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Abstract

Cisplatin and analogs are used for the treatment of some type of cancers in combination 
with organic cytostatics. Also, two ruthenium (III) complexes are in clinical trials as anti-
cancer drugs. In order to overcome toxicity and resistance associated with this therapy 
and/or enhance stability, a large variety of formulations based on organic, inorganic, or 
hybrid matrix were developed and tested both in vivo and in vitro. The best results were 
obtained for systems properly functionalized in order to enhance the metal content and/
or to specific target the tumor tissue through overexpressed receptors.

Keywords: platinum, ruthenium, anticancer metal-based drugs, nanoformulations, 

conjugation

1. Introduction

Despite the use of metal compounds in empirical medicines since the ancient civilization 

time of Mesopotamia, Egypt, India, and China, the pharmacological bases of their therapeutic 

action were just began to be understood in the last 50 years [1].

A milestone in the development of inorganic medicinal chemistry was represented by the 

serendipitously discovery of the anticancer agent cisplatin (Platinol) [2], which opened the 

gate of extensive and rigorous research for anticancer metal-based drugs. Cisplatin quickly 

became a successful antitumor agent, but over time, its severe side effects and installation of 
resistance led to the orientation of research toward finding new cisplatin analogs. Thus, “the 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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second-generation platinum drugs” (e.g., carboplatin) with improved toxicological profiles 
and “the third-generation drugs” (e.g., oxaliplatin) overcoming cisplatin resistance have been 
developed [3].

Having in view the systemic administration, the patients experienced severe symptoms since 

cisplatin and its analogs, carboplatin and oxaliplatin, were introduced in cancer therapy. 

Moreover, the intrinsic or acquired resistance and the fact that many cancers are insensitive 

to platinum-based drug therapy started an assiduous search for formulations that are able to 

deliver these drugs with reduced toxicity but with a similar or even enhanced cytotoxic profile 
[4–9].

A promising strategy able to overcome most of the above limitations consists in embedding 

either the original drug or a precursor in a proper matrix that is able to release a high amount 

of active species at target site. As result, several formulations based on organic, inorganic, or 

hybrid materials were designed. Among organic-based materials, a large variety of lipids, 

polymers, or mixed species were developed as platinum- and ruthenium-based drug car-

riers while magnetite, gold, graphene, and silica were studied as inorganic-based materials 

for the same purpose. Moreover, hybrid materials based on functionalized graphene, gold, 

iron oxides, silica, or polinuclear complexes and polysilsesquioxanes were studied in order to 

facilitate the delivery of these drugs [6–9].

Beyond improving solubility and reducing toxicity, a main challenge of these formula-

tions was to increase their selectivity for tumor cells in order to achieve an optimum phar-

macological profile. The first formulation developed by platinum-based drugs embedding 
through noncovalent interactions generated systems with a low loading capacity. A proper 

functionalization of the embedding matrix with Pt(II) drugs or Pt(IV)/Ru(III) prodrugs  

and/or with a responsive stimulus or a targeting moiety provided species with an increased 

cytotoxicity [6–9].

A large variety of encapsulation matrices and conjugations were developed, and formulations 

exhibit a promising cytotoxicity against either multidrug resistant or platinum insensitive 

cancer cells.

2. Anticancer metallodrugs

Apart from extensive research undertaken in the field of platinum complexes, other metals 
or other therapeutic strategies have attracted attention in order to reduce the side effects, to 
mitigate the resistance, and to achieve the oral administration.

The anticancer metallodrugs known at this time belong to three main classes:

• anticancer therapeutics

• therapeutic radiopharmaceuticals

• photochemotherapeutic metallodrugs [10].
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Numerous chemotherapeutic metallodrugs developed in the last 4 decades are based on a large 

variety of metals: Pt, Ru, Au, Sn, Al, Ga, In, Ti [11–16]. Among the metal-based compounds, 

complexes of platinum (Pt(II) and Pt(IV)), ruthenium (Ru(II) and Ru(III)), gold (Au(I) and 

Au(III)), and titanium (Ti(IV)) are the most studied [13].

Therapeutic radiopharmaceuticals include a β-emitting radionuclide (89Sr, 90Y, 153Sm, 213Bi) or a 

α-emitting radionuclide (223Ra). In general, α- and β-(electrons) emitters are used in radio-

therapy, while β+ (positrons) and γ-emitters are used in radiodiagnosis [14].

Utilization of photochemotherapeutic metallodrugs is based on the photodynamic therapy (PDT). 

In PDT, a photosensitizing agent is delivered in tumor cells, which are activated with light, 

generating cytotoxic singlet oxygen. Starting to observation that Photofrin, a haematopor-

phyrin derivative is a strong chelator, forming a complex with ZnII in vivo, some photochemo-

therapeutic metallodrugs have been developed [15].

The main platinum-based anticancer drugs currently used in clinic are presented in 

Table 1, while the emerging platinum- and ruthenium-based anticancer agents are listed 

in Table 2.

