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Abstract

The mammalian cerebral cortex is critical for sensory and motor integrations and, 
for higher-order cognitive functions. The construction of mammalian cortical circuits 
involves the coordinated interplay between cellular processes such as proliferation, 
migration and differentiation of neural and glial cell subtypes followed by accurate 
connectivity evolving in complexity in primates. Alteration in cortical development 
may induce the emergence of various pathological traits and behaviours. Among the 
large array of factors that regulate the assembly of cortical circuits, serotonin (5-HT) 
plays important role as a developmental signal that impacts on a broad diversity of 
cellular processes. 5-HT plays distinct roles during specific sensitive periods and is 
produced from various sources depending on the perinatal stage. Its roles are medi-
ated by more than fourteen 5-HT receptors that are all G-protein coupled receptors 
except the ionotropic 5-HT type 3A receptor (5-HT

3A
) mediating rapid neuronal acti-

vation. Importantly, 5-HT metabolism and signalling are influenced by numerous epi-
genetic and genetic factors, including nutrition and gut microbiota, perinatal stress, 
infection and inflammation. In this review, we will recapitulate some evidences show-
ing that dysregulation of 5-HT homeostasis and 5-HT

3A
 signalling impairs distinct 

steps of cortical circuit formation leading to the predisposition of the onset of various 
psychiatric diseases.
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1. Introduction

The functions of the mammalian cerebral cortex are processed through the activation of multi-

partite neural networks composed of excitatory glutamatergic pyramidal neurons, local mod-

ulatory interneurons that release γ-aminobutyric acid (GABA), neuropeptides and vasoactive 
substances [1–5] and by ‘glial cells’ that do far more than just feeding neurones and scaveng-

ing debris [6, 7]. Developmental perturbations impacting the maturation of cortical circuits 

can trigger neuropsychiatric disorders [8–10]. Sensitive periods or windows of vulnerability 

have been demonstrated in various processes in particular for the rodent sensory systems as 

well as in the modulation of complex behaviours.

Mammalian cortical circuit formation is the result of a series of sequential events that take 

place mainly during embryonic and early post-natal development [11–14]. These events 

include the proliferation, migration and differentiation of neurons and ‘glial cells’ that are 
largely governed by genetic programs but are also sensitive to environmental factors. Such 

extrinsic signals are extremely diverse (including guidance cues, growth factors, cell adhesion 

molecules) and among them the monoamine serotonin (5-HT) has emerged as an important 

regulator of neural circuit formation [15, 16].

In mammals, cortical 5-HT arises from multiples sources depending on the developmental 

stage. At the onset of cortical development, 5-HT is of maternal and placental origin [17–19]. 

Later, by embryonic day 16 (E16 in mice) [15, 16, 20] and by gestational week 16 (GW16 in 

human) [13, 14], serotoninergic afferents invade the cerebral cortex and contribute to provide 
5-HT locally. Not surprisingly, like in non-mammalian species, serotonin modulates neuronal 

proliferation, migration and differentiation. In addition, 5-HT is implicated in the emergence of 
many neuropsychiatric disorders, including mental retardation, autism, depression and anxiety 

[10, 15, 21–26]. Importantly, 5-HT signalling is influenced by numerous epigenetic and genetic 
factors, including nutrition and gut microbiota [27, 28], perinatal stress [29–31], infection and 

inflammation [32–35], 5-HT metabolism and storage [15, 36–38], pharmacological compounds 

such as selective serotonin reuptake inhibitors [38–40] and genetic alterations [41–44].

Our aim is to give a comprehensive overview on the possible roles of 5-HT receptor signalling 

and 5-HT homeostasis on the development of the cerebral cortex in rodent and primate with 

a specific emphasis on human. In this framework, we will highlight more particularly recent 
studies that have revealed new molecular targets of early-life 5-HT in the construction of corti-

cal circuits; in particular, the ionotropic 5-HT type 3A receptor (5-HT
3A

). We will also review 

recent clinical studies suggesting that altered 5-HT homeostasis or signalling could participate 

in the emergence of human psychiatric disease, in particular of mood and anxiety disorders.

In the following section, we will describe the general structure of the mammalian cerebral cortex focus-

ing on rodent and then presenting the specificities observed in primate/human. Then we will describe 
the major steps of the development of the mammalian cerebral cortex that is governed by a series of 
sequential events including proliferation, migration and differentiation of neurons and glial cells. 
When numerous developmental similarities are observed very precociously in rodent versus primate, 
significant specificities arose later in development in primate especially in human.
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2. Structure and development of the mammalian cerebral cortex

2.1. Neuronal components and glial components

The mammalian cerebral cortex comprises of six lamina (layers), each containing specific com-

bination of neurons and ‘glial cells’. Cortical excitability is coordinated by the interplay of excit-

atory pyramidal neurons and inhibitory interneurons. Pyramidal cells, which make up the 

majority of all neurons in the adult cortex (80% in rodent cortex), are projection neurons that 

send axons to other areas inside or outside the cortex providing output excitatory drive by 

releasing glutamate [2]. Inhibitory neurons project locally, release the neurotransmitter GABA 
and refine cortical excitability. Although GABAergic interneurons are less abundant, they have 
crucial roles in the development and organization of cortical networks that underlie a wide 

range of cortical and mental functions [8, 45, 46]. They are extremely diverse, differing in shape, 
electrophysiological properties and in the combination of neuropeptides and calcium-binding 

proteins that they express in addition to GABA [1, 47]. To facilitate the description of GABAergic 
neurons, a consortium of experts has suggested using a unified nomenclature [4, 5]. Thus, one 

can distinguish four major and highly distinct classes of GABAergic neurons in the mamma-

lian cerebral cortex (Figure 1A). First, fast-spiking interneurons expressing parvalbumin (PV) 

that gate incoming sensory information [48, 49]. Second, adapting Martinotti cells expressing 
somatostatin (SOM) that control dendritic information through local feedback inhibition [50]. 

Third, adapting bipolar interneurons expressing mainly the vasoactive intestinal peptide (VIP) 

and calretinin (CR) that preferentially target other interneurons and receive direct input from 

the thalamus [20, 51, 52]. Fourth, adapting neurogliaform interneurons expressing vasoactive 

substances, notably the neuropeptide Y (NPY) and/or nitric oxide (NO) that are responsible for 

the slow GABAergic inhibition of pyramidal cells and interneurons and vasomotion [53–56].

Although these different types of interneurons have been identified in the primate or human 
cerebral cortex, their diversity largely surpasses what is observed in rodent [12]. Interestingly, 

unique to human cerebral cortex, bipolar/von Economo neurons are present in layer V of 

the anterior cingulate and fronto-insular cortices expressing VMAT2 [57, 58]. Their possible 

involvement suggested in neuropsychiatric disorders needs to be further investigated [59]. 

In human and primate, the neuronal composition of the cerebral cortex is less homogeneous 

between areas with a higher level of arealisation than in rodent. Interestingly, the density of 

small interneurons appears very high in associative areas [60].

