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Abstract

Covariance processing of data and spectra has established itself among the computer-
based NMR spectroscopy methodologies to increase sensitivity and resolution and to
facilitate spectral analysis. While homo-correlations yield two-dimensional (2D) diago-
nally symmetric or antisymmetric spectra, hetero-covariance transformations allow to
transfer NMR chemical shift information to other spectroscopic techniques, such as near
infra-red or Raman. This is visualized as a 2D correlation map, provided a common
indirect or perturbation domain, such as time, concentration change, and pressure. Covari-
ance spectra can be generated as synchronous or asynchronous maps. The synchronous
map relates the signals of species, e.g., educts and products. The asynchronous spectrum
allows to derive the sequential order in which such species occur relative to each other.
After a theoretical introduction into covariance NMR, its application in process analytical
technology is discussed for wine fermentation, a radical polymerization reaction, a contin-
uous process ethanol production using immobilized yeast, and a Knoevenagel condensa-
tion in a microreaction system. The covariance approach is extended toward two
perturbation variables and quantitative relationships through PARAFAC kernel analysis
and is illustrated for the preparation of polylactic acid nanocomposites. The advantages
and added values of using synchronous and asynchronous spectra to gain process knowl-
edge and control are demonstrated.

Keywords: homo- and hetero-correlation spectroscopy, covariance NMR, synchronous
and asynchronous spectra, process analytical technology, Raman spectroscopy

1. Introduction

Striving for enhanced sensitivity, specificity, and resolution NMR spectroscopy traditionally

turned to creating stronger magnets, thus higher magnetic field strengths. The implementation

of pulsed-field gradients and the development of cryogenically cooled probes contributed
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further to increasing instrumental sensitivity. In recent years, vivid interest was paid to so-

called fast NMR methods for taking another step in ameliorating the signal-to-noise ratio. Fast

methods followed several approaches. These consisted of pulse-sequence-based methods, such

as time-shared experiments, hardware oriented strategies, such as parallel acquisition and

detection, and the combination of two or more NMR experiments into one pulse sequence.

They all aimed at optimization to take advantage of a given experimental timeframe. Not only

the long-time used spectral acquisition schemes were re-evaluated, the spectral processing

procedure was also equally subjected to re-investigation. As a consequence, the so-far

untouched Fourier Transformation (FT), being at the heart of multi-dimensional NMR spec-

troscopy, was challenged. Statistic data treatment turned out to transform experimentally

acquired data into spectra evenly well. Covariance transformations were applied to raw data

sets as well as pre-processed data. Covariance NMR and covariance processing methods have

been recently reviewed in great detail [1–7]. Due to the purely mathematical nature, the

computer power and the algorithms applied determine the speed with which covariance

spectra can be obtained. The experimentally acquired data determine the sensitivity observed

in the covariance spectrum [8].

Beyond NMR, covariance transformations have been known to be of a very general nature

according to Eq. (1) [9, 10]. The potential of generalized covariance processing was soon

recognized, thus allowing traditional one-dimensional (1D) spectroscopic techniques such as

infra-red (IR) and Raman spectroscopy to yield two-dimensional (2D) spectra [11, 12]. To fully

exploit Eq. (1), data matrices of two distinct spectroscopic techniques, such as NMR and IR,

were transformed to yield a two-dimensional IR-NMR spectrum, and the technique was

baptized hetero-spectroscopy [13, 14]. As a prerequisite for its application, the spectra need to

possess a common dimension prior to transformation, e.g., reaction time or change in sample

pressure, called the perturbation dimension. The technique proved not only suitable for the

transformation of heterogeneous data arrays or spectra but also helpful to visualize valuable

information via correlation signals and their phases [12, 15]. Correlation signals indicated

spectral constituents that share a common fate. The phases reflect simultaneous or asynchro-

nous increase or decrease of the spectral constituents.

In this report, covariance NMR spectroscopy, in particular correlation and hetero-covariance

NMR, shall be described in theory and practice for the investigation of chemical reactions and

batch characterization. Illustrative examples shall be given how NMR spectroscopy can help

attribute and distinguish signals from different spectroscopic techniques that provide lower

spectral resolution or ambiguity for the assignment. In this respect, contributions of correlation

spectroscopy, homo- and hetero-covariance NMR spectroscopy to the field of Process Analyt-

ical Technologies (PAT), shall be reported.

2. The concept of homo- and hetero-covariance spectroscopy

Covariance stems from statistical mathematics. Variances represent the deviation from the

mean of a series of data. The covariance C in matrix form according to Eq. (1) is understood
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as the difference between the correlated and the uncorrelated products of a series of

data [9, 10, 16].

Cðx, yÞ ¼ 〈ðx� 〈x〉Þðy� 〈y〉Þ〉 ¼ 〈xy〉 � 〈x〉〈y〉 ð1Þ

where 〈x〉 and 〈y〉 are the mean values, and 〈 〉 represents any type of correlation function.

Let x and y in Eq. (1) be spectroscopic data series and be arranged such that S represents a

spectrum of N1 data points, and the elements Cij of the covariance matrix or covariance map C

are calculated in Eq. (2) as follows:

Cij ¼
1

N1 � 1

XN1

k¼1

�

Sðk, iÞ � 〈SðiÞ〉
��

Sðk, jÞ � 〈SðjÞ〉
�

ð2Þ

〈SðiÞ〉 ¼
1

N1

XN1

k¼1
Sðk, iÞ ð3Þ

where the average spectrum is defined as 〈S(i)〉 in Eq. (3). Substitution of i by j defines 〈S(j)〉

analogously. In mathematical contexts, Eqs. (1) and (2) are common. For spectroscopy, the

symbols for time and frequency, t and ν or ω, are more often used. Applying Parseval´s

theorem (4) to Eqs. (1) and (2), the covariance matrix can be expressed by Eq. (5).