Metal Compound Indications Commercial names

Chemotherapeutic metallodrugs

Pt Cisplatin

(cis-diamminedichloroplatinum (II))

Pt

Cl

Cl

H3N

H3N

Testicular, ovarian 

and colorectal cancer

Cisplatin

Platosin

Sinplatin

Platinol

Carboplatin

(cis-diammine (1,1-cyclobutanedicarboxylatoplatinum (II))

Pt

O

O

H3N

H3N

O

O

Carboplatin

Paraplatin

Oxaliplatin

((1R, 2R)-(N, N'-1,2 diamminecyclohexan)-(O-O')-

etandioatoplatinum (II)

Pt

O

O

H2

N

N

H2

O

O

Oxaliplatin

Eloxatin

Table 1. Platinum-based anticancer drugs currently used in clinic.
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3. Platinum-based drugs nanoformulations

The clinical use of cisplatin and its analogs evidenced pharmacological deficiencies such as 
poor water solubility, low bioavailability, and short circulating time, besides toxicity and 

resistance. Moreover, a few types of cancers are sensitive to platinum-based drugs treatment.

Metal Compound Uses/Comments

Chemotherapeutic metallodrugs

Pt PtIV: Satraplatin (JM 216)

O

Pt
NH3

N

H2

Cl

Cl

OO

O

PtII: BBR3464

H2

NH3

H2

N

N

H2

H3N

Pt

N

Cl

H3N

NH3
Pt

Pt

N

H3N

NH3

Cl

H2

Satraplatin: first orally bioavailable 
platinum drug; extended activity 

spectrum; reduced resistance.

Investigated in phase III clinical 

trials for hormone-refractory 

prostate cancer [14].

This compound are not only 

multinuclear but also polycationic, 

breaking the traditional design rules 

of platinum complexes.

Has undergone phase II clinical 

trials for metastatic small cell lung 

cancer [15].

Ru RuIII: [H
2
im][trans-RuCl

4
(DMSO-S)(Him)] NAMI-A

Imidazolium trans-[tetrachloro (dimethylsulfoxide) (imidazole) 

ruthenate(III)] (a); 

RuIII: [H
2
ind][trans-RuCl

4
(Hind)

2
] KP1019

Indazolium trans-[tetrachlorobis(1Hindazole) ruthenate(III)] (b)

N

N

Ru
Cl

Cl

Cl

Cl

S
O

CH3

CH3

H

N

NH

H

H
N
N

Cl

Cl

Cl

Cl
Ru

N
N

HH

N
NH

(a) (b)

NAMI-A (Ru) in combination with 

gemcitabine as antimetastatic agent 

accomplished phase I/II [16]

KP1019 antimetastatic agent; 

completed phase I clinical trials [16]

Table 2. Platinum and ruthenium-based anticancer drugs subjected to clinical trials.
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Therefore, in the last decades, the researches were focused in designing drug delivery sys-

tems that are able to overcome these issues, but with preserving or even enhancing the drug 

efficacy. A brief overview concerning nanoscale drug delivery systems based on worldwide 
approved platinum-based cytostatic drugs cisplatin, carboplatin, and oxaliplatin is presented 

with focus on systems that advanced in clinical trials or exhibited promising pharmacological 

profile in vitro or in vivo preclinical assays.

3.1. Cisplatin-based nanoformulations

Cisplatin was the pioneering metallodrug introduced for the cancer treatment with the best 

result obtained in testicular cancer cure, for which a rate of 90% survival was achieved.

An impressive work was directed in the last time to overcome the severe side effects and 
intrinsic or acquired resistance by its inclusion in a proper matrix. This approach provided 

a way to extend its curative effect to other types of cancer proved so far to be insensitive to 
platinum-based drugs alone or in combination with other organic antineoplastic drugs. Its 

encapsulation into liposomes or polymeric species seems to provide the most promising for-

mulations so far, since some of these formulations are currently in clinical trials.

Many formulations were developed by cisplatin encapsulation in the aqueous core of lipo-

somes, with differences that consist in the composition of lipid bilayer, platinum content, and 
release profile. These attempts to incorporate cisplatin into liposomes were limited by its low 
both hydrophilicity and lipophilicity that resulted in a very low drug-lipid ratio and unstable 

systems, especially when injected into the blood stream [6–9].

In order to increase the liposomes stability, these systems were coated with a biocompatible 

hydrophilic polymer such as polyethylene glycol (PEG). Among these, lipoplatin was devel-

oped by cisplatin incorporation in a mixture of lipids from vegetable and animal sources, 

some being PEGylated [17]. An optimum pharmacological profile was observed in phase I 
clinical trial and significant improvements in patients with acquired resistance in phase II, in 
combination with gemcitabine, advanced this formulation in phase III clinical trials for both 

nonsmall-cell lung and pancreatic carcinoma [18]. Moreover, a preclinical study evidenced 

the potential of lipoplatin for cisplatin-resistant cervical cancer treatment [19].

