur. We will consider the behavior of the

AC/DC µG in the case of supply interruptions. In such conditions, local energy resources and

loads are optimally controlled in order to guarantee high power quality levels to priority loads.

As priority loads, we refer to electrical loads requiring high levels of continuity of supply.

In particular, in islanding mode, the so-called “Single Mater Operation” control strategy is

adopted [24]. In fact, while in grid-connected mode all inverters installed into the hybrid μG

operate in PQmode (inverter is used to supply a given active P and reactive Q power set point),

in islanding mode the BESS interface converter operates feeding the μG with predefined

values of voltage and frequency (V-f control mode), as well as the remaining inverters, on the

contrary, continue to operate in PQ mode.
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As soon as the hybrid μG is in the islanding mode, all loads are disconnected except the

priority loads whose power demand can be provided by the BESS and micro-turbine (the PV

system is not considered in the power balance because its availability depends on the uncertain

presence of the primary source). As an example, in the considered case study, the priority loads

are assumed to be the sensitive loads connected to the DCµG. In this case, the maximum

power required by the priority loads is 72 kW (corresponding to the power absorbed when

all sensitive loads are working). Also in the worst conditions (long interruption arising when

BESS charge is Elb
sp = 102 kWh), the energy that should be generated by BESS and micro-turbine

in 1 hour8 (equal to 72 kWh) is significantly lower than the energy they can provide (equal to

132 kWh) .9

Eventually, in islanding mode, the proposed control strategy starts to supply the priority loads.

Anyway, according to a predefined list of load priorities, some of the disconnected loads can be

reconnected taking into account of: (i) the available power from PV generator; (ii) the sched-

uled power required by sensitive loads; (iii) the maximum time fixed for the autonomous

operation of the hybrid µG; and (iv) the value of the SOC of battery. The available energy for

the islanding operation can be easily calculated from the knowledge of the SOC of battery, the

forecasted PV power generation in the time intervals successive to the disconnection and the

rated power of micro-turbine.

4. Numerical applications

A simulation of the hybrid micro grid of Section 2 using Matlab® Simulink® toolbox was

implemented in order to show the feasibility of the proposed control strategy both in grid-

connected and in islanding mode. Several case studies were performed, and, for sake of

conciseness, the results relative to a typical working day are shown. In particular, in the

following subsections, results are presented for the two considered operation modes, sepa-

rately.

Remind that, in the grid-connected mode, the converters participating in the energy cost

minimization problem are: (i) the BESS converter at bus 3; (ii) the AC/DC grids interfacing

converter at bus 16; and (iii) the micro-turbine converter at bus 20. In particular, the AC/DC

grids interfacing converter (micro-turbine) participates optimally exchanging only reactive

(active) power with the ACµG.

8The maximum time interval in islanding mode operation of hybrid µG was fixed to 60 minutes considering the mean

value of the time duration of long interruptions in the area where the industrial facility is located.
9We assume that in the worst conditions the PV production is not available and the SOC of battery is initially equal to its

minimum value (20%). In these conditions, in order to supply the sensitive loads (72kWh), the micro-turbine provides

30kWh and the BESS has to furnish only 42 of the 102kWh available. This, however, determines a further discharge of the

BESS and a final SOC equal to 11.76%, causing a reduction of the expected battery life. However, since 60 minutes long

interruptions occur in distribution networks only few times during the battery life and taking into account that the worst

conditions are infrequent, the actual life reduction of the BESS can be considered largely tolerable.
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The converters participating in the harmonic compensation are: (i) the AC/DC grids interfacing

converter at bus 16 and (ii) the micro-turbine converter at bus 20. Note also that sizes of the

converters, shown in Table A. VIII, are chosen according to the aforesaid operating conditions.

Specifically, while the 120 kVA of the BESS converter is fully utilized for the energy cost

minimization, only 80 kVA of the AC/DC grids interfacing converter and 30 kVA of the micro-

turbine converter are addressed for the same operation. The remaining 20 kVA of the AC/DC

grids interfacing converter and 10 kVA of the micro-turbine converter are used for the har-

monic compensation.