ð

∞

�∞

f ðtÞg�ðtÞdt ¼
1

2π

ð

∞

�∞

FðωÞG�ðωÞdω ð4Þ

The two data sets denoted either s, S, Φ, or Ψ in Eq. (5) consist of mixed time-frequency data

before and frequency-frequency data after transformation. They also share a common indirect

dimension. The latter can be interpreted in terms of a perturbation, and the dimension is hence

called perturbation dimension [9].

Cðω2,A,ω2,BÞ ¼ 〈sðtinc,ω2,AÞ � sðtinc,ω2,BÞ〉

¼
1

2πðTmax � TminÞ

ð

∞

�∞

Sðωinc,ω2,AÞ � S
�ðωinc,ω2,BÞdωinc

¼ Φðω2,A,ω2,BÞ þ iΨðω2,A,ω2,BÞ

ð5Þ

The index inc refers to the second or indirect spectral dimension. In a typical experiment, this

dimension is recorded as discrete time intervals between a maximum limit Tmax and a minimum

limit Tmin. The direct dimension may stem from two different data sets, A 6¼ B, or from the same

data set, A = B. In the latter case, the data sets are transposed with respect to each other.

The spectra or maps Φ and Ψ are defined according to Eqs. (6) and (7).

Фðω2,A,ω2,BÞ ¼
1

Tmax � Tmin

ðTmin

Tmax

sðtinc,ω2,AÞ � sðtinc,ω2,BÞdtinc ð6Þ

Ψðω2,A,ω2,BÞ ¼
1

Tmax � Tmin

ðTmin

Tmax

sðtinc,ω2,AÞ � h � sðtinc,ω2,BÞdtinc ð7Þ
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where h is the Noda-Hilbert transform [15]. The reader is also referred to Eqs. (17) and (18) for

definition and matrix notation. Integration of Eqs. (6) and (7) results in Eqs. (8) and (9).

Фðω2,A,ω2,BÞ ¼ pðcosϕÞA,BAbsðω2,AÞAbsðω2,BÞ ð8Þ

Ψðω2,A,ω2,BÞ ¼ qðsinϕÞA,BAbsðω2,AÞAbsðω2,BÞ ð9Þ

Equations (8) and (9) are lengthy expressions when fully written for p and q. Yet, the phase ϕ is

readily recognized. It may be considered as an internal reference according to Eqs. (10) and

(11), which present the important parts of the complete definition for p and q.

pðcosϕÞA,B � cos ðω2,αtinc þ ϕÞ, α ¼ A, B ð10Þ

qðsinϕÞA,B � sin ðω2,αtinc þ ϕÞ, α ¼ A, B ð11Þ

The comparison of Eqs. (11) and (12), the latter being an analogous expression but obtained

after Fourier Transformation, readily reveals that an internal reference ϕ is absent in Eq. (12),

i.e., manual phase correction after FT is required in contrast to the covariance transformed

version of the spectral representation.

Sðωinc,ω2Þ ¼

ð
sðωinc,ω2Þ exp ð�iω2tincÞdtinc

¼

ð
sðtinc,ω2Þcosðωinc, tincÞdtinc

þ i

ð
sðtinc,ω2Þsinðωinc, tincÞdtinc

ð12Þ

A spectrum after FT often consists of the real part data, with the imaginary part discarded. Yet,

the phase still needs to be adjusted. The interested reader is referred to NMR textbooks and to

the recent works in the context of covariance NMR [17, 18].

Equation (13) is the general form of Eq. (3). Here, f and ω denote spectral variables, such as

frequencies, that may be recorded using any type of spectroscopy. A common perturbation

such as a time domain t relates them to each other. Nevertheless, the perturbation could also be

a series of samples, pressure, crystallization, etc.

Cðf ,ωÞ ¼ 〈s1ðf , tÞ � s2ðω, tÞ〉 ð13Þ

Spectra generated using Eq. (13) represent hetero-spectral correlation maps [14]. For pure NMR

spectroscopy, unsymmetrical indirect covariance NMR was the first type of hetero-correlation

spectroscopy, relating, e.g., 15N and 13C signals via the proton dimension, to each other [19–21].

Taken a step further, NMR and IR or NMR andmass spectrometry data were correlated to each

other [22].

The covariance matrix contains as its elements the covariance Cij, i.e., the amplitudes of

positions i and j of the 1D spectra. Rewriting Eq. (2) in matrix form yields the relationship
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between C and the spectroscopic data set S. The matrix multiplication of Swith its transpose ST

is equal to C
2, cf. Eq. (14).

C
2 ¼ S

T � S ð14Þ

The complete mathematical derivation and proofs have been accomplished by Brüschweiler

et al. and Noda et al. [16, 23, 24].

Defining S as the mixed time-frequency matrix, S(t1,ω2), the product STS is the symmetric

matrix C(ω1,ω2). A common two-dimensional NMR spectroscopic data set S often has N1 = 2 k

and N2 = 256 k data points. Hence, the resulting covariance map will be of dimensions N1 x N2

= 2 k x 2 k. This has been assumed as a projection of the direct or acquisition dimension onto

the indirect or incremented dimension. It is readily recognized that the indirect dimension is

thus substantially enlarged. Two data matrices F
T and F that have been the results of two-

dimensional Fourier transformation may also be multiplied to form the covariance spectrum

according to Eq. (15).