A modest pharmacological profile was evidenced in clinical trials for a similar formulation 
SPI-77 as a result of low amount of cisplatin released [20, 21], while for LiPlaCis, a significant 
renal nephrotoxicity and infusion reactions were observed during phase I clinical trial [22].

As a result, the studies were directed to increase the amount of platinum species embedded 

either by using negatively charged phospholipids to entrap electrostatic [Pt(NH
3
)

2
(H

2
O)

2
]2+ 

species or by lipid bilayer functionalization and conjugation with platinum(II) or platinum(IV) 

species [7]. In this respect, some formulations with a high loading capacity were developed 

by cis-Pt(NH
3
)

2
and cis-Pt(NH

3
)

2
Cl moieties coordinated to carboxylate groups of lipids, and 

some exhibited a significant antitumor activity both in vitro and in vivo assays [23, 24].

Moreover, systems with a pendant group having selectivity for an overexpressed receptor in 

the cancer cells have been exploited to enhance the platinum species accumulation through 

receptor-mediated endocytosis. Such liposomal system targeting epidermal growth factor 

Nanoformulation as a Tool for Improve the Pharmacological Profile of Platinum and Ruthenium Anticancer Drugs
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receptor (EGFR)-expressing tumors was developed by conjugation with sodium alginate and 

indeed exhibited enhanced delivery ability into ovarian tumor tissues and a reduced nephro-

toxicity in mice [25].

A variety of polymeric formulations designed as micelle, hydrogels, nanoparticles, and nano-

capsules were also studied as cisplatin carrier. The noncovalent encapsulation provided sys-

tems with similar or even lower efficacy in comparison with free cisplatin and as a result 
polymer conjugates were developed by Pt(II) or Pt(IV) species in reversible coordination to a 

functional group from the polymer backbone or its branches [6–9, 26].

Among these, nanoplatin (NC-6004) was obtained as micellar formulation by cisplatin 

entrapping in the core of polyethylene glycol-poly(glutamic acid) copolymer. The in vitro and 

in vivo preclinical assays evidenced a complete tumor regression as well as a low  nephrotoxicity 

and neurotoxicity in C26 murine colon carcinoma cell [27]. The phase I trial evidenced a bet-

ter tolerability and reduced side effects in comparison with cisplatin [28] and thus advanced 

nanoplatin in phase II trials for nonsmall-cell lung cancer, bladder cancer, and bile duct can-

cer, respectively [8].

The conjugated polymer (AP5280) was developed as nanoparticles by N-(2-hydroxypropyl) 

methacrylamide copolymer conjugation by cis-Pt(NH
3
)

2
 moiety to the peptidyl side chains 

(Gly-Phe-Leu-Gly) ended with amidomalonate group. This formulation exhibited an 

increased cytotoxicity in murine tumor models [29] and, moreover, evidenced reduced side 

effects in a phase I clinical trial conducted by intravenous infusion administration [30].

The conjugate designed by cis-Pt(NH
3
)

2
 moiety coordination to polyethylene glycol branched 

with citric acid exhibited an enhanced cytotoxicity in both sensitive and resistant HT1080 

human fibro sarcoma cells, CT26 fibroblasts, and SKOV3 human ovarian cells [31], while 

another one based on poly(ethylene glycol)-poly(acrylic acid) copolymer and encapsulated 

in calcium phosphate evidenced its cytotoxicity against a lung cancer cisplatin-resistant cell 

line [32].

A good antitumor activity was also achieved by cis-Pt(NH
3
)

2
 moiety coordination to the 

carboxyl groups of poly(γ,L-glutamic acid)-based polymer [33], while by conjugation with 

polyamidoamines dendrimers developed nanocarriers that inhibit the subcutaneous B16F10 

murine melanoma, a cisplatin insensitive tumor [34].

On the other hand, the conjugation and/or encapsulation of an organic cytostatic or a sensi-

tive trigger together with platinum species were exploited to enhance the cytotoxicity of these 

formulations.

As a result, micellar carriers developed by poly(ethyleneglycol)-b-poly(L-glutamic acid)-b-

poly(L-phenylalanine) tri-block copolymer conjugation with paclitaxel- and cisplatin-derived 

moieties exhibited an enhanced activity against A549 human lung tumor cells both in vitro 

and in vivo [35], while conjugates of both paclitaxel and cis,cis,trans-[Pt(NH
3
)

2
Cl

2
(OH)(HSucc)] 

(H
2
Succ: succinic acid) (Figure 1a) prodrug with poly(ethylene glycol)-b-poly(ε-caprolactone)-

b-poly(l-lysine) tri-block amphiphilic biodegradable copolymer exhibited an enhanced effi-

cacy in U14 cervical tumor line xenograft in mice as a result of the synergistic effect [36].

