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Abstract

Transcriptomics is a dynamically developing branch of biology highly important for 
geneticists and molecular ecologists alike. A large number of studies concerning differen‐
tial gene expression, mapping of genes and quantitative trait loci (QTL), analysis of geno‐
typing variations and so on has been conducted recently on several non‐model plants 
using next‐generation sequencing techniques. One example of non‐model legumes is 
garden pea (Pisum sativum L.), a valuable pulse crop capable of forming nitrogen‐fixing 
nodules and arbuscular mycorrhiza. Adaptation of standardised RNA‐seq approaches 
and data analysis developed for model plants to P. sativum should facilitate both studying 
of pea molecular genetics and breeding of new cultivars possessing agriculturally impor‐
tant traits. Another non‐model legume is black medick Medicago lupulina L. (a close rela‐
tive of model legume plant barrel medick, Medicago truncatula Gaertn.), for which unique 
genetic lines almost obligatory dependent on arbuscular mycorrhiza symbiosis formation 
have been obtained. Such lines show promise as the perfect model for studying the genetic 
bases of arbuscular mycorrhiza development. In this chapter, we give a brief description 
of the current developments in the field of garden pea and black medick transcriptomics. 
Our aim is to provide a quick start guide to the non‐expert researchers for next‐genera‐
tion sequencing (NGS)‐based transcriptome analysis.

Keywords: transcriptomics, RNA‐seq, non‐model legume plants, nitrogen‐fixing symbiosis, 
arbuscular mycorrhiza, Pisum sativum L., Medicago lupulina L.

1. Introduction

Transcriptome is defined as the sum of all the messenger RNA molecules expressed from 
the genes of an organism, tissue, or a cell. Transcriptome analysis is a powerful method for 
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plant biology research since studying expressed genes facilitates investigation into plant 

development, responses to environmental stresses, plant‐microbe interactions and so on. 

Transcriptomic analysis of model organisms, such as the classical object of plant genetics, 

Arabidopsis thaliana (L.) Heyhn., with available full‐genome sequence enables researchers to 

conduct more precise measurements of gene expression level, including alternative splicing 

and epigenetic modifications studies, in order to reveal the molecular mechanisms involved 
in specific biological processes [1]. Undoubtedly, many aspects of plant biology, for example, 

economically important traits such as specific immunity, pathogen resistance and symbiotic 
efficiency contributing to high crop productivity, cannot be studied with the use of model 
plants only, making the investigation of non‐model plants a necessity.

The rapid decrease of per‐base sequencing cost coupled with unprecedented development 

rates of computational biology practices opened the field of transcriptomics for in‐depth inves‐

tigation of non‐model plants [1]. In the last few years, a large number of studies concerning 

differential gene expression, mapping of genes and quantitative trait loci (QTLs), analysis of 
genotyping variations and so on using next‐generation sequencing (NGS) techniques has been 

conducted on several non‐model plants including legumes (members of family Fabaceae) [2–4].

The leguminous plants (chickpea (Cicer arietinum L.), pea (Pisum sativum L.) and lentil (Lens 

culinaris Medik.)) were among the earliest domesticated plant species [5] and are to this day 

an integral part of agricultural systems [6]. These and other members of the Fabaceae family 

are essential for economics as a food, fodder and oil source [3]. A significant feature of most 
legume species is their capability of forming mutualistic symbioses with soil microorganisms. 

Root‐nodule symbiosis, the association of the legumes with nodule bacteria collectively called 

rhizobia, provides the plant with fixed atmospheric nitrogen [7]. This fact makes the legume‐

rhizobial inter‐organismal system an essential component of natural and agricultural ecosys‐

tems [8]. Arbuscular‐mycorrhizal (AM) symbiosis (association with arbuscular mycorrhizal 

fungi), inherent to over 80% of land plants including most of legumes [9], facilitates water and 

mineral (especially phosphorous) uptake of the plant and consequently the nutritional value 

of the crop. Legumes are also capable of forming symbioses with endophytic plant growth 

promoting bacteria also contributing to plant productivity [10, 11].