Besides neurons, mature ‘glial cells’ have been shown to exert roles that are extremely more 
complex than previously thought. Astrocytes are the largest glial population in the mamma-

lian brain and are well-known to ‘feed neurons’ by transforming glucose into lactate that neu-

rons can directly use as ‘carburant’, to scavenge debris and to regulate neural transmission 

and ionic homeostasis of the brain [61, 62]. Microglial cells play a role of sentinels of inflam-

matory state of the brain. In addition to these roles, astrocytes and microglial cells participate 

in regulating cell proliferation, neuronal migration and plasticity (for review, see Refs. [6, 61, 

63]). Oligodendrocytes myelinate axons and increase their conduction velocity (they will not 

be further described in this chapter).
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Figure 1. Structure of the rodent cerebral cortex and relation with serotoninergic afferents. A, The four main classes of 

interneurons (NG: neurogliaform, PV: parvalbumin+, VIP: vasoactive intestine peptide+, SOM: somatostatin+) and their 

relationship with a typical pyramidal glutamatergic neuron (adapted from [64]). B, Serotoninergic afferents arising from 
the median raphe (MnR) are thin, diffuse and display small varicosities. Serotoninergic afferents arising from the dorsal 
raphe (DR) are thick, beaded, preferentially located in superficial layer and make true synaptic contacts with small 
interneurons expressing VIP and with NG interneurons expressing the 5-HT receptor type 3A (3A). Adapted from [65]. 

5-HT: serotonin.
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2.2. Development of the rodent cerebral cortex

The cerebral cortex develops from neuroepithelial germinal cells of the telencephalic pallium 

and subpallium that massively proliferate by E11-E12 in mice and GW5-6 in human, to form 

the cerebral vesicles [66]. At this stage, microglial cells—of extracerebral origin—have already 

started to invade the telencephalon (from E9.5 in rodent [67] and GW5 in human [63]) before 

blood vessels start to penetrate and ramify in the telencephalon [68]. They will both par-

ticipate in regulating neurogenesis [69]. The first generated neurons, Cajal-Retzius (C-R) cells 
and subplate cells (SP; from E10 in mice, GW5-7 in human), constitute transient and heteroge-

neous populations of cells that originate from both pallial and subpallial territories and form 

the preplate (PP; Boulder Committee; [66, 70, 71]). SP and reelin-secreting C-R cells provide 

positioning cues and instructions to developing cortical neurons and afferents [71–74]. The 

cortical plate, is formed from E13-E17 in mice and GW7-20 in human by post-mitotic excit-

atory pyramidal neurons migrated along radial glial (RG) fibres in an inside out gradient 
of development from layer VIa to layer II [13]. At the beginning of cortical plate formation 

(E13-E14 in mice), pyramidal cells are generated from radial glial cells (RGC), whereas later 

(E15-E17 in mice), they mainly originate from intermediate progenitor cells (IPC) or basal 

progenitors deriving from RGC cells [75, 76] (Figure 2).

The primate/human cortical neurogenesis is far more complex than that of rodent involving 

more germinal zones and a larger number of cell types [77, 78]. In particular, beside the early 

RGC in the VZ, a novel class of radial cells, the outer RG (oRG), located in the outer sub-

ventricular zone (SVZ) could be responsible for the increasing number of excitatory neurons 

and the formation of gyration in primate. The second stage of human cortical development 

(GW18-20) corresponds to the genesis of the supragranular layers that likely expand from the 

oRG [14] (Figure 2A).

In rodent, the cortical GABAergic interneurons are generated outside the cortical VZ, in the 
subpallium: mainly in the medial ganglionic eminence (MGE) (E11-E14 in mice) and the 

caudal ganglionic eminence (CGE) (E14-E17 in mice) [11, 20, 52]. These regions are specified 
through a combination of distinct transcription factors and morphogenes that produce dif-

ferent classes of interneurons [80]. The ventral and the dorsal parts of the MGE expressing 

the homeobox transcription factor Lhx6 generate fast-spiking/PV+ and adapting/SOM+ inter-

neurons [81–85]. The CGE, a region that expresses the transcription factor Gsh2, COUP-TFII 

but lacks the transcription factors Nkx2.1, Nkx6.2 and Lhx6 [80, 86, 87], generates VIP+, CR+, 

NPY+ and nNOS+ interneurons [20, 52, 85, 88]. Once produced, interneurons are targeted 

towards specific brain regions, including cortex, depending on the transcription factors and 
guidance cues they express [87, 89]. They initially follow parallel migratory streams, first 
in the IZ and MZ and later on along the SVZ, before they switch their migratory mode and 

incorporate into the developing CP through radial migration (see Figure 2B). In mice, corti-

cal migration is almost completed by P4, and is followed by cortical expansion. However, 

during the first two post-natal weeks and decreasing with age the SVZ retains the capacity 
to produce CR+ interneurons contributing to the pools of GABAergic neurons mainly popu-

lating lower cortical layers and cingulate cortex [90–92]. These events are recapitulated in 

Figure 3A and B.
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Figure 2. Early stages of development of the human (A) and mouse (B) cerebral cortex in relation with 5-HT afferents. 
A-B, Both in human and rodent intense proliferation of neuroepithelium and the formation of the preplate (PP) take 
place around (E10; GW5) and (E11-E12; GW6-7) respectively. By E13-E14 in mice and GW8-10 in human, PP is split 
by the migration of the first pyramidal neurons. Cajal-Retzius cells (C-R) will remain in the marginal zone (MZ) while 
subplate neurons (SP) will be positioned below the cortical plate (CP). In addition, in human around GW10, another 

source of progenitors arises: the outer radial glial (oRG) cells that do not maintain contacts with the apical surface. 

Monoaminergic axons and thalamocortical axons (TC) are already found in the MZ and in the intermediate zone (IZ) 

and, in the IZ respectively. By E15-E16 in mice most glutamatergic neurons are generated, 5-HT axons and TC run in 
the MZ and IZ and in the IZ respectively. By GW16 in human, SP occupy a large proportion of the cortical anlage and 
oRG are still producing a high amount of neurons. Interneurons migrating first tangentially to the pial surface and later 
radially to it, incorporating CP. C, Bars indicate the time at which different factors (maternal and environmental; 5-HT of 
placental origin, 5-HT produced by the embryo itself) could affect the development of the mouse embryo. A, is adapted 
from [20] and B is adapted from [13, 14, 79].

Serotonin - A Chemical Messenger Between All Types of Living Cells114



In non-human and human primate, the origin of the very heterogenous GABAergic interneu-

rons is not so clear. Recently, studies have shown that in non-human primate, interneurons 

use a similar coding of transcription factors as in rodents and largely originate from the gan-

glionic eminences [93] (Figure 3C). However, a substantial proportion of them is likely to be 

generated in the pallium from the VZ and the SVZ [12, 94–96] (Figure 3C). Recently, migration 

of subclasses of human cortical interneurons has been reported to continue after birth [97].