Descriptive Inorganic Chemistry Researches of Metal Compounds6



A combination of doxorubicin- and peptide-modified with cis-Pt(NH
3
)

2
 moiety loaded in 

positively charged mucoadhesive chitosan-polymethacrylic acid-based nanocapsules demon-

strated an enhanced cytotoxicity against UMUC3 human urothelial carcinoma cell line [37]. 

Likewise, glutathione-sensitive micelles based on carboxymethyl chitosan crosslinked with 

3,3′-dithiobis-N-hydroxysuccinimidyl propionate modified with folic acid exhibited synergis-

tic cisplatin-doxorubicin effect against HeLa tumor cell line [38].

Another co-delivery system was developed by self-assembly of the anionic polyglutamic poly-

mer cis-Pt(NH
3
)

2
 conjugated with an cationic metformin polymer. This formulation suppressed 

tumor growth for H460 human NSCLC xenografts in mice by a synergistic effect related to 
protein kinase α pathway activation and mammalian target rapamycin inhibition [39].

In order to achieve a high selectivity in targeting tumor cells, peptide and glycoside residues were 

inserted in the polymer backbone as groups that can be specifically recognized by the tumor tissue. 
This strategy resulted in thermosensitive nanoparticles obtained by cisplatin and indocyanine green 

loading in a complex matrix of poly(lactic-co-glycolic acid) copolymer and lipids functionalised with 

Gly-Cys-Gly-Ala-Ala-Asn-Leu heptapeptide. This formulation was designed to target MGC803 gas-

tric tumor cells that overexpress the legumain and as a result exhibited a good activity in vitro [40].

Another formulation was developed as lyophilized system by cis-Pt(NH
3
)

2
(OH

2
) moiety coor-

dination to carboxyl groups of hyaluronan, a naturally occurring glycosaminoglycan poly-

saccharide that targets tumor cells through specific interactions with CD44 receptor highly 
overexpressed in many cancers tissues. This conjugate demonstrated a suppressed cancer 

progression through intratracheal administration in Lewis lung carcinoma allografts in mice 

[41]. A platform targeting the same receptor was prepared by cisplatin incorporation in cal-

cium phosphate and then embedded in hyaluronan-chitosan cross-linked polymer shell. 

These nanoparticles demonstrated target specific delivery in A549 human lung cancer cells 
confirmed by an eightfold increase of drug efficacy [42].

Some inorganic materials such as magnetite, graphene, gold, and silica were also studied in 

order to develop proper formulations for cisplatin delivery. The attempts to obtain nanopar-

ticles based on these species have been discouraged by the low amount of cisplatin that can 

a b c

H3N
Pt

Cl

H3N Cl

OH

O
OH

O

O H3N
Pt

Cl

H3N Cl

O

O
OH

O

O

HO

O

O
O

O

ClH3N

Cl
Pt

H3N

O

O

Figure 1. Platinum (IV) complexes embedded into cisplatin based formulations: cis,cis,trans-[Pt(NH
3
)

2
Cl

2
(OH)(HSucc)] 

(a), cis,cis,trans-[Pt(NH
3
)

2
Cl

2
(HSucc)

2
] (b), and cis,cis,trans-[Pt(NH

3
)

2
Cl

2
(Bz)

2
] (c).
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be noncovalent-retained and consequently promote an early release of the active species in 

the plasma. This problem has been solved either by coating the inorganic species-cisplatin 

assembly with an organic shell or by its surface functionalization with groups that are able to 

coordinate platinum species [6–9].

Following these strategies, an enhanced therapeutic effect in A549 human lung cancer xeno-

graft model was obtained by magnetite-cisplatin assembly encapsulated in poly(vinyl  alcohol) 

and poly(acrylic acid) [43]. Another formulation designed by cis-Pt(NH
3
)

2
 conjugation and 

magnetite embedded in (methacrylic acid)-g-poly(ethylene glycol methacrylate) polymer 

exhibited an enhanced anticancer efficacy in cisplatin-resistant HT-29 human colon adenocar-

cinoma model, particularly when a magnetic field gradient was applied at the tumor site [44].

An improved antitumor effect was also obtained either for gold nanoparticles PEGylated and 
cis,cis,trans-[Pt(NH

3
)

2
Cl

2
(HSucc)

2
] (Figure 1b) conjugated [45] or for that functionalized with 

oligonucleotide and cis,cis,trans-[Pt(NH
3
)

2
Cl

2
(OH)(HSucc))] conjugated [46]. It is to be pointed 

the higher cytotoxicity against cisplatin-resistant line exhibited by such formulations.

Nanoparticles developed by cis-Pt(NH
3
)

2
(OH) moiety coordination to functionalized mesopo-

rous silica exhibited also an enhanced cytotoxicity on HT-29 colon cancer cell line [47].

Concerning graphene-based materials, a cisplatin nanotube conjugate modified with  epidermal 
growth factor (EGF) proved an enhanced activity against EGF overexpressing head and neck 

 squamous carcinoma cells [48], while functionalized multi-walled carbon nanotubes (MWCNTs) 

conjugated with cis,cis,trans-[Pt(NH
3
)

2
Cl

2
(Bz)

2
] (HBz: benzoyc acid) (Figure 1c) exhibited a 

selective accumulation in mice lungs [49].