C
2 ¼ S

T � S ¼ F
T � F ð15Þ

The equality of transformations of the mixed time-frequency data and the completely Fourier

transformed data is a consequence of Parseval´s theorem (4) and ensures that the transforma-

tions of the mixed time-frequency data and the Fourier transformed data are equal [16, 24].

From another perspective, the spectral reconstruction can be considered as relating two direct

dimensions through an indirect dimension or perturbation, which is discarded. The physical

meaning of the indirect dimension is therefore of little importance. Thus, it relates Noda´s

model two IR wavenumber dimensions via a common perturbation, which may be time,

pressure, temperature, sample space, or many more [13]. The matrix representation form

reveals that Noda´s synchronous matrix Φ, in Eqs. (6) and (16), corresponds to the covariance

map according to Eq. (15), if mean centered spectra are the elements of the data matrices giving

Φ. The asynchronous map Ψ of Eqs. (7) and (17) corresponds to the indirect covariance

correlation spectrum. Equations (15) and (13) further extend covariance spectroscopy to

hetero-correlation spectroscopy.

Eqs. (16) and (17) finally represent the matrix notation of equations as the synchronous map or

spectrum and as the asynchronous map.

Ф ¼ X
T
� X ð16Þ

Ψ ¼ X
T
�N � X ð17Þ

where X is the matrix of mean-centered spectra and N the Noda-Hilbert orthogonalization

matrix with Nik = 0 if i = k and 1/(π(k � i)) otherwise.

Synchronous and asynchronous maps or spectra have some particular features [11]. Since

synchronous homo-correlation spectra are computed from a data matrix and its transposed

matrix, they are symmetric. They exhibit diagonal peaks, also called autopeaks, that are the
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autocorrelation functions of spectral intensity variations. They hence reflect the amount of

change the corresponding signal experiences along the perturbation dimension. Off-diagonal

signals correlate two signals changing simultaneously or coincidently under the influence of

the perturbation. When both signals increase or decrease, the sign of the crosspeak is equal to

that of the diagonal peaks. If they behave adversely, the sign is opposite. It is readily recog-

nized that the resolution of spectra can be enhanced by the spread into two dimensions.

Furthermore, the occurrence of two or more components, such as educt and product, can be

readily seen and facilitate signal assignments. An example for a synchronous spectrum is

given in Figure 1(a). As will be shown below, synchronous spectra are useful in homo- and

hetero-covariance NMR spectroscopy.

The asynchronous spectrum in general is less easily interpreted. As a consequence of the

Noda-Hilbert orthogonalization, cf. Eq. (17), no diagonal peaks are observed. The spectrum

visualizes successive or sequential changes of signal intensities, which forbids the occurrence

of autopeaks. The asynchronous map is antisymmetric with respect to the diagonal. Noda has

shown that Ψðωi, ωjÞ ¼ �Ψðωj,ωiÞ. [11]. The sign of a crosspeak is positive—positive is

defined as in phase with the diagonal peak in the corresponding synchronous spectrum—if

the intensity in dimension 1 changes predominantly before that in dimension 2 in the sequence

of the perturbation. This is valid for crosspeaks above the diagonal, i.e., ω1 > ω2. A negative

crosspeak is obtained when the order is reversed. An illustration is given in Figure 1(b). Specie

B of the example hence occurs before A, and C before D. Thorough derivations and discussions

have been accomplished previously [11].

Despite its ability to correlate non-simultaneous occurrence of signals, the asynchronous map

does not allow the analysis of population dynamics as in a two-step chemical reaction. As a

Figure 1. Schematic contour map of synchronous (a) and asynchronous (b) 2D correlation spectra. Peaks located at the

diagonal are autopeaks. The signs of the correlation peaks are indicated. The intensity changes and signs are interpreted

according to Noda’s rules [11].
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remedy to this problem, Noda devised two-dimensional codistribution spectroscopy [25].

Here, a moment analysis of spectral intensity distribution over the perturbation dimension

was included, which accounted for the sequential attribution of species within a model chem-

ical reaction A!B!C.

Out of the manifold of variations to combine raw and Fourier transformed data, a variety of

covariance-transformed spectral representations have been introduced and their applications

have been demonstrated: Among those used in NMR spectroscopy, the most often used or

described were direct covariance, indirect covariance, doubly indirect covariance, unsymmet-

rical indirect covariance, generalized indirect covariance, which replaced the previous one,

multidimensional covariance in form of Triple-Rank Covariance and 4D Covariance [2, 26–

29]. Furthermore, the family of Statistical Correlation Spectroscopy (STOCSY) has been intro-

duced, and its usefulness is demonstrated in many applications [22, 30–32].

For other spectroscopic techniques or combinations thereof, covariance spectroscopy is often

referred to as 2D correlation spectroscopy, and hetero-covariance spectroscopy is called hetero-

spectral, hetero-perturbation, and hetero-sample correlation spectroscopy [33]. Noda has fur-

ther coined the term multiple perturbation 2D correlation, where the use of the parallel factor

(PARAFAC) kernel analysis may play a key role in future spectral analysis [34–36]. As another

variant, orthogonal sample design (OSD) was introduced and applied [37–39].