In the early 1990s, two legume species—Medicago truncatula Gaertn. and Lotus japonicus 

(Regel.) K. Larsen—were introduced as model objects for studying plant genetics of symbi‐

otic nitrogen fixation and AM development [12–14]. Both species have small diploid genomes 

(approx. 500 Mb) [15] and are self‐pollinators with short generation time able to produce 

hundreds to thousands of seeds per plant. Intensive studies of genetics resulted in high‐qual‐

ity annotated genomes for both L. japonicus and M. truncatula, accumulation of gene expres‐

sion microarray datasets and development of several tools and repositories combining the 

diverse genetic, genomic and transcriptomic data in these model species (the Medicago Gene 

Expression Atlas [16, 17], the Medicago genome database [18], the Lotus Base information por‐

tal [19], etc.).

During the last decade, rapid development of sequencing and bioinformatics technologies sig‐

nificantly improved the state of genomics in non‐model legumes. In the past few years, genomes 
of important legumes, such as Glycine max (L.) Merr. [20], Phaseolus vulgaris L. and Trifolium 
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pratense L. [21], were sequenced and are currently available at Phytozome website (https://phy‐

tozome.jgi.doe.gov/pz/portal.html) and in the integrative bioinformatic platform Legume IP 
providing information about gene and protein sequences, gene models and annotations, syn‐

tenic regions, protein families and phylogenetic trees [22].

Despite all the recent research progress, most of the agriculturally important legumes were 

considered ‘orphan’ crops for a long time as separated from the intense genomic studies due 

to large genomes, and their agricultural significance mainly in developing countries lacking 
funds for large‐scale ‘omics’ studies [3]. Most genome and transcriptome analysis tools were 

developed for particular model objects [23] and can generally be used for studying ‘orphan’ 

species [24, 25], although careful fine‐tuning may be necessary for successful deployment of 
said tools in non‐model organisms (see Figure 1). With the cost of genome assemblies remain‐

ing prohibitively high, researchers are forced to work with only transcriptome data, making 

the analysis strategy all the more important.

It is worth noting that one of the most challenging steps of transcriptome analysis pipelines is cor‐

rect transcript annotation. The simplest approach giving a sufficiently accurate result is BLAST 
search against annotated sequences of other species. The development of transcriptome annota‐

tion pipelines, for example, Trinotate [26], has more or less taken the burden of transcriptome 

Figure 1. Pipelines of transcriptome assembly in non‐model plants (based on the information from Refs. [23, 24].) Three 

strategies for RNA‐seq analysis. (A) Using a draft genome. Novel transcript discovery, quantification and functional 
annotation. (B) De novo transcriptome assembly with no reference. For quantification, reads are mapped back to the 
novel reference transcriptome followed by the functional annotation of the novel transcripts as in (A). (C) Combination 

of the two methods. Transcriptomes are first assembled using methods (A) and (B) then merged using CD‐HIT‐EST and 
cap3. Transcripts are then annotated as in (B).
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annotation off of the researcher. Trinotate combines the output of a number of annotation tools 
into an integrated database simplifying the following deeper analysis of acquired data.

One example of an ‘orphan’ legume is garden pea (Pisum sativum L.), a valuable pulse crop 

capable of forming both nitrogen‐fixing symbiosis and arbuscular mycorrhiza. Global pro‐

duction of green pea in 2014 was 17.4 million tons, harvested from 2.3 million hectares, with 

an additional 11.2 million tons of dried pea from 6.9 million hectares [6]. The genome of the 

species is considered to be about 4300 Mb with high percentage of repetitive sequences [27]. 

Adaptation of RNA‐seq data analysis approaches standardised for model plants to P. sativum 

should facilitate both studying of pea molecular genetics and breeding of new cultivars pos‐

sessing agriculturally important traits.