Some hybrid materials based on coordination polymers were also developed as cisplatin car-

riers. Such supramolecular assembly was developed by [Tb
2
{Pt(NH

3
)

2
Cl

2
(Succ)

2
}

3
]

n
 encapsula-

tion in amorphous silica (Figure 2) as cytotoxic agent against HT-29 human colon carcinoma 

cell line [50].

Another platform was designed by hetero-metallic coordination polymer [Zn
2
{Pt(NH

3
)

2
Cl

2
(Ncp)

2
}]

n
 

(Ncp: N-carbamoyl phosphate) embedding in an asymmetric lipid layer modified with polyeth-

ylene glycol. This assembly, with a high amount of cisplatin incorporated, exhibited an 

NH3
Pt

Cl

NH3

Cl
O

O

O

O

O

Tb

O

O

O

O

O

O
O

O

ClH3N

Cl
Pt

H3N

Tb

O

Tb

O

O

Figure 2. Hybrid nanoformulation developed by [Tb
2
{Pt(NH

3
)

2
Cl

2
(Succ)

2
}

3
] encapsulation.
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enhanced efficacy in comparison with free cisplatin in H460 human nonsmall cell lung cancer 
and AsPC-1 human pancreatic cancer xenograft in mice [51].

A carrier system based on the same hetero-metallic coordination polymer and pyrolipid 

as photosensitizer exhibited a synergistic effect in cisplatin-resistant human head and neck 
cancer SQ20B xenograft in mice [52], while another formulation with small interfering RNA 

(siRNA) in addition and coated with a cationic lipid layer exhibited cytotoxicity both in vitro 

and in vivo against SKOV-3cisplatin-resistant ovarian cancer [53].

On the other hand, polysilsesquioxane-based hybrid nanomaterials developed by cis,cis,trans-

[Pt(NH
3
)

2
Cl

2
(HptsSucc)

2
] (H

2
ptsSucc: propyltriethoxysilane succinic acid) polymerization 

(Figure 3) and coated with polyethylene glycol demonstrated an enhanced efficacy in combina-

tion with radiotherapy against A549 and H460 human lung cancer cells xenograft in mice [54].

These formulations can be internalized into the cancer tissues through passive or active trans-

port. The passive transport is based on the ability of nanosystems to accumulate better in 
tumor tissue as a result of its increased permeability and poor lymphatic clearance, phenom-

enon known as enhanced permeability and retention (EPR) effect [55]. Moreover, the intra-

tumoral nanoparticles content can be enhanced through an active transport facilitated by an 

overexpressed receptor.

Upon endo- or phagocytosis, the platinum species release is triggered in cytosol or other cellu-

lar compartments by several processes that can be acid, redox, and/or enzymatic assisted. For 

conjugated formulations, the cisplatin structure is restored either by reaction of Pt(II) species 

with chloride anions or by Pt(IV) species reduction with glutathione or ascorbic acid [6–9].

O

O

O

OH

HO

O

O

O

ClH3N

Cl
Pt

H3N

Si
O

O

Si

O

O

O

O

O

O

Si

O

O
O
Si

H3N
Pt

Cl

H3N Cl

O

O

O

HO

OH

O

O

O

Figure 3. Hybrid nanoformulation developed by cis,cis,trans-[Pt(NH
3
)

2
Cl

2
(HptsSucc)

2
] polymerization.
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3.2. Carboplatin-based nanoformulations

The structural difference between cisplatin and carboplatin consists in replacing the chlo-

ride leaving groups by 1,1-ciclobutandicarboxylate as chelate ligand. Although carboplatin is 

often preferred over cisplatin in cancer therapy based on a lower nephrotoxicity, this exhibits 

a limited therapeutic efficacy related to its reduced uptake by the tumor cells. Moreover, the 
treatment induces myelosuppression and cross-resistance [14].

As a result, few studies were concerned on developing carboplatin-based formulations. 

Based on experience accumulated in cisplatin-based formulation development, carboplatin 

was embedded through noncovalent interactions especially in polymeric or hybrid materi-

als, some proper functionalized in order to achieve either a targeted delivery or an enhanced 

efficacy, especially against multidrug resistant cancer cell lines.

Such a polymeric formulation was developed by loading in poly(D-L-lactide-co-glycolide) 

polymer. This nanocarrier exhibited an enhanced cellular uptake in both A549 lung and 

MA148 ovarian tumor cells [56], while that based on poly(ε-caprolactone) was also effi-

cient uptakes and displayed a significant cytotoxicity in U-87 human glioma cell line, with-

out inducing haemolysis [57]. Moreover, carboplatin-loaded apotransferrin and lactoferrin 

nanoparticles with high encapsulation efficacy exhibited a significantly cellular uptake and 
sustained intracellular drug retention in retinoblastoma cells [58], while a chitosan-based for-

mulation demonstrated an enhanced antiproliferative effect against MCF-7 breast cancer cell 
line [59].