Multiple perturbation 2D correlation spectroscopy has been introduced recently by Shinzawa

et al. [40, 41]. It is based on the extension of Eq. (3) yielding Eqs. (18) and (19) as follows:

〈Spðω, qÞ〉 ¼
1

P

XP

p¼1
Sðω, p, qÞ ð18Þ

~Sðω, p, qÞ ¼ Sðω, p, qÞ � 〈Spðω, qÞ〉 ð19Þ

where S is a set of spectra depending on frequency ω exposed to multiple perturbations p =

1,2,…P and q = 1,2,…Q, such as time, temperature, concentration, etc. 〈 〉 denote the average

spectrum. Partial synchronous and asynchronous correlation spectra are computed according

to Eqs. (20) and (21) in analogy to Eqs. (6) and (7).

Фpðω1,ω2, qÞ ¼
1

P� 1

Xp

p¼1
~Spðω1, p, qÞ � ~Spðω2, p, qÞ ð20Þ

Ψpðω1,ω2, qÞ ¼
1

P� 1

XP

p¼1
~Spðω1, p, qÞ � ~S

6¼

p ðω2, p, qÞ ð21Þ

where ~S
6¼

p denotes the Hilbert-Noda transformation in this case given by Eq. (22).

~S
6¼

p ðω2, p, qÞ ¼
XP

r¼1
Npr

~Spðω2, r, qÞ ð22Þ

with Npr = 0 for p = r and Npr = 1/((r � p)π) otherwise.

The PARAFAC kernel decomposes the data into scores and loading vectors. The original three-

way data array is rearranged into a two-way data array by means of the so-called Kathri-Rao
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(|⊗|) product, which implies the use of the Kronecker product⊗. The matrix decomposition is

usually achieved through solving an alternating least-squares problem iteratively. Disregard-

ing the matrix of the residuals for the minimization problem, Eq. (23) is the fundamental

matrix representation of the multiple perturbation correlation analysis.

X ¼ AðCj⊗ jBÞT ð23Þ

where X contains spectral data, A and C refer to perturbations 1 and 2, and B contains the

spectral variable. The p-synchronous and p-asynchronous kernel matrices are similar to their

analogs in Eqs. (16) and (17) but formed mean-centered and normalized score-vector matrix A.

The ij-element of the p-synchronous kernel matrix as well as of the asynchronous one assumes

values between �1 and +1, giving a similarity measure in the synchronous case and a dissim-

ilarity measure in the asynchronous case between the score vectors of the ith and jth compo-

nents. Evenly comparable, the sequential order of signal changes can be derived from the signs

of the kernel matrix elements. The signal of the ith species changes before that of the jth when

the signs of the ij-elements of the synchronous and asynchronous kernel matrix are the same.

The order is reverted if the elements possess opposite signs. Spectral analysis can be carried

out as well by performing the computation with the score matrix C instead of A. Complete

mathematical descriptions have been published by Shinzawa et al. [34, 41].

Software suitable for covariance processing has recently been reviewed as well [3, 42]. With

respect to some of the work performed in this report, we would like to direct the reader’s

attention to 2DShige. While this program is not especially dedicated to NMR spectroscopy, it is

capable of performing hetero-spectroscopic covariance transformations. The program was

devised by Morita and may be accessed for download via https://sites.google.com/site/

shigemorita/home/2dshige. Covariance transformations applied therein follow the work by

Noda. Synchronous and asynchronous maps are computed from data in CSV format.

The following section will focus on Process Analytical Technology (PAT) such that the stage

will be set for the applications of covariance processing and NMR spectroscopy to process

monitoring or process understanding.

3. A brief outline of process analytical technologies and microreaction

processes

Process analytical technologies (PAT) have grown into an integral part of industrial manufactur-

ing processes. The development of a process on a laboratory scale, the collection of data as well

as monitoring of the production process in place are directed toward a well-understood process

to ensure final product quality [43, 44].

This knowledge first enables process control and then process improvement. The envisaged

process optimization is aimed at cost reduction, sustainability, and safety. Generally, produc-

tion processes proceed on a large scale. The analytical instruments used close to the process are

robust, relatively easy to operate instruments. Only for the development or validation of the

analytical method are the dimensions of such large-scale processes reduced to laboratory
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scales. The analytical instruments yet may be of the same size but more complex and of higher

sensitivity and resolution.

Process analytical technologies often make use of spectroscopic and chromatographic as well

as of integral methods. Today, Raman spectroscopy and near IR (NIR) spectroscopy play major

roles, whereas pH, pressure, and refractivity techniques are typical non-specific methods,

inexpensive still ubiquitous, and powerful within well-controlled processes [45]. The condi-

tions of the production process often demand for greater robustness, stability, and perfor-

mance of the analytical instruments, because of the close proximity to the manufacturing line.

Process monitoring and control require prompt or real-time data recording, processing, and

feeding the data back to the process control unit. These constraints necessitate in-line, on-line,

or at least at-line analytical methods [46].

Microprocesses or microreactions are conducted in very small-scale reactors and mixing

devices equipped with tubing, pumps, and valves. The reaction set-up is composed in a Lego-

like manner, cf. Figure 2. Microdevices allow for a highly efficient heat transfer as compared to

Figure 2. Microreaction assembly with on-line low-field 1H-NMR spectrometer (bottom); process flow chart of the set-up

of the microprocess analytics (top left): (1) storage vessel, (2) transflectance NIR immersion probe, (3) pump; zoom of the

microreactor assembly (top right).
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large-scale vessels. While they sometimes enable a superior mass transfer, they sometimes

cause an inferior mixing of the reactants due to microfluidic effects. Typical yields may range

from milligrams to a few grams per day depending on the reaction conducted in batch or flow

mode [47–49].