Black medick (Medicago lupulina L.), a close relative of a model legume plant barrel medick 

(M. truncatula Gaertn.), is another example of an important (but almost not studied in terms of genet‐

ics) non‐model legume. It is valuable as a pasture legume component in complex grass mixtures 

and can also be used as an intermediate culture in crop rotation and as green manure. Black 

medick is characterised by high protein, vitamin and mineral content, long growing season and 

ability for improving soil fertility due to nitrogen fixation, therefore being a perfect lawn plant 
[28]. Black medick is a very promising object for studying AM functioning and development, 

since a unique genetic line of M. lupulina obligatory dependent on arbuscular mycorrhiza symbi‐

osis formation has been selected from the spring landrace population VIK‐32 of M. lupulina var. 

vulgaris Koch originating from Kazakhstan [28, 29]. Plants of the line MlS‐1 (for Medicago lupulina 

Spring) [28] demonstrate dwarfism when grown in the soil with low Pi (inorganic phosphorus) 
level in the absence of the AM fungi inoculation but can grow normally when inoculated with 

AM fungus. Therefore, MlS‐1 line is considered highly effective in AM symbiosis formation (as 
inoculation by fungi dramatically heightens the plant biomass). Apparently, MlS‐1 line is only 

capable of using the symbiotrophic way of phosphorus uptake from the soil, supposedly due to 

yet unidentified mutation(s) and, consequently, can serve as a model object for the investigation 
of arbuscular‐mycorrhizal symbiosis. For instance, this line is suitable for mutagenesis aimed at 

selection of mutants with defects in arbuscular mycorrhiza development, since plants carrying 

mutations in genes related to AM formation can be easily identified by visual examination as 
demonstrating dwarfism under inoculation with AM fungi [29].

High level of genome synteny, similarity of gene sequences and developmental processes pro‐

vide the opportunity to use the vast amounts of data accumulated on M. truncatula in genetics, 

genomic and transcriptomics of these non‐model legumes M. lupulina and P. sativum. In this 

chapter, we give a brief description of the current achievements in the field of transcriptomics 
of non‐model legumes black medick (M. lupulina) and garden pea (P. sativum).

2. Transcriptome assembly studies

2.1. P. sativum transcriptomics

The genome of P. sativum is as of yet not assembled due to its comparatively large size and numer‐

ous repeats, greatly reducing the number of research methods available. Pea  transcriptome, 
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unlike genome, is closer in size to transcriptomes of other legumes, including model plant 

M. truncatula, making it more susceptible to analysis. Due to the existence of tissue‐specific gene 
expression, different plant tissues possess unique sets of transcripts, making the choice of tis‐

sue samples important for further research. Furthermore, transcriptome assemblies from distinct 

plant organs should be used as reference for analysis of tissue‐specific processes. A high‐quality 
transcriptome assembly with full tissue representation is therefore crucial for studies associated 

with gene interactions (differential gene expression, see section 3), gene polymorphism studies 

and proteome analysis.

In the last 5 years, several pea transcriptome assemblies of distinct organs and tissues were 

presented by different workgroups. The first publication of pea transcriptome sequencing 
and assembly was made by Franssen et al. [30]. Total of 20 libraries from flowers, leaves, 
cotyledons, epicotyls and hypocotyls and etiolated and light‐treated etiolated seedlings were 

sequenced using the Roche 454 sequencing platform. Several iterations of de novo assembly 

and merging yielded 81,449 unigenes. Sudheesh et al. [31] sequenced transcriptomes from dif‐

ferent parts (leaf, stipule, stem, tendril tissues from multiple nodes, root‐tip tissues, flowers, 
stamens, pistils, immature pods, immature seeds and nodules) of two pea cultivars (Parafield 
and Kaspa) differing in both seed and plant morphological characteristics. Read assembly for 
separate cultivars yielded 126,335 and 145,730 contigs, respectively, with 87% showing signif‐

icant expression levels in both cultivars. Later on, Liu et al. sequenced samples from pea seeds 

harvested at the stage of 10 and 25 days after pollination and assembled 77,273 unigenes [32].