4.1. Grid-connected mode

The considered day was divided into 72-time slot of equal duration (20 min), and the inputs of

the proposed control strategy for the energy cost minimization are:

• The forecasted powers of the PV system and of the non-controllable loads, both obtained

before each time slot for all the successive time slots of the considered day. As an example,

Figures 4 show the forecasted power of the PV system (Figure 4a) and the forecasted

active power (solid line), reactive power (dotted line) of the non-controllable load at bus

33 (Figure 4b) obtained at the first time slot;

• The scheduled power profile of the controllable loads, as illustrated in Figure 5;

• The energy charge reported in Figure 6 [25]. This tariff is applicable to medium and small

industrial customers and for service in the common areas of multi-family complexes. It

was selected since it is characterized by a large spread between on peak and off peak

prices; this is a necessary condition to make it possible a fruitful use of storage systems

nowadays;

• The SOC of the BESS at bus 3 equal to 43.36% at the beginning of the day. The same value

is required also at the end of the considered day according to scheduling procedure.

Figure 4. Forecasted power profile for the first time slot: (a) power production of the PV system; (b) active (solid line) and

reactive (dotted line) power of the non-controllable load at bus 33.
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Figure 5. Scheduled profile of the power of the controllable loads.

Figure 6. Energy charge.
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The time behavior of the main quantities of interest is illustrated in the following relatively to

the considered working day.

Figure 7 shows the active (solid line) and reactive (dotted line) power profiles of the BESS

converter. In Figure 8, the active (solid line) and reactive (dotted line) power profiles of the

AC/DC grids interfacing converter are plotted. Figure 9 shows the reactive power supplied

by the controllable capacitor bank. Eventually, in Figure 10, the active (solid line) and

reactive (dotted line) power profiles at the PCC are reported. The active power of the

micro-turbine is not reported since it always operates at a constant value of 30 kW.

From the analysis of Figures 7–10, the following considerations can arise:

• the µG operates practically at unitary power factor all over the day (Figure 10); themeasured

power factor of the industrial system (without the hybrid µG), instead, was 0.85 on average.

Indeed, the forecasting error on PV power generation and on non-controllable load powers

causes an operation of network slightly different to unity power factor and, as a consequence,

the reactive power absorbed by the hybrid µG at the PCC is not exactly zero;

• the reactive power furnished by BESS and capacitor bank is maximized in the hours

corresponding to load peak power (Figures 7 and 9);

• the active power provided by the BESS during the discharge from 12:00 to 14:00 is limited

by the converter size (in this interval also reactive power is furnished by the converter);

• the BESS discharge reduction at 16:20 and the residual BESS discharge at 17:20 are

justified by the numerical deviation between the BESS set point and the corresponding

simulation response (Figure 7).

Figure 7. Active (solid line) and reactive (dotted line) power profiles related to the BESS converter at bus 3.
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Figure 8. Active (solid line) and reactive (dotted line) power profiles related to the AC/DC grids interfacing converter at

bus 16.

Figure 9. Reactive power profile of the capacitor bank at bus 3.
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Anyway, the BESS totally discharges (i.e. the SOC reaches 20%) in the interval where the tariff

is higher, maximizing in this way the economic benefit.

Note also that the reactive power production inside the µG allows not only the reduction of the

power losses but also the maximization of the internal active power generation, determining

the minimization of the objective function. In fact, an increasing of the mere internal active

power production determines a corresponding decreasing of power factor at the PCC; there-

fore, a production of reactive power inside the hybrid grid is needed to guarantee an adequate

power factor at the PCC.

In Figure 11, a comparison among the energy charge profile (dotted line) and the active power

(solid line) of BESS converter (Figure 11a) and the active power of AC/DC grids interfacing

converter (Figure 11b) is reported. Figure 12 shows a comparison among the energy charge

profile (dotted line), the active power profile at the PCC of the hybrid µG (solid line) and of the

actual industrial facility (dashed line).

The analysis of these last figures clearly evidences that:

• to maximize the economic benefits, the maximum allowable discharge for the BESS arises

in the hours of the maximum value of tariff;

• the active power flowing from DC to AC µG is maximized in the hours of the maximum

value of tariff, according to the day-ahead scheduling procedure that shifted the control-

lable loads far from the maximum tariff price and the PV generation available during

those hours;

Figure 10. Active (solid line) and reactive (dotted line) power profiles at the PCC.
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• the active power at the PCC of hybrid µG increases respect to the value of the existing

industrial facility when the tariff price is minimum, due to: (i) the BESS charge profile and

Figure 11. Comparison among the energy charge profile (dotted line), the active power profiles (solid line) related to: (a)

the BESS converter at bus 3 and (b) to the AC/DC grids interfacing converter at bus 16.