2.3. Specificities of the human and primate cerebral cortex

As already mentioned, the first generated neurons, C-R and SP cells are located respectively 
in the presumptive Layer 1 and the SP zone of the human cortical anlage [66, 98, 99]. Specific 
to human, the SP zone is the largest transient compartment of the fetal neocortical anlage, 

about four times thicker than the cortical plate around midgestation [66, 100]. In humans 

and non-human primate, most SP neurons generated in the ventricular zone initially migrate 

radially, together with prospective layer VI neurons and secondarily get widespread into 

the expanding SP zone around midgestation [101]. Interestingly, at this stage, dispersion of 

SP cells in the extended SP zone is concomitant with the invasion of monoaminergic [102], 

thalamocortical and corticocortical axons in the cortical anlage [103]. SP zone begins slowly to 

disappear towards the end of gestation and during the early post-natal period. Finally, many 

Figure 3. Presumptive genesis of cortical GABAergic neurons in the rodent and human/primate embryos and fetuses. 
(A and B) In rodent, PV+ and SOM+ interneurons (INs) are generated first from the medial ganglionic eminence (MGE) 
located in the anterior telencephalon. CR+, VIP+ and neurogliaform INs are generated mainly in the caudal GE (CGE) 

and in the lateral GE (LGE) located in the basal ganglia and to a lesser extent in the anterior entopeduncular area 

(AEP) and in the pre-optic area (POA). (C) In non-human primate and in human, the picture is less clear. However 

transcription factors expression suggest that the GE produce a large part of GABAergic neurons. By contrast to rodent 
brain numerous, INs may be generated in the cortical anlage. Panel C is adapted from Ref. [12]. CR: calretinin, NG: 

neurogliaform, PV: parvalbumin, SOM: somatostatin and VIP: vasoactive intestine peptide.
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subplate neurons survive postnatally and transform into interstitial neurons of the subcortical 

white matter of the adolescent and adult brain [104]. GABA+ interstitial neurons express CB 
and CR [105]. Subcortical interstitial neurons in the white matter, which have been associated 
with a variety of neurological and psychiatric disorders of infant and adults, need to be fur-

ther investigated [105, 106]. Comparison of the rodent/human cortical development could be 

obtained by comparing Figure 2A with B and Figure 3A and B with C.

Microglial cells take part in normal establishment and maturation of neuronal circuitry 

during development [107]. In human, amoeboid microglial cells infiltrate the brain via the 
choroid plexus, the meninges and the ventricles around GW4,5, progressively colonize the 

cerebral wall from GW7 and became ramified [108, 109]. Passing through walls from GW10 

on. Interestingly, amoeboid microglial cells cluster in a band at the limit of the CP/IZ-SP zone 

at GW9-13 where early synaptogenesis takes place in the cerebral anlage [110]. They also clus-

tered in major axonal crossroads in the corpus callosum at GW16 and in the coronal radiata 

at GW19-24 [63]. Interestingly, this last fibres tract area is the target of white matter injury 
observed in inflammatory process of premature infant in cerebral palsy [111]. Similarly, a 

cluster of microglia/macrophages is detected in the cingulum bundle in the perinatal rat mod-

els of hypoxia and growth restriction developed by Verney and collaborators [112–114].

In mammals, the numerous cortical astrocytes are reported to be mainly generated not only 

from radial glial cells but also from other cell types that are not clearly elucidated such as 

progenitors in the SVZ [62]. Human astrocytes are far more complex in diversity and size, and 

the ratio of glia to neuron is higher when compared to rodent [115]. The protoplasmic and 

fibrous astrocytes appeared in waves in the cortical anlage [115], begin to differentiate around 
midgestation and co-expression between vimentin and GFAP is observed [116]. Functional 

Figure 4. Presumptive comparative schedule for development of the cerebral cortex in rat and human.
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astrocytes evolve in parallel with the maturation of the vascular endothelial cells involved 

in blood-brain barrier (BBB) formation [68, 117]. During development, monocarboxylates 

including lactate represent a major source of energy for the developing neurons [118]. The 

expression of monocarboxylate transporters such as MCT1 confirms the functionality of astro-

cytes in the energy trafficking occurring in the human visual cortex from GW19 [119].

Here, we provide a schematic drawing (Figure 4) comparing the schedule for the different key 
events occurring during the cortical development in human and in rat.

Serotonin is provided to the developing mammalian cerebral cortex via many sources. Numerous stud-
ies, cited in the section below, have described this in rodent but only sparse data are available in primate 
especially in human.

3. Sources of serotonin to the mammalian cortex

3.1. Serotonin synthesis and degradation

Serotonin is synthesized from the essential amino acid tryptophan. In the blood stream, tryp-

tophan is linked to serum albumin but a proportion that decreases with age is free to cross 

the BBB (10% at post-natal day 12 when BBB is thought fully functional [120]). Tryptophan 

is then transported, accumulated in 5-HT-producing cells and hydroxylated by the trypto-

phan hydroxylase enzymes (Tph). Tryptophan hydroxylase type 2 (Tph2) is expressed in 

serotoninergic neurons of the raphe nuclei and myenteric neurons [121, 122], while Tph1 is 

expressed in the pineal gland, in the placenta and in various peripheral tissues [18, 19, 122, 

123]. 5-hydroxytryptophan is then further decarboxylated into 5-HT by the aromatic amino 

acid decarboxylase (AADC). The availability of tryptophan to synthesise 5-HT depends on 

the inflammatory status of the organism. In case of inflammation, indoleamine 2,3-dioxygen-

ase (IDO) is generated, which can lead to 5-HT depletion in the organism [35].

5-HT is catabolized by monoamine oxidases A or B (MAOA or MAOB [124, 125]). MAOA 

has higher affinity for 5-HT than MAOB and is strongly co-expressed with MAOB between 
E12 to P7 in rodent serotoninergic neurons [126]. After P7, the expression of MAOB is 
largely predominant in 5-HT+ neurons [126]. MAOs are also expressed by many non-amin-

ergic structures, in particular the placenta and in a subpopulation of VZ-SVZ cells ([126, 

127] and our unpublished results) where they may regulate the amount of 5-HT locally. 

Interestingly, MAOs expression and protein synthesis are tightly regulated and have been 

shown to be sensitive to environmental factors such as inflammation and ischaemia-like 
conditions [34].

During embryonic development, the telencephalon receives 5-HT arising from multiple 

sources that are mainly of extra-embryonic or maternal origin at the beginning of gestation. 

Later, they progressively arise from different embryonic regions. Below, we will briefly reca-

pitulate the sources of serotonin provided to the embryonic telencephalon in relation with 

cortical development.
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3.2. Development of the serotoninergic neurons and projections

In mammals, brainstem serotoninergic neurons are subdivided into 9 groups (B1–B9) forming 
a caudal and a rostral division. The rostral division (B5–B9; including the dorsal (B6, B7) and 
median raphe nuclei (B5, B8)) projects to the forebrain [65, 128, 129] (Figure 1B). Since these 

initial descriptions, recent mapping of 5-HT projections have been performed in mice reveal-

ing a higher level of refinement in the projections of raphe clusters towards specific targets 
[130]. Such level of analysis is lacking in primate and human.