The hybrid materials were also studied in order to improve the pharmacological profile of car-

boplatin. Such supramolecular assembly based on multiple functionalizations of MWCNTs 

with amino groups resulted in a dramatic decrease of the MDA-MB-231 human mammary 

adenocarcinoma derived epithelial cells viability, which was related to superoxide anions 

production. This study also evidenced that expression of some proteins was inhibited, while 

the Beclin1 was overexpressed. As a result, most probably this system triggers the cell death 

through autophagy [60]. Another nanohybrid formulation developed by carboplatin loading 

in the nanographene oxide-gelatine material exhibited an enhanced efficacy in IMR-32 human 
neuroblastoma cell line [61].

3.3. Oxaliplatin-based nanoformulations

Oxaliplatin was introduced as first-line chemotherapeutic for the treatment of advanced 
colorectal cancer based on a different antineoplastic spectrum in comparison with cispla-

tin. However, the peripheral neuropathy and a moderate myelotoxicity in cumulative dose 

dependence were observed in many patients [62].

As a result, the attempts to improve its pharmacological profile and reduce the side effects 
resulted in several valuable formulations for this antineoplastic drug. Similar with cisplatin, 

a variety of organic, inorganic, and hybrid materials were studied for embedding either the 

original species [Pt(dach)(C
2
O

4
)] (dach: (1R,2R)-1,2-diaminocyclohexane) or another Pt(II) or 

Pt(IV) complex bearing dach as chelate ligand.

Descriptive Inorganic Chemistry Researches of Metal Compounds10



Among these, lipoxal developed as liposomal PEGylated formulation exhibited an acceptable 

pharmacological profile in a phase I clinical study for advanced gastrointestinal cancer [63]. 

By this formulation injected directly in F98 glioma implanted in rats, a reduced toxicity with 

preservation of the antitumor potential of oxaliplatin was achieved as well [64].

Similar with cisplatin, the efficacy of oxaliplatin-based formulation has been improved by 
surface of the liposomes modification with moieties that are able to assure either a specific 
targeting or a rapid release after the internalization of delivery system in tumor tissue.

These strategies resulted in developing a transferrin target sensitive liposomal formulation, 

which demonstrated increased tumor suppression in C-26 colon cancer cell line xenograft 

in mice as a result of transferrin receptor overexpression in this line [65]. This transferrin-

targeted liposomal formulation is currently under phase II clinical investigation for the treat-

ment of gastric cancer and gastroesophageal junction cancer [66].

By oxaliplatin encapsulation in PEGylated cationic liposomes, a formulation with a selective 

delivery in tumor vasculature was developed. The assays evidenced a complete suppress-

ing tumor-induced angiogenesis and antitumor efficacy in mouse dorsal air sac as a result 
of dual-targeting both tumor cells and its vascular endothelial structure [67]. Moreover, the 

efficacy of this assembly can be improved by a sequential administration of oxaliplatin con-

taining PEG-coated cationic liposomes [68].

Several oxaliplatin-based polymeric systems were also developed in order to enhance its 

cytotoxicity. Such oxaliplatin containing micelles (NC4016), in addition, proved the ability 

to overcome the oxaliplatin resistance in vivo are currently in clinical trials in patients with 

advanced solid tumors or lymphoma [69].

Another micellar formulation was developed by [Pt
2
(dach)

2
(dah)

2
](NO

3
)

2
 (dah: 1,2-diamino-

hexane) complex (Figure 4a) embedding into methoxylpoly(ethylene glycol)-b-poly(lactide-

co-2-methyl-2-carboxylpropylene carbonate) (mPEG-b-P(LA-co-MCC)) copolymer. This pH 

sensitive assembly exhibited a significant cytotoxicity against H22 liver cancer cell line xeno-

graft in mice [70].

The polymeric systems were exploited not only to enhance the drug cytotoxicity through 

conjugation with Pt(dach) moieties, but for a combined delivery as well.

a b

H2
N

Pt

N

H2

Cl

H2
N

H2
N

Pt

H2
N

N

H2

Cl

6 (NO3)2

H2
N

Pt
O

N

H2

O

OH

O
OH

O

O

O

O

Figure 4. Platinum (IV) complexes embedded into oxaliplatin based formulations: [Pt
2
(dach)

2
(dah)

2
](NO

3
)

2
 (a), and 

[Pt(dach)(C
2
O

4
)(OH)(HSucc)] (b).
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In this respect, micelles based on poly(ethylene glycol)-b-poly(glutamic acid) copolymer 

conjugated with Pt(dach) moiety demonstrated a potent tumor growth inhibition after an 

intraperitoneal injection in HeLa tumor cell xenograft in mice [71], while a similar micellar 

formulation inhibited the tumor growth in OCUM-2MLN scirrhous gastric cancer cell line 

and their lymphatic metastases in mice [72].