Figure 12. Comparison among the energy charge profile (dotted line), the active power profile at the PCC of the

industrial system with µG (solid line) and of the actual industrial system (dashed line).
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(ii) the shifting of the controllable loads; on the other hand, the active power at the PCC of

hybrid µG decreases when the tariff price assumes higher values, due to: (i) the shifting of

the controllable loads; (ii) the PV system production; and (iii) the BESS discharge profile.

The aforesaid observations justify the reduction, shown in Figure 13, of the hourly costs to be

sustained by the hybrid µG (solid line) respect to the ones sustained by the existing industrial

facility (dotted line). In particular:

• from 00:00 to 04:00 and from 22:00 to 23:00, the hybrid µG has costs slightly greater than

the existing industrial system, cause of the BESS charge;

• from 06:00 to 07:00 and from 21:00 to 22:00, the hybrid µG has costs slightly greater than

the existing industrial system, cause of the shifting of controllable loads;

• from 10:00 to 18:00, the hybrid µG has cost significantly lower than the existing industrial

system, cause of both the PV system production and BESS discharge;

• from 18:00 to 21:00, the hybrid µG has costs lower than the existing industrial system,

mainly cause of the micro-turbine operation, whose production costs are lower than the

considered energy tariff, and also due to the PV system production.

Globally, the proposed procedure allows a daily reduction of the total costs for the energy

purchase of about 26%.

Figure 13. Hourly costs to be sustained by the industrial system with hybrid µG (solid line) and by the actual industrial

system (dotted line).

Distributed Energy Resources to Improve the Power Quality and to Reduce Energy Costs of a Hybrid AC/DC…
http://dx.doi.org/10.5772/intechopen.68766

41



With reference to the waveform distortion compensation, an analysis of the load currents in

the existing industrial system revealed that main contributions to voltage distortions were due

to the harmonic of order h = 5, 7, 11 and 13. So, the procedure described in Section 3.1.2 was

applied only for the compensation of the aforesaid harmonic orders. The compensation action

is applied in a working day using the AC/DC grids interfacing converter and the micro-turbine

converter.

As illustrated in Section 3, the inputs needed to solve the minimization problem and to obtain

the reference currents of converters (see Eq. (23)) are the estimated harmonic disturbances D

and the Q and R matrices.

The loads producing waveform distortion are marked with an asterisk in Table A. VI. As an

example, Figures 14 and 15 report the harmonic currents amplitudes injected by disturbing

loads at the buses 23 and 33 during the time slot from 16:20 to 16:40.

The terms of the weight matrix R are obtained from the knowledge of the size of the converters

dedicated to harmonic compensation, and giving priority to the compensation of the harmonic

with the lowest orders. As an example, the value of R term related to the compensation of the

5th harmonic order is 0.59, while the value of R term related to the compensation of the 13th

harmonic order is 0.23.

Figure 14. DFTestimation of harmonic currents amplitudes injected by disturbing loads at the bus 23 during the time slot

from 16:20 to 16:40.

Development and Integration of Microgrids42



The terms of weight matrix Q are set giving priority to the harmonic compensation for the

feeder “tanks and boxes manufactory”; thus the elements of Q corresponding to nodes of this

feeder are 50 times greater than those of the other feeders.

Figures 16–18 show the comparison of total harmonic distortion (THD) with (solid bars) and

without (empty bars) the proposed compensation procedure. Specifically, Figure 16 shows the

THD comparison over the buses in the time slot corresponding to the time interval from 16:20

to 16:40, while Figures 17 and 18 show the THD comparison, in the whole day, for the buses

23 and 35, respectively. The benefits in term of THD reduction with the application of the

proposed procedure are evident and significant, since, as observed in Figures 16–18, the THD

values in all of the buses of the hybrid µG in time stayed always under the 0.6% with the

waveform distortion compensation. Without compensation, the THD overcame the 4.5% in

some buses for some time slots.

4.2. Islanding mode

To simulate islanding mode of operation of the hybrid μG, an interruption in the MV distribu-

tion network supplying the industrial facility was simulated. The interruption determines the

switching from grid-connected mode to islanding mode. The control strategy described in

Section 3.2 is applied; the BESS converter switches from P-Q control mode to V-f control mode

Figure 15. DFTestimation of harmonic currents amplitudes injected by disturbing loads at the bus 33 during the time slot

from 16:20 to 16:40.
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Figure 16. THD comparison with (solid bars) and without (empty bars) the proposed compensation procedure corresp-

onding to the time interval from 16:20 to 16:40.