In mice, the rostral division differentiates by E10-E11 (E12-E15 in rats); dorsal and median 
raphe send axons that reach the cortico-striatal junction by E14 in mice before entering the 

cortical anlage as two tangential streams, one above and the other below the CP [131, 132]. In 

the MZ, C-R cells and serotoninergic axons are in close apposition and make transient synap-

tic contacts [133, 134]. Below the CP, 5-HT afferents are mainly restricted to the IZ and the SP 
[131]. By E16-E17 in mice, thalamocortical axons (TCAs) invade the cortical anlage and are in 
close apposition with 5-HT axons running in the IZ. At the end of corticogenesis, 5-HT axons 

gradually arborize, sending numerous branches into the CP [131].

By P21, serotoninergic axons become evenly distributed in the different cortical territories 
showing their mature pattern of innervation [128]. Dorsal raphe axons are generally thin with 

pleiotropic varicosities that preferentially arborize in cortical layers IV and V. By contrast, 
median raphe axons show large spherical varicosities, form true chemical synapses, preferen-

tially arborize in layer I and lower white matter, and contact interneurons containing VIP and 
cholecystokinin (CCK) [64, 65, 135] (Figure 1). Thus, 5-HT could be released along the entire 

axonal network through volume transmission or in synaptic clefts.

Anatomical studies have described the primate raphe nuclei and the serotonergic cor-

tical innervation at mature stages [136–138], but only a few studies have reported their 

development. In Rhesus monkey, the genesis of raphe neurons was detected in the first 
quarter of gestation (E28-E45, birth: E165) [139] and 5HT+ fibres were reported in the ento-

rhinal cortex at E70, similarly to tyrosine-hydroxylase+ catecholaminergic axons [140]. In 

human cortical anlage, one can suggest that the early afferents of serotoninergic axons as 
described for the catecholaminergic afferents may penetrate the cortical anlage around 
GW8 and invade the fetal cortex at midgestation in a mature-like pattern [102, 141]. In par-

allel, SERT expression in developing TCAs have been detected at GW10 in human cortical 

anlage [142]. Comparable expression has been described for the visual sensory system in 

the marmoset [143].

3.3. Other sources of serotonin

The first demonstrations showing that 5-HT was influencing very early embryonic devel-
opment were provided by pioneer groups showing that ex vivo application of 5-HT or alter-

ation of 5-HT levels altered normal development of various embryonic structures before 

serotoninergic neurons have innervated these structures [144–149]. Several studies suggest 

that 5-HT derives from maternal or placental sources (see Figure 5 that recapitulates those 

studies).
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Figure 5. Maternal, placental, genetic and pharmacological conditions determining the amount of serotonin supply 

to the developing telencephalon. Tryptophan is provided to the embryo but could also be converted into 5-HTP 

(5-hydroxytryptamine) or further into serotonin (5-HT) in the placenta via the expression of various metabolic enzymes 

expressed in the placenta. In addition, 5-HT from maternal sources could be taken up by the placenta that also expressed 

serotonin transporter (SERT). During early embryonic stages 5-HT could be delivered directly to the developing 

embryo. After E15-E16, when 5-HT axons of the hindbrain reach the cortex, 5-HT could act on various target cells (Cell) 

expressing selected arrays of 5-HT receptors. At this stage 5-HT could also be taken up and stored by thalamocortical 

afferents (TC) and released after specific stimulation. In addition 5-HTP is provided to the (tryptophan hydroxylase type 
2) Tph2 and the (aromatic amino acid decarboxylase) AADC containing neurons that synthetize 5-HT. In this drawing 

adapted from [19], we have pointed in the large left arrow the maternal conditions that are best known to interfere with 

5-HT availability to the embryo. We have also indicated that inhibitors of 5-HT uptake (SSRIs) that cross all barriers 

affect SERT function at all levels. Genetic polymorphisms or methylations mentioned in the text are indicated by a star. 
The major catabolic enzymes of 5-HT, monoamine oxidases are indicated (MAO). Tryptophan hydroxylase type 1; Tph1.
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Several groups have suggested that, at early stages, 5-HT arises from maternal sources. Indeed, 

this was suggested when analysing the phenotype of embryos generated from Tph1+/− or Tph1+/+ 

mothers. Tph1−/− and Tph1+/− embryos obtained from crosses between heterozygous parents were 

indistinguishable from their wild-type littermates (the crown-rump length (CRL) was of 7.4–
7.5 mm). By contrast, 80–88.9% of Tph1−/− and Tph1+/− embryos born Tph1−/− mothers displayed  

low CRL values (5.8–7.4 mm). This suggests that the partial lack of maternal 5-HT provided 

to the embryo may be sufficient to explain some of the littermates phenotypes [18, 123].

Recently, the placenta (that is of embryonic origin) has been identified as an important source 
of 5-HT for the developing embryo. The placenta (syncytiothrophoblastic cells and sinusoi-

dal throphoblastic giant cells) of the placenta contain Tph1, AADC and MAO [124, 125, 127], 

and convert tryptophan of maternal origin into 5-HT as soon as E10-E11 [150]. Homozygote 

knock-out embryos in which 5-HT neurons fail to fully differentiate or to produce normal 
amounts of 5-HT levels do not display severe cortical defects when gestating in heterozygous 

dams. Examples include mice lacking the transcription factors Lmx1b [151] or Pet-1 [152], in 

which all or 70–80% of 5-HT raphe neurons fail to develop, and mice lacking Tph2 [153, 154]. 

Further analysis revealed that Pet-1 knock-out embryos developing in heterozygous dams 

have normal 5-HT levels before the closure of the BBB (before E15 [68]). These studies suggest 

that 5-HT produced by the placenta may buffer maternal deficiency. However, the compensa-

tory mechanisms remain to be clarified.

Outside the CNS, 5-HT is also produced in the periphery of the developing embryo: from 

the myenteric plexus (from E15-E16), from enterochromaffin cells of the lining lumen of 
the digestive tract (from E18), from neuroepithelial cells of the respiratory tracts, from the 

parafollicular cells of the thyroid and from pinealocytes (belonging to the CNS; from E12). 

5-HT could also be taken up by SERT expressing cells and further delivered to a distant 

region. SERT is expressed in platelets and mast cells [155, 156] that become numerous 

around E12 in mice. These cells could cross the BBB, transit across blood vessels that start 
to invade the developing cortex by E10-E11 in mice [68]. Whether these structures and 

mechanisms provide substantial amount of 5-HT to the developing telencephalon remains 

to be clarified.