Several transcriptome assembly sets were generated for Single Nucleotide Polymorphism  

(SNP) marker development and genetic mapping in pea (see section 4). Duarte et al. [33] 

sequenced libraries from eight pea cultivars (six spring sown, one winter sown field pea, one 
fodder pea cultivar) with Roche 454 technology. A total of 3,826,797 reads were assembled into 

68,850 contigs by MIRA transcriptome assembler [34]. Sindhu et al. sequenced 3’‐anchored 

libraries of eight diverse pea accessions (six P. sativum cultivars (CDC Bronco, Alfetta, Cooper, 
CDC Striker, Nitouche and Orb) and two wild accessions P651 (P. fulvum), PI 358610 (P. sati‐

vum ssp. abyssinicum)) with Roche 454 technology, generating 4,008,648 reads in total. De novo 

assembly was performed for 520,797 reads from the CDC Bronco by MIRA, resulting in a set of 

29,725 reference contigs representing a significant proportion of the 3′ end of genes in pea [35].

Since analysis of inter organismal genetic network between pea and rhizobia is a poorly 

developed field, assembly of a high‐quality transcriptome provided researchers with the 
much‐needed data on nodule‐specific transcripts. Transcriptomes of pea nodules and root tips 
were obtained by Zhukov et al. [36]. Transcriptome sequencing using the Illumina Genome 

Analyzer IIx platform (Illumina Inc.) generated 52,021,865 reads from the ‘Nodules’ library and 

17,684,604 reads from the ‘Root Tips’ library, yielding 58,397 and 37,287 contigs assembled de 

novo by Trinity, respectively [37]. A total of 13,000 nodule‐specific contigs were annotated by 
alignment to known plant protein‐coding sequences and by Gene Ontology search. Of these, 

581 sequences were found to possess full Coding DNA Sequence (CDSs) and could thus be 

considered novel nodule‐specific transcripts of pea. Further investigation of those transcripts 
can potentially lead to the discovery of key regulators of nodule symbiosis, such as identifica‐

tion of pea gene homologous to Nodulation signaling pathway 1 (NSP1) gene of M. truncatula [38]. 

In this study, pea gene Sym34 was shown to be homologous to the M. truncatula NSP1 gene, 
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based on preliminary stop codons detected in an open reading frame of NSP1 homologous 

sequence in two sym34 allelic mutants (RisNod1 and RisNod23) and full co‐segregation of the 

alleles of the hypothetical pea Nsp1 gene with the nodulation phenotype in F
2
 generation.

Alves‐Carvalho et al. [39] sequenced transcriptomes of roots, nodules, shoots, leaves, flowers, 
seeds, tendrils and pods harvested at different developmental stages of pea cultivar ‘Caméor’. 
Sequencing of 20 cDNA libraries produced one billion reads. After de novo assembly and sev‐

eral steps of redundancy reduction, 46,099 contigs were obtained. The main objective of their 

study was to obtain the most complete transcriptome and to filter out all the artefacts and chime‐

ric contigs so a rigorous filtration pipeline was developed and implemented. The accumulated 
transcriptome data was used for the development of the Pea RNA‐Seq gene atlas containing 

expression profiles of thousands of genes in several organs, including symbiotic nodules. It is 
worth noting that the pipeline used in this work filtered out a large proportion of short protein‐
coding transcripts, including a number of NCR peptide‐coding transcripts [40], making the Pea 

RNA‐Seq gene atlas less useful than tissue‐specific transcriptomes in some cases.