Figure 17. THD comparison with (solid bars) and without (empty bars) the proposed compensation procedure corresp-

onding to the bus 23.
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since the RMS voltage at PCC becomes lower than 5% of nominal voltage [26], that is the

threshold for the switching of the BESS converter control strategy. The remaining inverters, on

the contrary, continue to operate in P-Qmode. The interruption arises at 6 h 250 100 of the working

day analyzed in Section 4.1. As soon as the islanding condition arises, all loads of the hybrid μG

are disconnected except the sensitive loads present in the DC μG. As illustrated in Figure 5, at 6 h

250 all sensitive loads are working and absorbing 72 kW, micro-turbine and photovoltaic gener-

ators produce 30 and 31 kW, respectively. BESS is characterized by a SOC of about 100%.

In Figure 19, the voltage profile at bus 3 versus time is reported. In Figure 20, the active power

injected by BESS and AC/DC grids interfacing converters are shown. Figures 19 show how the

proposed approach allows to supply the hybrid μG during the interruption with obvious advan-

tages in terms of continuity of the supplied energy.

Figure 20a shows the increasing of BESS active power from the value at 6 h 250 in grid-connected

mode (see also Figures 7 and 11) to the value needed to supply the hybrid μG in islanded mode.

In particular, this value, in the considered application, is related to the grid active power losses

and active power required by the sensitive loads connected to DCμG reduced by the active

power furnished by micro-turbine and PV system. As expected, the active power flowing in the

AC/DC grids interfacing converter remains constant to the value of grid-connected mode (see

also Figures 8 and 11).

In Figure 20b, reactive power variations from the values at 6 h 250 in grid-connected mode (see

also Figures 7 and 8) to the values needed to provide the reactive power required by the hybrid

Figure 18. THD comparison with (solid bars) and without (empty bars) the proposed compensation procedure corresp-

onding to the bus 35.
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μG in islanding mode is shown. In particular, since only the sensitive loads connected to DC μG

are working, only reactive power losses are required and provided by BESS converter.

Note that the active and reactive power transients shown in Figure 20 are due to the switching

of the BESS converter regulator from P-Q control mode to voltage control mode. Moreover,

although the other converters in the hybrid µG continue to be controlled in P-Q mode, also

their responses are influenced by the transient at bus 3.

Figure 19. Phase-A voltage at bus 3 versus time starting from 6 h 250.

Figure 20. Active (a) and reactive (b) powers injected by BESS, micro-turbine and AC/DC grids interfacing converter

starting from 6 h 250.
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Accordingly to the aim of the proposed procedure, all the distributed resources in the hybrid

μG guarantee the continuity of supplying of sensitive loads.

5. Conclusions

A hybrid µG including two interconnected sections operating in DC and AC was considered

starting from an existing Italian industrial facility. The DC section included non-dispatchable

generation systems and controllable loads; the AC section included a BESS, a micro-turbine,

non-controllable loads and non-linear loads.

A control strategy based on a real-time control, at both the fundamental frequency and harmonic

frequencies, was applied. The control strategy required the solution of optimization problems

and was aimed at minimizing the operation costs and improving the power quality levels.

The results of a numerical application relative to a typical working day are shown and

demonstrated the effectiveness of the procedure in reducing the daily operating costs while

guaranteeing higher values of the quality of the power supply.
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Appendix

In the following, the data of the lines are provided. In particular, for each line, Tables A. I, A. II,

A. III, and A. IV show the starting and ending buses, the length, resistance, and reactance.

Tables A. V and A. VI report the transformers and loads data. Tables A. VII and A. VIII report

the main data of the new components installed in the proposed hybrid μG.

Buses ℓ [m] R [mΩ/m] X [mΩ/m]

From To

3 4 8 0.041 0.014

4 5 24 0.163 0.130

5 6 4 0.473 0.101

5 7 0.5 0.163 0.130

7 8 6 0.163 0.130

8 9 10 1.410 0.112
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Buses ℓ [m] R [mΩ/m] X [mΩ/m]

From To

8 10 9.3 0.163 0.130

10 11 3 0.163 0.130

11 12 2.8 0.163 0.130

12 13 3.5 0.163 0.130

13 14 3.5 0.163 0.130

14 15 11 0.163 0.130

15 16 19.1 0.163 0.130

16 17 4 1.410 0.112

16 18 1.9 0.163 0.130

18 19 4 1.410 0.112

18 20 3 0.163 0.130

20 21 10 0.236 0.097

20 22 42 1.410 0.112

20 23 61 2.240 0.119

20 24 61 1.410 0.112

Table A.I. Line parameters for the feeder “Tanks and boxes manufactory”.