Transiently, sensory thalamic neurons express SERT (E15-P15 in mice) and the vesicular mono-

amine transporter type 2 (VMAT2) that are respectively responsible for the uptake and packag-

ing of 5-HT into synaptic vesicles [37, 157, 158]. Sensory thalamic neurons do not contain MAOs 

[159] but are equipped to release 5-HT, possibly with other transmitters (e.g. glutamate), after 
specific stimulation (review in Ref. [15]). Interestingly, it has been suggested that thalamocorti-

cal axons (TCAs) could be implicated in the proliferation and migration of glutamatergic neu-

rons [160, 161] in addition to their well-known role on axonal refinement (see below).

Tryptophan is provided to the embryo but could also be converted into 5-hydroxytryptamine 

(5-HTP) or further into serotonin (5-HT; violet) in the placenta via the expression of various 

metabolic enzymes expressed in the placenta. In addition, 5-HT from maternal sources could 

be taken up by the placenta that also expressed serotonin transporter (SERT). During early 

embryonic stages, 5-HT could be delivered directly to the developing embryo. After E15-E16, 

when 5-HT axons of the hindbrain reach the cortex, 5-HT could act on various target cells 

(Cell; maroon) expressing selected arrays of 5-HT receptors. At this stage, 5-HT could also be 
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taken up and stored by thalamocortical afferents (TC) and released after specific stimulation. 
In addition, 5-HTP is provided to the tryptophan hydroxylase type 2 (Tph2) and the aromatic 

L-amino acid decarboxylase (AADC) containing neurons that synthesize 5-HT. In this drawing 

adapted from Ref. [19], we have pointed in orange the maternal conditions that are best known 

to interfere with 5-HT availability to the embryo. We have also indicated that inhibitors of 5-HT 

uptake (SSRIs) that cross all barriers affect SERT function at all levels. Genetic polymorphisms 
or methylations mentioned in the text are indicated by a star. The major catabolic enzymes of 

5-HT, monoamine oxidases (MAO) are indicated.

Serotonin receptor signalling has been shown to regulate various cellular events. However, the large 
spectrum of serotonin receptors still need to be investigated in cortical development in rodent and even 
more in primate.

4. Serotonin receptors with specific attention to the 5-HT
3A

4.1. Transducing pathways

At least fourteen genes encoding for 5-HT receptors have been identified and cloned in the 
mammalian brain [162–165]. In addition, isoform diversity, alternative splicing of some sub-

types and RNA editing add to the diversity of serotoninergic receptors. With the exception of 

the 5-HT
3
 receptors, all 5-HT receptors are coupled to G-proteins. According to their second 

messenger coupling pathways, 5-HT receptors have been categorized into four groups. The 

5-HT
1 
and 5-HT

5
 receptors are coupled to Gi/Go proteins and exert their inhibitory effects on 

adenylate cyclase, inhibiting cAMP formation. The 5-HT
2
 receptors are coupled to Gq pro-

teins and stimulate phospholipase C to increase the hydrolysis of inositol phosphates and 

elevate intracellular Ca2+. The 5-HT
4,6,7

 receptors are coupled to Gs proteins and are positively 

linked to adenylate cyclase and increase cAMP formation. 5-HT
3
 receptors belong to a family 

of ligand-gated ion channel receptors that include nicotinic acetylcholine receptors, GABA
A
 

receptors and glycine receptors and are modulated by intracellular cyclic AMP [162]. The 

5-HT
3 
receptors respond to neurotransmitter release via direct (through the 5-HT

3
 receptor 

itself) or indirect activation of the voltage-gated Ca2+ channels and lead to Ca2+ entry into the 

cell [166]. 5-HT
3
 receptors are composed of five subunits, with the majority being homomers 

of 5-HT
3A

 receptors. Heteromeric 5-HT3AB receptors have been observed in specific brain 
regions and display lower Ca2+ permeability than the homomeric 5-HT

3A
 receptors [167–169].

4.2. Expression patterns

Despite the efforts of many laboratories and open databases, a complete description of the devel-
opmental expression pattern of 5-HT receptors in the cerebral cortex is still lacking in rodent and 
very few studies have been performed in primate. However, pictures are emerging in the rodent 

brain. For example, 5-HT
1A,F

 are expressed in neocortical proliferative zones in E14.5 rodent brain 

[17] and the 5-HT2B are expressed in the proliferative zones of the human occipital cortex [129] 

and in all microglial cells [170, 171]. The 5-HT1A,B,D, 5-HT
2A

, 5-HT
2C

 and 5-HT
3A

, are expressed in 

specific subpopulations of post-mitotic neurons [17, 88, 91, 167, 168, 172, 173], whereas the 5-HT
6
 

is expressed in both migrating interneurons and pyramidal neurons [174, 175].
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The dynamic expression pattern of the 5-HT
3A

 receptor has been described in details recently 

in mice. In the developing cortex, 5-HT
3A

 is expressed as early as E11-E12 in neurons express-

ing reelin (Cajal-Retzius cells) and/or GABA cells located in the PP [88, 173]. The 5-HT
3A

 is 

expressed by newly post-mitotic GABAergic neurons located in the CGE and AEP/PO, where 
about 30% of cortical GABAergic neurons are generated ([52, 88]; see Figure 3A and B). Using 

homochronic in utero grafting in combination with a transgenic mouse line expressing GFP 

under the control of the 5-HT
3A

 promoter (5-HT
3A

:GFP animals), we have shown that this expres-

sion was protracted in two large subpopulations of cortical GABAergic neurons: the multipo-

lar interneurons expressing NPY displaying late spiking and accommodating properties and 

in VIP+ interneurons displaying adapting and bursting properties [52, 88, 176]. In addition,  

subpopulations of NO+ and reelin+ interneurons also express 5-HT
3A

 ([52, 55]; Figure 1A).  

By post-natal stages and decreasing with age, 5-HT
3A

 is also expressed by young neurons 

expressing doublecortin and/or calretinin generated in the SVZ and migrating towards the 

olfactory bulb (rostral medial stream) and various cortical and subcortical regions [90, 91]. In 

addition, we have reported that transient-amplifying precursors located in the white matter 
ventrally to the anterior cingulate cortex produced neurons destined to populate the anterior 

cingulate cortex and its vicinity [91].

Serotonin homeostasis and signalling act as a sculptor of cortical circuitry. In this section, we will 
review the different steps of cortical assembly that have been shown to be modulated by serotonin.

5. Impact of serotonin imbalance on cortical circuit assembly

5.1. Serotonin and cell proliferation

It has been postulated for some time that 5-HT regulates the proliferation of a wide variety of 

cell types including cortical neurons. Pharmacological studies inducing depletion of several 

monoamines triggered drawbacks due to the non-selectivity of the drugs used and they will 

not be discussed here.

Recently, transgenic models selectively targeting specific serotonin-related genes in differ-

ent neuronal populations have started to provide more insights. For instance, mice defi-

cient in Tph1 or Tph2 showed body weight reduction and delayed maturation of cortical 

layers [18, 153, 177]. Heterozygous embryos growing in null mutant Tph1−/− mice showed 

an average of 30% reduction in proliferating cells (BrdU+) in the VZ after a 2 h pulse of 
BrdU administration, an analog of thymidine that is incorporated during the S phase of 
the cell cycle [18]. Although these studies suggest that 5-HT from Tph1+ sources may regu-

late the proliferation of neuronal precursors, additional studies are needed to refine these 
observations.