Pea RNA‐Seq gene atlas is also lacking information regarding mycorrhiza‐specific transcripts. 
Genetic framework of mycorrhizal symbiosis is as of yet not fully understood in either model 

or non‐model legumes [38]. In order to discover symbiotically active genes both in plant roots 

and arbuscular‐mycorrhizal fungus, a transcriptome of Frisson pea cultivar roots colonised 

by Rhizophagus irregularis isolate BEG144 was assembled by our workgroup. Sequencing was 

performed on an Illumina HiSeq2000 sequencing platform yielding 120 million pair end 

reads. In order to separate the transcriptomes of two organisms present in the samples, all the 

reads were mapped using the HISAT2 mapper [41] to the genome of R. irregularis [42]. Over  

5 million successfully mapped reads were assembled by Trinity with default parameters yield‐

ing 30,000 transcripts, in good correlation with 28,000 of known genes for the fungus [42, 43].

All the transcripts not mapped to the R. irregularis genome were then assembled with the 

Trinity pipeline with standard assembly parameters and quality trimming parameters. This 

resulted in more than 200,000 contigs, of which more than 100,000 were similar to genes of pea 

and other plants of the Fabaceae family.

An assessment of transcriptome assembly and annotation completeness with single‐copy 

orthologs for all available pea transcriptomes was carried out using BUSCO V.2 software with 

OrthoDB v9.1 ‘embryophyta’ base as a reference [44]. The lowest number of present groups in 

the transcriptome published by Franssen et al. [30] named ‘Franssen’ is due to low transcrip‐

tome coverage. High number of missing groups in ‘Kaspa’, ‘Parafield’ and ‘SGE’ assemblies 
are most likely the result of limited tissue representation (see Figure 2). Deep sequencing of 

mycorrhized roots yielded similar results in regard to transcriptome completeness as a com‐

bined transcriptome from 20 tissues, indicative of assembly of low‐copy transcripts due to 

high transcriptome coverage.

2.2. M. lupulina transcriptomics

M. lupulina is a plant of the Fabaceae family, a close relative to the M. truncatula, for which a 

unique genetic line MlS‐1 characterised by obligate mycotrophic lifestyle was obtained [28]. 
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This line may potentially be extremely useful as a model for investigation of genetic founda‐

tions of mycorrhizal symbiosis. M. lupulina is a novel object for genomic studies, so to kick‐

start its analysis the transcriptome of the mycorrhized roots of M. lupulina was sequenced 

using the Illumina 2500 platform. Plants of MlS‐1 line were grown in soil under inoculation 

with R. irregularis strain RCAM00320, followed by total RNA extraction from the mycorrhized 

root system and appropriate preparation of cDNA libraries for Illumina sequencing. Using 

Trinity assembly pipeline, 41 million paired reads were assembled yielding over 138,000 con‐

tigs, of which 19,022 showed resemblance to genes of R. irregularis. Further analysis revealed 

over 70,000 contigs similar to known genes of M. truncatula. The assembled transcriptome can 

be used as reference for differential gene expression analysis.

3. Differential gene expression (DGE)

Analysis of alterations in gene expression between conditions or genotypes is the most sig‐

nificant part of transcriptomic data analysis. The differences in expression levels can help 
determine the important genes and elucidate the processes taking place in the investigated 

samples.

Extensive analysis of gene expression can be carried out by microarray analysis or RNA 

sequencing technology. Microarray technology requires prior knowledge of gene sequences and 

is more suitable for objects with available genome sequence. In the case of model object M. trun‐

catula, combination of microarray data resulted in development of atlas of gene expression pro‐

files (Medicago truncatula Gene Expression Atlas (MtGEA)) (https://mtgea.noble.org/v3/). MtGEA 
contains information about gene expression in roots, nodules, stems, petioles, leaves, vegetative 

buds, flowers, seeds, pods and is potentially helpful for studying other legumes. Despite the fact 
that pea genome is not sequenced yet, several studies of pea gene expression have been carried 

Figure 2. The results of BUSCO analysis of pea transcriptomes. Light‐blue: complete and single‐copy genes; dark‐blue: 
complete and duplicated genes; yellow: fragmented genes; red: missing genes.
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out by microarray technology. Analysis of gene expression during Mycosphaerella pinodes infec‐

tion was carried out using a microarray [45] containing 16,470 different 70‐mer oligonucleotides 
from M. truncatula and only 25 did not show a detectable signal [46]. In another study, microarray 

transcriptome profiling based on known pea Expressed Sequence Tags (ESTs) revealed altered 

expression of genes associated with programmed cell death, oxidative stress and protein ubiqui‐

tylation during seed aging [47].