Microprocesses with respect to scale, volumetric flow, and yield demand for microanalytics if

implemented in-line or on-line. At-line installations merely require a sample cell of suitable

size and sensitivity. Two different ways have been described to monitor microprocesses in-line

or on-line with spectroscopic methods. The probes or sample cells were located either in the

reaction vessel or a by-pass similar to large-scale facilities. Alternatively, the reaction was

conducted within the sample cell of a spectrometer, e.g., UV/Vis or Nuclear Magnetic Reso-

nance. Miniaturized analytical devices are preferable in case of microreaction vessels, whereas

standard laboratory instruments may be used for the second case. So-called bench-top instru-

ments are particularly interesting for microprocess analytical technology. Bench-top instru-

ments may be found as the size of a microwave oven [50–53].

In the following sections, illustrative examples for the application of NMR spectroscopy,

covariance, homo- and hetero-correlation spectroscopy to process monitoring, and process

understanding will be given.

4. Applications of homo- and hetero-covariance spectroscopy

Covariance transformations of NMR data with or without prior Fourier transformation today

are widely applied. Prominent examples comprise generalized indirect covariance and

multidimensional covariance NMR as well as the combination of covariance and non-uniform

sampling of data [54–57]. While the concept of homo- and hetero-covariance spectroscopy was

developed nearly three decades ago, there are relatively few reports on the use of synchronous

and asynchronous spectra involving NMR spectroscopy [3, 14, 55, 58, 59]. In contrast, an

abundant number of investigations have applied so-called statistical hetero-spectroscopy

(STOCSY) that has delivered important contributions to the field of metabolomics and whose

variants have recently been depicted like a phylogenetic tree [22, 32, 60]. In the current report,

the focus is however laid on examples from chemical processes rather than metabolomics.

4.1. Reaction monitoring of a wine fermentation

Kirwan et al. monitored a wine fermentation by 1H NMR spectroscopy, drawing samples

daily [61]. After careful preprocessing by segmentation, alignment, normalization, and

smoothing, the data were covariance transformed, yielding homo-spectral synchronous and

asynchronous matrices. While the synchronous map was found less prone to small chemical

shift and linewidth variations, the asynchronous matrix was very sensitive. Sasic had also

reported on the effects of linewidth [62]. In his metabonomics study on vasculitis analyzing

rat urine samples, butterfly-like signal shapes were observed as a result of shifting peak

positions. The lack of uniform pre-processing led to numerous artifacts and problems that

severely hampered spectral interpretation in contrast to the wine study. The spectra recorded
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in the wine fermentation study were hence ameliorated in a successive approach by imposing

a fixed linewidth prior to covariance transformation such that the effects of linewidths chang-

ing during the fermentation were compensated for [63]. Extracted regions of both spectra are

shown in Figure 3.

The spectra contained strong signals from sugars, fructose, and glucose, in the early period. In

the later phase, ethanol signals became predominant. Other molecular species were emerging

and vanishing as well. Their temporal relationship was said difficult to assess, which can be

seen from inspection of Figure 3. A manifold of correlations are present in the covariance

maps. Most clearly, the interdependence of the sugar and ethanol signals is recognized. Kirwan

et al. already pointed out the difficulty of interpreting the spectra due to the high resolution of

the initial 1H NMR spectra leading to the large number of signals and correlations [61]. The

authors suggested the use of slices through the synchronous map allowing the signal attribu-

tion and further extraction of the sequential information out of the corresponding slices of the

asynchronous map. Careful analysis revealed that glucose was consumed and transformed at

a higher rate than fructose, which was interpreted in terms of the different diffusion rates of

the two sugars across the fermenting yeast cell membrane. The authors thus demonstrated the

usefulness of correlation NMR spectroscopy for monitoring concentrations and sequential

relationships in a biochemical process.

4.2. IR-NMR hetero-covariance spectroscopy applied to radical polymerization

Ryu et al. used 2D IR-NMR hetero-spectroscopy to characterize a chain transfer reaction

during the radical polymerization of N-vinylpyrrolidone (NVP) [64]. Polyvinylpyrrolidone

(PVP) was polymerized to form nanoparticles through a chain transfer reaction initiated by

silver nitrate. Upon reduction via electron transfer, PVP polymer silver nanoparticles were

Figure 3. The synchronous (a) and asynchronous (b) maps of a section of the mean-centered 1D 1H NMR spectra at 500

MHz of a series of wine fermentation samples. Reprinted from Kirwan et al. [63]. Copyright 2008, with permission from

Elsevier.
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formed. The resulting nanoparticles possessed a carbon-carbon double bond at the end of the

PVP chain after chain transfer termination. Radical formation was initiated through azobisiso-

butyronitrile. The reaction was monitored using IR and 1D 1H NMR spectroscopy. That is, a

series of IR and NMR spectra depending on reaction time as perturbation domain were

obtained. In the IR synchronous homo-correlation spectrum, bands at 1660 and 1676 cm-1 were

revealed that could be attributed to the stretching vibration of the carbon-carbon double bond

and of the carbonyl group, respectively. The asynchronous map was interpreted in terms of

an intensity decrease of the band at 1660 cm-1 preceding the increase of the carbonyl band at

1676 cm-1, cf. Figure 4.