Hyposerotonin-induced microcephaly could also be due to increased death of post-mitotic 

neurons or neuronal progenitors. Indeed, 5-HT
2
 stimulation promotes the survival of gluta-

matergic neurons in vitro with a maximal effect observed for stages E16 and E18 in rats [178], 

and 5-HT
1A 

stimulation increases neuroprotection in models of ischaemia and protects neu-

ronal cultures against serum withdrawal [179, 180]. Furthermore, activation of 5-HT
2
 reverts 
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increased apoptosis observed in VMAT2:KO mice, in which dopamine, norepinephrine and 

5-HT are depleted [181].

The analysis of mice lacking MAOA and B, which displays high 5-HT levels but normal 
dopamine and norepinephrine levels during development, revealed a specific reduction of 
symmetric divisions of intermediate precursors cells [76] in SVZ during late corticogenesis 

(E17.5) [182]. This unexpected alteration was reverted after pharmacological inhibition of 

5-HT synthesis (with p-chlorophenylalanine; PCPA) between E14.5-E19.5. In addition, neuro-

sphere formation was modulated by 5-HT in a dose-dependent manner in vitro, with prolif-

erative effects observed for concentration ranging from 10 to 100 ng/ml and inhibitory effects 
observed for higher concentration (1000 ng/ml). In this study, these inhibitory effects were 
associated with decreased 5-HT

1A
 labelling of neuronal precursors [182] previously known 

to trigger neurogenesis in adult dentate gyrus. Hence, 5-HT might modulate cortical density 

through its proliferation-inducing action on progenitors.

During early development, 5-HT could also promote gap junction coupling through 5-HT
2
 

stimulation [183] that coordinates cell-cell assembly during cell cycle [184].

5.2. Serotonin and neuronal migration

In most phyla, 5-HT triggers motility of various cell types including vertebrate lymphocytes 

(chick, fish, rodent [185, 186]) and microglia towards the CNS [170]. In the mammalian cortex, 

a role for 5-HT in regulating the migration of cortical neurons has recently emerged. In this 

context, 5-HT produces opposite consequences depending on its concentration.

One of the first experiments to address this question was made ex vivo on cortical explants main-

tained in a serum-free medium and supplemented with low 5-HT concentration. The migra-

tion of glutamatergic neurons was examined and was found be faster in explants supplied 

with 5-HT suggesting that low 5-HT dosage may enhance the radial migration. Furthermore, 

decreasing 5-HT levels during development delayed or disrupted cortical migration, sug-

gesting that 5-HT produces a positive drive on cortical migration [181]. In rats depleted in 

5-HT by PCPA during the peak of migration (E12/E13 to E17 in rats), abnormal accumulation 

of GABAergic neurons below the subplate at E17 and a marked reduction of calretinin+ and 
CCK/VIP+ GABAergic neurons at adult stage were reported [187]. Interestingly, mice lacking 

Tph2 also display reductions of selective GABAergic populations in limbic structures [188]. 

5-HT
3A

 is protractedly expressed by 30% of GABAergic neurons leading to calcium entry into 
the cell (see above). Using electrophysiological recording and calcium imaging, it was recently 

shown that CGE-derived interneurons that expressed 5-HT
3A 

increase their response to 5-HT
3
 

activation while they migrate radially and integrate the cortical plate (late phase of migration; 

see Figure 6A). This activation leads to an increased growth cone activity and to a decrease 

resting-state of 5-HT
3A

+ interneurons. Further, using in vivo graft of 5-HT
3A

 deficient inter-

neurons into wild-type host, it was shown that this role was cell-autonomous. Interestingly, 

long-lasting alteration in the positioning of reelin+ cortical interneurons was reported. This 

suggests that 5-HT
3A

 activation acts as a migratory signal for CGE-derived interneurons and 

alters definitively the positioning of their subpopulation [189]. A similar conclusion was sug-

gested using SERT:KO animals that showed a specific increase in the migratory speed and 
positioning of VIP+ interneurons [92].
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Although dynamic expression pattern of 5-HT receptors is lacking in developing primate and 
human cortex, a very recent study by the group of Alvarez-Bulla showed that in human, late-
born interneurons continue to migrate in the cingulate cortex even after birth. These interneurons 

expressed a combination of transcription factors and a substantial fraction of them expressed 

COUP-TFII or SP8 (22 or 28% respectively) that are mainly specific of 5-HT
3A

+ interneurons sug-

gesting that 5-HT could also modulate the migration and positioning of these neurons in human 

[97]. Interestingly, in the primate cortex, it was shown that 5-HT
3A

 is expressed by a subset of 

small GABA+, substance P+ or calbindin+ neurons and by medium-size CR+ neurons [190].

By contrast, 5-HT excess appears to have opposite role on migrating neurons. Using high dos-

age of 5-HT ex vivo on cortical slices, it has been shown that 5-HT induces a decrease in the 

Figure 6. Modulation of cerebral circuit formation by 5-HT
3A

 A, 5-HT
3A

 (3A) is expressed by migrating interneurons 

generated in the caudal ganglionic eminence (CGE). Physiological concentration of serotonin (5-HT), induce an 

acceleration of the radial migration of 5-HT3A+ interneurons at E17. B, At early postnatal stage, Cajal-Retzius cells (C-R) 
that express 5-HT

3A
, respond to 5-HT application by releasing reelin that through the activation of the integrin signaling 

pathway induce pruning of apical dendrites of pyramidal neurons (Pyr). This figure is adapted from [200].
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migratory speed of non-GABAergic and GABAergic neurons [174]. High 5-HT levels induced 

a retraction of the leading processes of GABAergic neurons migrating into the intermediate 
zone and cortical plate. This effect was shown to be mediated, at least in part, by the 5-HT

6
 

receptor activating the cAMP-signalling pathway [191]. Such role was also reported for gluta-

matergic neurons (for review, see Ref. [175]).

5.3. Serotonin and differentiation of cortical neurons and afferents

Lauder and Krebs were the first to report that depletion of 5-HT delayed the cessation of cell 
division, a marker of cell differentiation [144, 192]. After these pioneering studies, numerous 

groups have shown that 5-HT can influence dendritic and axonal morphogenesis during cor-

tical development.