In spite of many advantages of microarrays, this technique is not effective for quantification of 
transcript splice variants and, furthermore, cannot provide information about novel genes not 

included in the array. The development of NGS technology made analysis of full transcriptome 

gene expression possible. To date, there were several studies of pea gene expression based on 

RNA‐seq technology. Comparative analysis of transcriptional control of pea seed development 

conducted by RNA‐seq revealed significant differences in gene expression between vegetable 
and grain pea. Genes associated with sugar and starch biosynthesis were significantly activated 
during seed maturation. Analysis of differential expression of these genes revealed a nega‐

tive correlation between soluble sugar and starch flux in vegetable and grain pea seeds [32]. 

Alves‐Carvalho et al. [39] developed the Pea RNA‐Seq gene atlas containing expression profiles 
of thousands of genes in different pea tissues harvested at distinct developmental stages [48].

Although RNA‐seq technology is indispensable for exhaustive transcriptome studies, it is not 

the most cost‐efficient tool for gene expression analysis due to substantial sequencing depth 
required for rare transcript detection. There are RNA‐seq modifications, for example, Massive 
Analysis of cDNA Ends (MACE) developed by GenXPro GmbH (Frankfurt am Main, Germany) 

(http://genxpro.net/) that increase the sequencing depth (number of reads per‐transcript) by 
sequencing only a 50–500 bp fragment (adjacent to the 5’ or 3’‐end of the transcript, dependent 

on the version) [49]. As each read originates from a distinct copy of mRNA, MACE technology 

is free of duplications and similar artefacts, leading to much more accurate transcript quantifi‐

cation. Even though MACE data cannot be used to distinguish expression of splice‐variants of 

genes, it can be successfully applied in a number of scenarios even with species not possessing 

a high‐quality transcriptome.

In our opinion, 5’MACE is a technology possessing potential for simultaneous analysis of 

gene expression in prokaryotic and eukaryotic organisms; therefore, this technology is practi‐
cally tailor‐made for the analysis of plant‐microbe interaction, particularly for studying the 

process of root nodule development in the plants of the Fabaceae family.

One of the many challenges in analysing the onset of nodule symbiosis is the small amounts 

of tissue available. Enclosed environments of symbiotic compartments complicate direct 

measurements. Implementation of 5’MACE technology made it possible to analyse the gene 

expression patterns of both organisms simultaneously in a developing nodule and at a frac‐

tion of the cost of a full RNA‐seq study.

In our group, 5’MACE was implemented in a study investigating the expression changes in 

pea nodules caused by a mutation in the Sym31 gene with unknown function. This gene is 

responsible for the unique fix− mutant phenotype (non‐nitrogen‐fixing nodules) with halted 
bacteroid development [50]. Two plant genotypes Sprint‐2Fix− (carrying a mutation in the 
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Sym31 gene) and parental wild‐type line Sprint‐2 were inoculated with an efficient Rhizobium 

leguminosarum bv. viciae RCAM1026 [51]. All the obtained reads were sequentially mapped 

to the RCAM1026 genome (about 8% mapped reads), then to the pea transcriptome assem‐

bly from Alves‐Carvalho et al. [39] (about 60% mapped reads) resulting in two sets of dif‐

ferential transcriptome data. The transcript quantification was carried out using the edgeR 
package [52]. Differentially expressed genes were then visualised on a metabolic map using 
KOBAS 2.0 annotation server [53]. Analysis resulted in the discovery of a coordinated shift in 

sulphur metabolism in both organisms. These preliminary data show the great potential of 

the 5’MACE technology in furthering our understanding of inter‐organismal gene regulatory 

networks in plant‐microbe interactions.