The polymer conjugate AP5346 was developed by Pt(dach) moiety coordination to the 

 pH-sensitive amidomalonato chelating group from a N-(2-hydroxypropyl) methacrylamide-

based copolymer structure. This conjugate exhibited an improved cytotoxicity in comparison 

with oxaliplatin in some colon tumor cell line xenograft in mice [73]. Based on pharmacologi-

cal profile observed in patients with advanced solid tumors in phase I trial [69], this formula-

tion advanced in phase II trial in recurrent ovarian cancer was initiated, but the results are so 

far disappointing [73].

Hybrid micelles containing mPEG-b-P(LA-co-MCC) copolymer conjugated with both Pt(dach) 

moiety and gemcitabine showed a low systemic toxicity and a synergic efficacy against MCF7 
human breast cancer cell line xenograft in mice [74], while a similar system based on this copo-

lymer conjugates with both [Pt(dach)(C
2
O

4
)(OH)(HSucc)] (Figure 4b) and daunorubicin showed 

reduced systemic toxicity and a synergistic effect in H22 hepatocarcinoma xenograft in mice [75].

In order to enhance the concentration of active species released in tumor tissue through a 

targeted delivery, some oxaliplatin-based polymer formulations were functionalized with 

glycoside residues and antibodies. Such polymeric nanoparticles were designed by carbopla-

tin embedding in the supramolecular assembly of chitosan conjugated with hyaluronan and 

additionally coated with Eudragit S100. The oral administration of this formulation resulted 

in an enhanced activity in HT-29 cell line xenograft in mice [76].

Nanoparticles with a high amount of oxaliplatin embedded in a hybrid material consisting 

in a polymeric chitosan layer [77, 78] and a mixture of phospholipids conjugated with a thio-

lated antibody for tumour necrosis factor induced protein were developed as well [77]. Such 

formulations exhibited an increased cytotoxicity in comparison with oxaliplatin in HT-29 [77] 

and MCF7 cell lines [78].

Moreover, the functionalization allowed extending the cytotoxic effect to oxaliplatin insensi-
tive tumors such as breast and gastric cancer. Thus, a pH-responsive nanocarrier was con-

structed by Pt(dach) moiety conjugation in citrate cross-linked chitosan matrix. The enhanced 

cytotoxicity of these nanoparticles in MCF-7 human breast cancer cell line was related to 

apoptosis induced in a caspase-dependent manner [67]. The nanogel system developed by 

embedding oxaliplatin in hydroxypropylcellulose-poly(acrylic acid) exhibited cytotoxicity 

against BGC823 human gastric cancer cell line [79].

Several systems based on hybrid materials were also developed for achieving an oxaliplatin 

enhanced delivery. Among these, superparamagnetic iron oxide nanoparticles encapsulated 

in pectin Ca2+ cross-linked exhibited 10-fold enhanced cytoxicity in comparison with free drug 

in MIA-PaCa-2 pancreas cancer cell line [80].

Another formulation developed by oxaliplatin incorporation into the inner cavity of PEGylated 

MWCNTs demonstrated a significantly improved cytotoxicity against HT-29 colorectal cell 
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line [81], while similar nanocomposites additionally decorated with magnetite exhibited anti-

tumor effect and low toxicity in HCT116 human colon cancer cell line xenograft in mice [82].

Naked gold nanoparticles functionalized with a thiolated poly(ethylene glycol) monolayer capped 

with a carboxylate group and conjugated with [Pt(dach)(H
2
O)

2
](NO

3
)

2
 yielded a supramolecu-

lar complex with about 280 Pt(dach) moieties per nanoparticle. This formulation  demonstrated a 

similar or significant enhanced cytotoxicity in comparison with free oxaliplatin in A549 lung epithe-

lial cancer cell line and HCT116, HCT15, HT29, and RKO colon cancer cell lines. Moreover, an 

unusual ability to penetrate the nucleus in the lung cancer cells was observed in these assays [83].

Mesoporous silica nanoparticles functionalised with carboxyl groups and conjugated with 

Pt(dach) moiety were also obtained with an improved cytotoxicity against HepG-2 human 

liver cell line [84].

Data concerning a platform constructed by [Zn
2
{Pt(dach)Cl

2
(Ncp)

2
}]

n
 hetero-metallic coordi-

nation polymer conjugation to an asymmetric lipid bilayer modified with polyethylene glycol 
(Figure 5) were reported. This assembly with a high amount of platinum species  incorporated 

exhibited cytotoxicity in H460 human nonsmall cell lung and AsPC-1 human pancreatic  cancer 

cell lines xenograft in mice [53].