5.3.1. Serotonin and dendritic maturation of cortical neurons

5-HT was shown to regulate the physiology of C-R cells known to be key regulators of various 

aspects of cortical development including dendritic arborization. This role is largely mediated 

by the secretion of the glycoprotein, reelin [72, 74]. C-R cells receive serotoninergic projections 

with which they make transient synaptic contacts [134] and reelin secretion was shown to be 

regulated in part by the amount of brain 5-HT. Pharmacological perturbation of the serotonin-

ergic system by 5-methoxytryptamine (a non-selective 5-HT receptor agonist) reduces reelin 

levels circulating in the blood flow at P0 [134], leading to the formation of abnormal micro-

columns in the mice P7 presubicular cortex, a feature that is observed in autistic syndromes 

(ASDs). The activation of C-R cells was proposed to be modulated by 5-HT
1A

 or by the 5-HT
3A

 

receptors, as they were both suspected to be expressed in the marginal zone during develop-

ment [167, 193]. Interestingly, the 5-HT
3A

 has been shown to be expressed by C-R cells (aver-

aging 80% at P0) and the synaptic activation of 5-HT
3A

 was shown to be sufficient to induce 
action-potential firing on C-R cells suggesting that 5-HT

3A
 could play a role in dendritic devel-

opment [173]. The contribution of the 5-HT
3A

 was further analysed. The deletion or blockade of 

5-HT
3A

 receptors was shown to induce excessive arborization of layers II-III apical dendrites of 

pyramidal neurons. Application of the N-terminal region of reelin, that induces the activation 

of a signalling pathway that is independent from the classic ApoER2/VLDL-pathway, rescued 

the dendritic phenotype of cortical pyramidal neurons in 5-HT
3A

:KO cortical slices, whereas 

reelin blockade leads to an increased growth of apical dendrites ([173]; see Figure 6B). This 

study suggested that increased reelin secretion due to over-activation of the 5-HT
3A

 receptor 

could induce a decreased growth of apical dendrites. Interestingly, fluoxetine (an inhibitor of 
5-HT uptake, SSRI) administration from E8 to E18 decreased the dendritic basal and apical 

arbor complexity of layer II/III pyramidal neurons in the somatosensory cortex. Such a role is 

specific to a selective developmental period and SSRIs have opposite functions at mature stages 
[194]. Furthermore, the effects of SSRIs on developing dendrites were abolished when adminis-

tered in the 5-HT
3A

:KO mice or after pharmacological blockade of the 5-HT
3A

 receptor [173, 195]. 

Moreover, the fine tuning of 5-HT
3A 

signalling has been shown to be responsible for the anxi-

ety-like behaviours that are induced by prenatal fluoxetine treatment in wild type mice [196]. 

These results suggest that developmental excess of serotonin increases reelin secretion by over-
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activating 5-HT
3A

 receptors expressed on C-R cells, consequently inhibiting dendritic growth of 

pyramidal neurons. Whether 5-HT
3A

+ interneurons participate in this process remains unclear.

Animals fed with low tryptophan diet [197, 198] display cortical pyramidal neurons with 

decreased dendritic complexity and spine density. Thus, 5-HT may regulate dendritic matu-

ration and spine density through different types of 5-HT receptors that remain to be identi-
fied. In this respect, the 5-HT

1A
 is strongly expressed in the developing cortical plate [17] and 

is known to be necessary for the dendritic maturation of CA1 pyramidal neurons [199]. The 

5-HT
6
 receptor also appears as a good candidate for controlling neuritic and dendritic devel-

opment due to its ability to engage signalling pathways (e.g. Fyn, mTOR and Cdk5) playing 

roles in these processes. In vitro studies strongly suggest a role of 5-HT
6
 on neuritic extension 

(for review see [175]). However, a clear view on the implication of the variety of 5-HT recep-

tors expressed in the developing cortex remains to be elucidated.

5.3.2. Serotonin and axonal development within the cerebral cortex

The first clear demonstration that serotonin acts on cellular processes involved in the forma-

tion of cortical circuits comes from works performed on the rodent barrel field in the somato-

sensory cortex (S1). The serendipitous generation of a mouse displaying deficiency in the 
gene encoding for MAOA was at the starting point of these discoveries. These studies showed 

that excessive 5-HT amounts (ninefold increase at P0) in the developing cortex induced an 

abnormal organization of thalamocortical afferents (TCAs) growing in the layer IV of the pri-
mary somatosensory cortex [36, 37]. These alterations were later interpreted as an abnormal 

refining of TC axons due to a specific rise of 5-HT occurring during a sensitive period (P0-
P4: [201]). In addition, pharmacological normalization of 5-HT levels in MAOA:KO mice by 

P0-P4 PCPA-treatment was sufficient to revert to normal the organization of S1 in MAOA:KO 
mice [37]. Later, it was shown that genetic SERT deficiency affected S1 organization similarly 
in rodent. These alterations are not only structural but also impair whisker-mediated per-

ception [10]. Hyper-activation of the 5-HT1B receptor, transiently expressed on TCAs during 

development, plays a key role in this process. Indeed, SERT:KO and MAOA:KO mice that 

are deficient in 5-HT1B receptors are rescued [202–205]. Interestingly, serotonin excess does 

not only impairs S1 organization, but also such a role could probably be generalized in other 

regions displaying transient 5-HT uptake [158] as this was shown for the visual system [202, 

205, 206]. Moreover, such a role could also occur in primate cortex since SERT is transiently 

expressed in the visual sensory thalamic neurons, at least in the marmoset [143]. So far due 

to the difficulty to obtain human embryonic samples of late stages, clear sets of data are still 
lacking but numerous non-serotoninergic fibres, presumably TCAs, labelled by SERT have 
been detected at GW10 [142].

Surprisingly, perinatal 5-HT deficiency only induces a reduction of barrel field organization 
without altering its general organization [177, 207, 208]. Nevertheless, further studies need to 

be carried since early reduction of 5-HT during embryonic development induces the emer-

gence of altered behaviour [153].

Other studies suggest a prenatal role for 5-HT in regulating initial TCAs pathfinding. TCAs 
express SERT, 5-HT1B and 5-HT

1D
 receptors at a time when TCAs are navigating towards the 

pallium. Embryonic down-regulation of 5-HT1B/C receptors in TCAs using in utero electropora-
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tion leads to abnormal TCAs pathfinding [209]. Furthermore, it has been shown that 5-HT 

modifies the attractive versus repulsive responsiveness of TCAs to netrin-1 [209], an impor-

tant guidance molecule for TCAs. Given these findings, it is thus likely that abnormal 5-HT 
levels could also affect these earlier stages of TCAs pathfinding and lead to abnormal long 
range of TCAs wiring [19, 150].

5.4. Serotonin and the regulation of astrocytes and microglial cell functions

Astrocytes and microglial cells have been shown to be implicated in key processes—from 

neurogenesis to synaptogenesis—involved in cortical development (for review, see Ref. [61]). 

These cells bear several 5-HT receptors depending on their stage and state (resting or acti-

vated) making 5-HT an indirect actor of cortical development via the modulation of their 

functions [170]. Pioneer studies have shown that 5-HT
1A

 and 5-HT
2
 are expressed by both 

immature and mature astrocytes in human and rodent cortex, and that 5-HT stimulates the 

release of several trophic factor produced by glial cells that promote neuritic extension and 

synaptogenesis of cortical and serotoninergic neurons such as S100β or BDNF. Conversely, 
lesions of the serotoninergic system were shown to increase GFAP and to decrease the release 

of several trophic factors [210, 211].