4. Transcript‐based markers and their usage

The application of NGS for massive genetic polymorphism discovery is widely used due to 

being much more labour and time efficient than previously used methods such as microar‐

ray hybridisation [54] or denaturing high‐performance liquid chromatography (HPLC) [55]. 

Originally, the main challenge in using NGS methods for massive polymorphism screening 

was obtaining sequences of a particular genomic locus for multiple lines due to complexity 

of plant genomes and the relatively low productivity of the first‐generation NGS‐sequencing 
platforms, leading to the development of several methods for sequencing optimisation.

For example, Restriction site Associated DNA‐sequencing method (RAD‐Seq) consists of 

genome cleavage and selection of fragments of appropriate size flanked by specific restriction 
sites (as with RFLP and AFLP analyses) [56]. RAD‐Seq yields fragments distributed randomly 

over a genome and is suitable for discovering indels (insertion‐deletion polymorphisms), 

SNVs (single nucleotide variations) and microsatellites simple sequence repeats (SSR). Using 

RAD‐Seq, Boutet et al. [57] discovered a total of 419,024 SNVs between at least two of the 

four pea lines analysed in their work. Pea genetic map constructed by genotyping a sub‐

set of 64,754 SNVs on a subpopulation of 48 RILs (recombinant inbred lines) was collinear 

with previous pea consensus maps and therefore with the M. truncatula genome. Yang et al. 

[58] using Illumina HiSeq 2500 platform uncovered 8899 putative SSR‐containing sequences. 

Reliable amplifications of detectable polymorphic fragments among 24 genotypes of pea were 
obtained for about a half of randomly selected SSR, 820 in total.

Another way of data complexity reduction is transcriptome sequencing. It makes the discovery 

of polymorphic sites in open reading frames (ORFs) and 5′‐ and 3′‐untranslated regions (UTR) of 
a gene possible. Moreover, polymorphic sites associated with individual genes may have special 

meaning for evolutionary studies and QTL analyses. Even though the transcriptome sequencing 

omits introns and intergenic regions, it can successfully be used for SSR site detection.

Several polymorphism‐screening studies aimed on SNVs and SSR sites discovering in tran‐

scriptomic data were performed on pea (see Table 1). SNVs detection may be executed by map‐

ping NGS reads to an existing reference transcriptome assembly [59] or by de novo  assembly 

of those reads [33, 35, 60]. In the case of existing assembly, the additional data  complexity 
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Year Plant material Platform, 

technique

Number 

of putative 

discovered 

SNVs

Number 

of putative 

discovered 

SSR‐sites

Number of 

created and 

mapped 

markers

References

2013 Parafield, Yarrum, Kaspa, 96–286 454 Roche, 

GS‐FLX

36,188 2932 705 Leonforte et 

al. [60]

2014 Six spring sown: Lumina, Hardy, Panache, 
Rocket, Kayanne, Terese

Roche 454, 

GS‐FLX

35,455 2397 1340 Duarte et al. 

[33]

One winter sown: Cherokee

One fodder: Champagne

2014 Pisum sativum: CDC Bronco, Alfetta, 
Cooper, CDC Striker, Nitouche, Orb.

Roche 454, 

Titanium

over 20,000 406 1536 Sindhu et al. 

[35]

P. fulvum: P651

P. sativum ssp. abyssinicum: PI 358610

2017 SGE = JI3023 Illumina 

HiSeq 2000, 

MACE

34,711 ‐ ‐ Zhernakov et 

al. [59]
Finale = JI2678

Frisson = JI2491

NGB1238 = JI0073

Sparkle = JI0427

Sprint‐2 = JI2612

Table 1. Studies aimed at gene polymorphism detection in pea (Pisum sativum L.) using transcriptome NGS‐sequencing.

reduction is achievable by limiting sequenced mRNA regions. Since UTRs are generally more 

polymorphic than ORFs using sequences from the 3’ and 5’ mRNA, ends in SNV analysis 

should yield comparable results to those obtained with RNA‐seq. 3’MACE protocol for 

cDNA‐libraries preparation was used by Zhernakov et al. [59] to discover SNVs distinguish‐

ing six pea lines. Mapping MACE reads to the reference nodule transcriptome assembly of 

the pea line SGE [36] resulted in characterisation of over 34,000 polymorphic sites in more 

than 9700 contigs. Several of these SNVs were located within recognition sites of restriction 

endonucleases which allowed the design of co‐dominant Cleaved Amplified Polymorphic 
Sequences (CAPS) markers for the particular transcript.