Following Noda’s rules on analyzing the synchronous and asynchronous spectral matrices,

one might also come to a reversed conclusion concerning the sequential order [11, 12]. Both

educt and product after chain transfer termination do exhibit carbon-carbon double bonds,

where the NMR signals of the monomeric educts should lead to more intense signals due to

less relaxation broadening. Yet, IR-NMR hetero-spectral correlation maps were used to

unequivocally attribute the less-resolved IR bands in the product to the carbon-carbon double

Figure 4. Synchronous (a) and asynchronous (b) 2D FTIR correlation spectra of PVP during polymerization with 400 ppm

silver nitrate. The autopower spectrum extracted along the diagonal line in the synchronous 2D correlation spectrum is

given on the top of (a). The solid and dashed lines in the spectra represent the positive and negative crosspeaks,

respectively. Reprinted from Ryu et al. [64]. Copyright 2012, with permission from Elsevier.
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bond and to the carbonyl group. Thus, both homo- and hetero-spectral correlations are of

considerable value to increase spectral resolution and cross-fertilize the spectral analysis or

assignment of one spectroscopic technique by taking advantage of another technique. This is

especially helpful in process analytical technologies when signal crowding or strong overlap

due to conditions unfavorable for a certain spectroscopic method occurs frequently.

4.3. Study of polylactic acid nanocomposites at varied temperatures and compositions using

PARAFAC kernel analysis

Shinzawa et al. investigated polylactic acid nanocomposites using solid-state cross-polarization

magic angle spinning (CP-MAS) 13C NMR experiments [34]. They prepared four samples with

varying clay content through a melt-blend process to obtain pellets. The properties of the sample

exposed to temperature variation were studied by thermomechanical analysis. The elongation of

the sample measured under imposture of a load occurred most notably at the glass transition

temperature of the samples around 60�C. After a certain increase, a plateau was reached. The

finding was interpreted that the plastic deformation observed was related to the glass-to-rubber

transition of the amorphous polylactic acid component. When the elongation did no longer

increase, a network structure due to physical crosslinkage induced by the crystalline domain

was assumed. The dependence on the clay content suggested that with increasing clay inclusion,

the tendency to elongate with temperature decreases. Thus, inclusion of clay led to enhanced

stiffness. By applying NMR spectroscopy, Shinzawa et al. strove to probe the macroscopic

properties on a molecular scale. To this purpose, they inspected the 13C NMR resonance around

170 ppm, which originates from two peaks at 169 ppm and 170 ppm attributed to the crystalline

and amorphous phases, respectively. Since NMR spectra depended on two separate perturba-

tions, i.e., clay content and temperature, the PARAFAC kernel analysis according to Eq. (23) was

employed for a detailed analysis. As described above, two sets of synchronous and asynchro-

nous correlation spectra were obtained after the covariance transformations and matrix decom-

positions: the temperature-dependent and the clay-dependent homo-correlations. The partial

correlations from composition-dependent NMR spectra at fixed temperature are exemplarily

presented in Figure 5. Whereas the partial temperature-dependent correlation spectra revealed

Figure 5. Partial synchronous correlation (a) and partial asynchronous correlation (b) spectra calculated from clay

weight-dependent 1D CP-MAS 13C NMR spectra recorded at 100.56 MHz. Reproduced from Shinzawa et al. [34] with

permission of The Royal Society of Chemistry (RSC).
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that the amorphous preceded the crystalline component upon temperature increase, the spectra

in Figure 5 showed that the amorphous content occurred predominantly before the crystalline

content on increasing clay content. This was assumed due to the clay acting as a nucleating

agent. It would foster additional crystallization of the polylactic acid. Upon decrease of the

amorphous phase, the phase transitioning from glass to rubber should be reduced. These results

were supported by the thermomechanical analysis.

The added value of the PARAFAC kernel analysis is that it furnishes quantitative data. The

score, A and C, and loading, B, matrices reflect the change in signal intensity separated into

composition and temperature dependence. They also provide abstract information on the

dynamic behaviors of the crystalline and amorphous phases. The synchronous and asynchro-

nous pair of the kernel matrix is exemplarily presented in Figure 6 for the spectral intensity

change of the nanocomposite samples due to clay content variation. The so-called q-synchronous

correlation intensity, cf. above, Hq amorphous, crystalline = �0.98 and q-asynchronous correlation

intensity Kq amorphous, crystalline = 0.06 were interpreted in terms of similarity of changes in the

amorphous and crystalline components due to the presence of clay. Yet, the negative sign

indicated opposite direction, i.e., increase in clay content augmented the crystalline and

decreased the amorphous phase, which agreed well with the homo-spectral correlation results.

In practice, the application of PARAFAC kernel analysis was envisioned to provide opportuni-

ties to gain detailed information on sequences of species occurring under multiple perturbations.