Buses ℓ [m] R [mΩ/m] X [mΩ/m]

From To

4 25 31 0.041 0.014

25 26 3.5 0.163 0.130

26 27 16 2.240 0.119

26 28 9 0.163 0.130

28 29 12.5 0.163 0.130

29 30 10.5 0.163 0.130

30 31 8 0.641 0.101

30 32 1.5 0.163 0.130

32 33 10 0.641 0.101

32 34 12.5 0.163 0.130

34 35 8 0.328 0.096

34 36 13 0.163 0.130

36 37 1 0.163 0.130

37 38 35 0.665 0.260

Development and Integration of Microgrids48



Buses ℓ [m] R [mΩ/m] X [mΩ/m]

From To

38 39 0.5 0.665 0.260

39 40 0.5 0.665 0.260

40 41 20 1.410 0.112

Table A. II. Line parameters for the feeder “Assembly”.

Buses ℓ [m] R [mΩ/m] X [mΩ/m]

From To

25 42 34 0.041 0.014

42 43 3.3 0.070 0.096

43 44 12 2.240 0.119

43 45 9.2 0.070 0.096

45 46 5.5 0.070 0.096

46 47 5.5 1.410 0.112

46 48 6.5 0.070 0.096

48 49 5.5 1.410 0.112

48 50 7.8 0.070 0.096

50 51 5.5 1.410 0.112

50 52 5.2 0.070 0.096

52 53 1.8 0.070 0.096

53 54 5.5 1.410 0.112

53 55 8.1 0.070 0.096

55 56 5.5 1.410 0.112

55 57 5.6 0.070 0.096

57 58 4.5 0.070 0.096

58 59 5.5 1.410 0.112

58 60 3 0.070 0.096

60 61 8 0.473 0.101

60 62 2.5 0.070 0.096

62 63 5.5 1.410 0.112

62 64 3.7 0.070 0.096

64 65 38 1.410 0.112

Table A. III Line parameters for the feeder “Winding and coils”.
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Buses ℓ [m] R [mΩ/m] X [mΩ/m]

From To

2 66 30 0.094 0.090

66 67 87 0.163 0.130

67 68 7 1.410 0.112

67 69 0.5 0.163 0.130

69 70 7 0.473 0.101

Table A. IV Line parameters for the feeder “Test”.

Nominal voltage 20 kV/400 V

Nominal power 630 kVA

Connection Dyn

Group 11

Short circuit voltage 6.0%

Load losses 5721 W

No load losses 925 W

No load current 5%

Table A. V. Transformer data.

Bus Type Rated power [kVA] Power factor

3 Heating and cooling system 200 0.8

6 Painting machine 75 0.8

7 Box overturning machine 4 0.99

9* Sandblasting machine 55 0.75

11 Welder aspirators 11 0.99

15 Manual bender 8 0.99

17* Folding walls island robot 24 0.99

19* Wave welding machine 30 0.65

21 Automated bending robot for corrugated panels 122 0.65

22* PLC + computer 3 0.62

23* Plasma cutting machine 15 0.8

27 Crane 5.5 0.8

31*, 33* Core cutting machine n. 1 60 0.8

35 Autoclaves 86 0.8

44 Furnace 5 0.99
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Bus Type Rated power [kVA] Power factor

47*, 49*, 51* MTwinder machine 37 0.99

54*, 56* Tuboly winder machine 37 0.99

59*, 63* BTwinder machine 37 0.99

61 Offices 36 0.99

68* Automated bending robot for metal plates 20 0.9

70 Testing bench room 50 0.7

Table A. VI Load data.

(a)

PV generator

Power output 60 kWp

Chopper efficiency 0.95

DC voltage output 800 V

(b)

DCμG buses ℓ [m] R [Ω/km] L [H/km]

From To

1 2 20 1.450 0.00032

1 3 30 0.660 0.00029

1 4 10 3.950 0.00038

1 5 35 0.660 0.00029

Table A. VII DCμG components: PV generator (a) and lines data (b).

BESS Micro-turbine AC/DC grids interfacing converter

Power output 120 kVA 40 kVA 100 kVA

Nominal AC voltage 400 V 400 V 400 V

Efficiency 0.95 0.95 0.95

Nominal DC voltage 800 V – 800 V

Maximum capacity 510 kWh – –

SOCmin 20% – –

Maximum power rate charge/discharge 102 kW – –

Table A. VIII ACμG components data.
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