Hybrid nanoparticles were also obtained by [Pt(dach)Cl
2
(triethoxysilylpropylsuccinate)

2
] 

base-catalyzed sol-gel polymerization similar to cisplatin derivative. Moreover, the silanol 

and carboxyl groups were functionalised with cyclic arginine-glycine-aspartate peptide and 

anisamide and then the surface was PEGylated. The cytotoxicity assay clearly indicated an 

increased uptake of this assembly by DLD-1 and HT-29 human adenocarcinoma cancer cells 

through integrin receptor and by AsPC-1 human pancreatic cancer cells through sigma receptor 

together with the tumor growth inhibition efficacy in pancreatic cancer xenograft in mice [85].
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4. Ruthenium (III)-based drugs nanoformulations

The studies regarding ruthenium complexes as anticancer agents were developed as an alter-

native of platinum complexes, especially for their reduced toxicity, large spectrum of activi-

ties (including against cisplatin-resistant tumors) and selectivity [86–88]. Among the various 

compounds of ruthenium investigated for their anticancer activity, two are in phase II clinical 

trials, namely NAMI-A (Table 2) as antimetastatic agent and KP1019 (Table 2) as antitumor 

for primary tumor site [89–93].

Both are pseudo-octahedral complexes having four chloride ions in the equatorial plane. The 

axial ligands are imidazole and DMSO molecules in NAMI-A complex, while for KP1019 are 

two indazole molecules. Both complexes undergo hydrolysis in aqueous solutions (chloride ions 

being replaced by water and/or hydroxide ions) and interact with biological reductants leading to 

ruthenium (II) species. These two processes seem to provide the active species in the body [94–96].

In order to improve the stability in aqueous systems, especially at physiological pH, and the delivery 

of drugs to the solid tumors, various drug delivery carriers have been designed and investigated. 

Two major ways were followed namely chemical conjugation and physical encapsulation [97].

4.1. Physical encapsulation of ruthenium-based drugs

Physical encapsulation is based on the capacity of carriers to retain the drug by physical 

bonds in a matrix. Different solid nanoparticles were used in order to encapsulate ruthenium 
complexes [97] such as poly(lactic acid) [98], mesoporous silica nanoparticles [99], or metal-

organic frameworks [100]. The promising ruthenium (III) drug KP1019 was co-precipitated 

with poly(lactic acid) in a single oil-in-water emulsion with two different surfactants [98]. The 

obtained nanoparticles have an improved cytotoxicity comparing with KP1019.

4.2. Chemical conjugation of ruthenium-based drugs

4.2.1. Polymer conjugates

The main idea of this approach is to obtain a polymer, which contains a moiety that can act as 

ligand for ruthenium. In case of NAMI-A, this moiety can be an imidazole group. Thus, the 

Stenzel group [101] reports the polymerization of 4-vinil imidazole followed by addition of 

adequate ruthenium precursor complex. They obtained an amphiphilic co-polymer capable 

of self-assembly into micelles (Figure 6).

The tests on ovarian and pancreatic cancer cells revealed a 1.5 times increased cytotoxicity for 

polymeric micelles. Furthermore, these were tested for antimetastatic activity on breast cancer 

cells proving a higher activity comparing to NAMI-A complex.

4.2.2. Lipid base conjutates/liposomes

The Paduano group focused on developing drug carriers for NANI-A analog, named AZIRu 

(Figure 7) [102–108] and investigating their anticancer activity. Unlike NAMI-A, AZIRu con-

tains a pyridine ligand instead of imidazole and sodium as counterion.
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New amphiphilic derivatives of nucleosides have been developed in order to act as drug car-

riers for AZIRu complex. In detail, a nucleobase (thymidine or uridine), which was attached 
with a pyrimidilmethyl group at the N-3 position (in order to act as ligand for ruthenium) 

was selected as starting material. The resulted compounds were further bonded to one or 

two lipid residues (oleoyl or cholesteroxyacetyl) and one hydrophilic oligo(ethylene glycol) 
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chain of variable lengths. There were thus obtained amphiphilic supramolecular aggregates, 

essentially liposomes [102–105].

The nucleolipidic compounds proved to have similar instability in aqueous systems as 

NAMI-A and AZIRu, forming insoluble precipitates in few hours. In order to reduce the 

hydrolysis processes, the nucleolipidic compounds were formulated with biocompatible 

phospholipids, POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) [103–105] and 

DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) [106, 107]. The bioactivity of these RuIII-

containing nucleolipids was tested on human and nonhuman cancer cells proving higher 

anticancer activity, higher stability in aqueous systems, and lower toxicity than AZIRu [108].

4.2.3. Dendrimers

The interest in dendrimers as drug carriers comes from their characteristics namely highly 

branched three-dimensional molecules containing functional groups at periphery, which 

can react with drug molecules. So far, only one potential anticancer ruthenium (III) drug, 

RAPTA-C, was incorporated into dendrimer (Figure 8) [109], but there is no study regarding 

the anticancer activity.

Interactions of ruthenium (II) complexes with dendrimers and the anticancer activity of the resulted 

compounds, which are described in some reviews, have also attracted much interest [110, 111].
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