4.4. Monitoring of ethanol production from immobilized yeast using homo- and

hetero-covariance spectroscopy

As an example for process monitoring of biochemical processes, the conversion of glucose into

alcohol by Saccharomyces cerevisiae, baker’s or brewer’s yeast, was monitored using low-field

1D 1HNMR and Raman spectroscopy [65]. Monitoring of fermentation processes was described

Figure 6. Representations of the q-synchronous kernel (a) and q-asynchronous kernel (b) matrices computed from the

score matrix C of the clay weight-dependent 1D CP-MAS 13C NMR spectra recorded at 100.56 MHz as used in the

PARAFAC kernel analysis [34].
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earlier, and NIR became the standard methodology [66, 67]. Later, attempts were made to use

Raman spectroscopy [68]. Recently, hetero-spectral correlation NIR-IR spectroscopy was

applied [69]. The fermentation described in the current report was conducted as a continuous

process feeding glucose solution at a constant flow into a 2 L fermenter. Yeast immobilized

within an alginate hydrocolloid converted the sugar to ethanol. The aqueous ethanolic solution

was diverted at a constant flow. The flow rate was optimized such that during the residence time

of a given volume, the glucose was fully converted into ethanol. On-line monitoring, i.e., through

analysis of the ethanol signals and potential remainders of the glucose signals, was applied to

control the efficiency of the process from the initial induction phase to the final stable production.

After optimization, a sugar concentration of about 17% could be successfully transformed into

ethanol.

Since no deuterated solvents were used, the series of 1D 1HNMR spectra exhibited a dominant

water signal and the typical ethanol resonances, cf. projections in Figure 7.

Homo- and hetero-covariance transformations were computed after spectral alignment and

normalization to the water resonance at 4.8 ppm. The synchronous NMR spectrum displayed

the expected positive intra-ethanol correlation at (3.8 ppm, 1.2 ppm). It exhibited further

positive correlations between the signal at 4.8 ppm and the ethanol resonances at 1.2 and

3.8 ppm, suggesting that both signals increased or decreased in phase. As the spectra were

normalized to the water resonance, the tentative change was traced back to changes in the

linewidth of the water signal and should therefore not further be considered. Inspection of the

asynchronous spectrum, cf. Figure 7, showed no intramolecular correlations at 3.8 and

1.2 ppm as would be expected, since the ethanol signals would change in phase. Yet, correla-

tions between the signal at 4.8 ppm and the ethanol resonances were observed. The sign of the

correlation suggested that water or an underlying component would grow before ethanol

Figure 7. Synchronous (left) and asynchronous (right) 2D NMR homo-correlation spectra of ethanol production by

immobilized yeast using on-line 1D 1H NMR spectroscopy (82 MHz, T = 36�C).
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increased. Since change on the water resonance was traced back to linewidth variations, no

conclusion with respect to the sequence of change should be drawn. Taking into account the

earlier observation by Kirwan et al. and Sasic with respect to changes in linewidth and spectral

alignment, the described preprocessing procedures were found difficult to apply to low-field

spectra with relatively poor resolution and signals with strongly differing linewidths.

In contrast, the hetero-covariance NMR-Raman spectrum proved very useful for the quick

analysis and assignment of the signals in the Raman spectrum, cf. Figure 8.

Only the band at 1360 cm-1 showed a negative correlation with the NMR resonances of

ethanol, thus identifying this band as educt related. All other Raman bands were found in

phase with the ethanol NMR signals and could thus serve for product monitoring. The hetero-

correlation spectrum was hence able to readily visualize that nearly all Raman bands at least

predominantly originated from ethanol, but in contrast to low-field NMR signals provided an

educt signal, which appeared only as a shoulder in the corresponding 1D Raman spectrum.

4.5. Reaction monitoring of a Knoevenagel condensation in a microreaction system

A Knoevenagel condensation reaction was conducted in a microreaction system, cf. Figure 2

[70]. Neat malonic acid diethylester and 2-propanal were flowed through the microreactor at a

Figure 8. 2D NMR-Raman hetero-correlation spectra of ethanol production by immobilized yeast using on-line 1D 1H

NMR spectroscopy (82 MHz, T = 36�C) and in-line Raman spectroscopy (laser wavelength 785 nm).
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temperature of 82�C. Butylidene malonic acid diethylester and water were obtained as prod-

ucts. The solution was re-circulated for 1200 min and monitored using on-line low-field bench-

top 1D 1H NMR (82 MHz), in-line NIR, and in-line Raman spectroscopy (laser excitation

wavelength 785 nm). Despite the relatively poor resolution of the low-field instrument, the

series of 1D 1H NMR spectra showed well-resolved signals for each educt and product, cf.

Figure 9. Therefore, signals could be integrated and concentration-time plots were established.

The covariance transformation to synchronous and asynchronous homo-spectral correlation

maps helped quickly visualize the interdependence of the signals, cf. Figure 10. The assign-

ment of educt and product signals was in agreement with correlation crosspeaks and their

signs. The signals were attributed as 3.2 ppm for malonic acid diethylester, 6.8 ppm for the

product butylidene malonic diethylester, and 9.5 ppm for 2-propanal. Since the intensity of the

autopeaks in the homo-covariance map reflects the amount of change, peaks appeared at

strongly different intensity levels such that representations of the spectra should be prepared

using different thresholds with emphasis on either strong or weak signals. Nevertheless, the

sign of the crosspeaks was found in accordance with the expectancy values. With respect to the

Figure 9. 1D 1H NMR spectra (82 MHz, T = 36�C) recorded for 1200 min during on-line monitoring of a Knoevenagel

condensation of neat malonic acid diethylester and 2-propanal yielding butylidene malonic acid diethylester conducted in

a microreaction system presented in Figure 2.
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asynchronous map, the positive crosspeak at 9.5 and 6.8 ppm was seen indicative for the

aldehyde reaction preceding the final product formation, i.e., the formation of the double bond.