SNVs are markers of choice now due to their abundance and the availability of high‐through‐

put screening techniques. SNV genotyping systems are now available, varying in the number 

of samples and markers to be genotyped, such as GoldenGate® and Infinium from Illumina 
Inc., SNPStream from Beckman Coulter and GeneChip from Affymetrix [61]. Illumina 

GoldenGate® oligonucleotide pool assay (OPA) designed for transcriptome‐discovered SNVs 

was used for pea salinity tolerance QTLs search [60].

As the pea genome is not sequenced yet, the genetic linkage maps are still relevant, since 

determination of loci responsible for target traits requires their fine mapping and subsequent 
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search for candidate genes in the already sequenced genome of the model legume plant M. 

truncatula. Transcriptome‐discovered SNVs and high‐throughput genotyping systems made 

the construction of several highly saturated genetic maps of pea possible (see Table 1) [33, 

35, 60].

5. Conclusion

Next‐generation sequencing techniques make the analysis of differential gene expression 
and molecular marker development by transcriptome sequencing possible even in species 

lacking genomic information. Further development of sequencing and bioinformatics should 

substantially promote the investigation into genetics of non‐model plants. It is worth noting 

that numerous traits like effectiveness of symbioses development [62] or specific resistance 
to pathogens can only be studied in each particular cultivated plant species, most having 

limited genomic data available. In addition, the decline in biodiversity makes the investiga‐

tion of unique secondary metabolites inherent to non‐model medicinal plants a pressing 

matter.

Leguminous plants capable of improving the soil quality due to the formation of the mutual‐

istic symbioses with nodule bacteria and arbuscular mycorrhizal fungi are an integral part of 

agricultural systems. The genetics of most crop legumes lags behind that of model plants, and 

some are even considered ‘orphan’ crops, separated from the intense genomic studies due to 

a number of factors. Fortunately, the similarity of genome organisation, or ‘genome synteny’, 

characteristic for most related species, can help ‘translate’ the genomic data from the model 

legumes to their pulse crop relatives [63].

Using RNA‐seq technologies for de novo transcriptome assembly provides opportunities for 

finding novel genes and isoforms in non‐model species and investigation of their differential 
expression. Comparison to genomes and transcriptomes of closely related species can help 

determine the level of evolutionary distance between the two species and discover possible 

evolutionary pressures shaping contemporary species. Technologies for determining gene 

expression levels using transcript ends (like 3’ and 5’ MACE) can be used to conduct large‐

scale gene expression studies on a smaller budget. 5’ MACE, a technology for simultane‐

ous analysis of prokaryotic and eukaryotic transcript abundancies, is particularly useful for 

studying plant‐bacteria interactions. Using transcriptome‐sequencing data in genetic marker 

development streamlines the construction of high‐quality genomic maps, crucial for routine 

gene identification tasks as well as potentially for refining genome assemblies for non‐model 
organisms. All the methods are useful in investigation of the unique phenotypes not present 

in the model plants, for example, M. lupulina MlS‐1 genetic line, uniquely dependent on the 

AM formation. Adaptation of standardised RNA‐seq approaches and data analysis devel‐

oped for model plants to an important crop culture P. sativum should facilitate the breeding 

of new cultivars that meet the requirements of the present‐day agriculture and possess the 

complex of beneficial traits, including increased efficiency of interactions with nodule bacteria 
and arbuscular‐mycorrhizal fungi.
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