Although the interpretation of the 1D 1H NMR spectra was readily achieved, the use of in-line

applicable techniques such as Raman and NIR spectroscopy was considered preferable from a

process analytical perspective. This required the interpretation of the vibrational spectra. The

increasing intensity of the Raman band at 1600 cm-1, which originated from the carbon-carbon

double bond vibration, was to some extent obvious in the series of 1D Raman spectra recorded.

Further attribution of bands useful for reaction component monitoring was not readily

achieved. To this purpose, hetero-correlation maps were computed from NMR and Raman

spectra as well as from NMR and NIR, shown in Figure 11. Preprocessing of all spectra with

respect to baseline correction, alignment, normalization, and data reduction or binning was

found of utmost importance. The NMR signal assignment was readily transferred to the bands

at 1600 and 800 cm-1 through correlations. The band at 800 cm-1 exhibited negative correlations

to the product chemical shift and was hence found due to one of the educts. On inspection of

the aldehyde resonance at 9.5 ppm, positive signs were found, which would be expected for a

correlation between educts. The band at 1450 cm-1, which was assigned to a methylene group

bending vibration, showed only weak correlations. One of them correlated that band to the

resonance at 3.2 ppm, indicating an educt-educt relationship. Analyzing the NIR-NMR hetero-

covariance spectra, the enhancing power of NMR spectroscopy becomes even more evident.

While NIR provides very broad bands that are due to either C-H or O-H overtone or combi-

nation frequencies and thus seemingly non-specific, the well-resolved signals of NMR spec-

troscopy assist in finding regions that can be attributed to educts or products and thus used for

Figure 10. Synchronous (left) and asynchronous (right) 2D NMR correlation spectra of a Knoevenagel condensation of

neat malonic acid diethylester and 2-propanal yielding butylidene malonic acid diethylester conducted in a microreaction

system and monitored during 1200 min at a reaction temperature of 82�C using on-line 1D 1H NMR (82 MHz, T = 36�C).
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reaction monitoring. The NIR-NMR correlation signals in Figure 11, bottom row, indicate that

the O-H resonance around 7000 cm-1 stemmed from product water, while that around 5200 cm-1

was due to an educt C-H combination frequency. Thus, two potential monitoring frequency

ranges could be identified.

Based on the thus identified and attributed signals, intensity-time plots and hence concentration-

time curves could be extracted from the series of one-dimensional NIR spectra. This allowed the

comparison of reaction monitoring by three different spectroscopic techniques, NIR, Raman, and

NMR. The results were found in rather good agreement with each other. The concentration-time

curves could be computed using chemical kinetic models from which reaction rate constants and

half-lives were obtained. The reaction was found to follow first- or pseudo first-order reaction

Figure 11. Synchronous Raman-NMR (top row) and NIR-NMR (bottom row) hetero-correlation spectra of a Knoevenagel

condensation of neat malonic acid diethylester and 2-propanal yielding butylidene malonic acid diethylester conducted in

a microreaction system and monitored during 1200 min at a reaction temperature of 82�C using on-line 1D 1HNMR (82 MHz,

T = 36�C), in-line NIR and in-line Raman spectroscopy (laser wavelength of 785 nm); full spectrum (left) and enlarged region

(right), 1D spectra recorded at 1200 min are shown top and right of the correlation map.
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kinetics. It was expected that the knowledge of reaction parameters could later be transformed

into automatic process control [70].

5. Conclusion

Covariance NMR has become a valuable tool in the ensemble of NMR methodologies. General-

ized covariance was often performedwith techniques other thanNMR to profit from synchronous

and asynchronous correlation maps. The synchronous map as a substitute to or along with the

traditional Fourier transformed spectrum was nevertheless employed quite frequently in NMR.

Hetero-spectroscopic covariance was used to concatenate NMR and mass spectrometry, NIR, and

Raman data allowing combining the information of two techniques. Resolution improvement was

reported an advantage of both the homo- and hetero-covariance processing, since information

could be transferred from the well-resolved NMR domain into the less obvious to interpret

vibrational domains. Here, the synchronous spectrum helped to increase resolution and assign

signals to either the same or different species. As had been reported for vibrational spectroscopy,

homo-covariance transformation also gives rise to two-dimensional data when only series of 1D

NMR spectra are available, e.g., due to the application of low-field NMR instruments. Although

the asynchronous map provides information on the sequential occurrence of signals, it has been

relatively rarely exploited for NMR purposes. In a more recent study, Noda showed that more

sophisticated mathematical processing was needed to derive the order of three or more species

within a chemical reaction. When the asynchronous spectra were computed and analyzed, the

sequential attribution feature proved very useful for PAT applications, such as in fermentation or

reaction monitoring. Examples of wine fermentation, ethanol production using immobilized

yeast, and monitoring of a radical polymerization and a Knoevenagel condensation in a

microreaction systemwith a low-field NMR instrument were discussed. For quantitation of signal

intensity changes and conclusions therefrom, the PARAFAC kernel analysis applied to polylactic

acid nanocomposites with various clay content and at varied temperatures was summarized.

The opportunities of homo- and hetero-covariance spectroscopy in the field of NMR combined

with other spectroscopic and spectrometric techniques are numerous. Still, new mathematical

extensions continue to be devised. The authors therefore expect that with commercial software

becoming more available for non-developing users, the reports on applications of homo- and

hetero-covariance spectroscopy yielding synchronous and asynchronous spectra to chemical

problems will steadily grow.
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