More recently, several groups have focused their attention on the implications of microg-

lial cells that colonize the embryonic telencephalon at the very beginning of its formation in 

rodent and human (see above; [63, 212]). Through local phagocytic activities and the release 

of various molecules (such as interleukin-1beta or tumor necrosis factor-alpha), microglial 

cells have been shown to regulate neurogenesis, to participate in axonal and dendritic orga-

nizations and pruning [212–216]. From early stage of colonization, microglial cells have been 

shown to express, at least, the 5-HT2B receptor and at later stages or upon stimulation (such 

as inflammation), several other 5-HT receptors have been detected in rodent (5-HT1F,2A,2B,3B,5A 

and 5-HT
7; 

[170]). The activation of these receptors has been shown to regulate their motility, 

their phagocytic properties and selective reshaping of axonal and dendritic arborizations. For 

instance, 5-HT2B has recently been shown to induce synaptic refinement of retinal projections 
to the thalamus since this process is impaired in mice lacking 5-HT2B selectively in microglial 

cells [171].

During early development, the serotoninergic system is challenged by various genetic and epigen-

etic factors such as medications altering 5-HT transporter function, by nutrition and stress including 
ischaemia/hypoxia. In this section, we review how these factors may induce the emergence of various 
pathological disorders in primate and human.

6. Serotonin imbalance and consequences in human pathology

6.1. Serotonin imbalance and 5-HT
3 
receptor modulation in human pathology

Developmental imbalance of 5-HT homeostasis or serotonin receptor signalling impacts vari-

ous processes involved in the formation of cortical circuits and has consequences on the emer-

gence of abnormal behaviour in rodent. Some similarities have been detected in primate and 
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human but many aspects remain to be tested, in particular, the cellular processes implicated 

(conditioned by SERT or 5-HT receptors expressions) and the time windows of vulnerability.

In human, three major causes of 5-HT imbalance leading to psychiatric diseases have been 

clearly identified: abnormal metabolism of 5-HT, exposure of fetuses to SSRIs and genetic 
inheritance of SERT variants (these points of vulnerability have been indicated in Figure 5). 

Following the discovery of the lack of MAOA in Norrie disease [217], abnormal regulation of the 

enzymes implicated in 5-HT metabolism has been known for long to be associated with neuro-

psychiatric diseases (recently reviewed by Naoi et al. [218]). However, it is not known whether 

the alteration in prenatal or post-natal human life induces such illness. Pharmacological SSRIs 

treatment gave clearer answers. Indeed, SSRIs during pregnancy are still largely used among 

women ((2–13%) [219]); despite the high incidence of mood disorders in pregnant women 

(around 20% of pregnant women are affected) and the deleterious effect of maternal stress on 
fetal development. However, SSRIs crossing the placenta, are detectable in breast milk, reach 

the developing brain. Both, short-term (e.g. fetal cardiovascular malformations) and long-term 
drawbacks of the treatments have been revealed (see below). During gestation, SSRIs induced 

a reduction of blood flow in the middle cerebral artery at GW36 [220] and reduced fetal head 

growth [221]. SSRIs induce reduced motor movements and altered speech perception at 6–10 

months of age, increased irritability, and persistent blunted pain reactivity [222, 223]. Children 

exposed to SSRIs during pregnancy have poor scores on psychomotor developmental scales 

[224] and higher risks to develop autism spectrum disorders [225]. The risk appeared higher 

when exposure to SSRIs occurred during the second trimester and with higher dosage of SSRIs, 

suggesting deleterious effects on early neural circuit formation. The third well-known cause of 
excessive 5-HT-signalling in human is of genetic origin. There are two variants of SERT alleles 

leading to different levels of SERT expression: the short form that induces decreased levels of 
SERT expression and SERT hypofunction [41] and the long form. Hypofunctional s-allele has 

been shown to increase the risk for a wide range of psychopathological traits. When combined 

with maternal anxiety during pregnancy, infants and children carrying the s-allele showed 

higher levels of negative emotionality compared to l-allele carriers [42] and increased scores 

of anxiety and depression [43, 226]. Interestingly, platelets that bear SERT (generally accepted 

to be identical to neuronal SERT), VMAT2 and 5-HT
2
 receptors have been suspected to play a 

role in the emergence of autistic disease in human. Dysregulation in platelets function has been 

largely used as a marker of autism, however clarifications need to emerge from further studies 
(for review, see Refs. [227, 228].

Although the consequences are subtle, they reveal that both genetic and environmental SERT 

deficiency impact human development and increase the risks of future psychiatric diseases 
[229, 230]. Overall, these findings point to the general conclusion that various clinical patho-

logical traits, including autism, depression and anxiety-related phenotypes are associated to 

conditions of SERT deficiency during development. One should also consider that alteration 
of other genes may have synergistic effect on the emergence of those diseases or by contrast 
that bearing allelic variants of other genes could dampen the negative effects of SSRIs [231].

Rodent studies have revealed that the 5-HT
3A

 regulates cellular events involved in cortical circuit 

formation (see above). Human genetic studies have recently explored more deeply the involve-

ment of 5-HT
3A

 polymorphisms and methylation in the emergence of various pathological  
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traits and they now provide compelling evidence for such a role. In human genetic studies, 

it has been shown that a single-nucleotide polymorphism in 5-HT
3A

 (SNP; rs1062613) was 

associated with bipolar disease [232]. Moreover, allelic variants or specific levels of methyla-

tion of the 5-HT
3A

 have been shown to be tightly linked with alcohol-dependence, modulation 

of emotional networks and increase of depressive-related symptoms [233]. The emergence of 

depressive-like diseases was associated at the structural level with a decreased grey matter 
in the fronto-limbic region. Interestingly, 5-HT

3A
 has been shown to interact with the brain-

derived neurotrophic factor, a key factor for circuit formation and consolidation [234, 235]. 

Thus, genetic polymorphism or methylation of 5-HT
3A

 appears as a marker of susceptibility to 

develop a large panel of diseases.

Together, this further confirms complex connections between early-life stress and the sero-

toninergic systems.

6.2. Linking serotoninergic system and neonatal inflammation/ischaemia with the 
emergence of neuropsychiatric diseases in children and adults

Early-life inflammation modulates adulthood-inflammatory response [236]. In early brain 

injuries, activation of the immune system during fetal and neonatal life affects critical phases of 
brain development, with long-lasting consequences for neurological and mental health [237]. 

Neonatal stroke, systemic infection, or excitotoxicity/hypoxia-ischaemia (see Figure 5) induce 

perinatal insults activating the immune system and trigger peripheral and central responses 

that involve immune mediators (cytokines and chemokines), reactive oxygen species (ROS), 

reactive nitrosative species, excitotoxicity, mitochondrial impairment, and vascular integrity. 

In general, neonatal encephalopathy is of complex aetiology, encompassing several causal 

events, with strong evidence of fetal exposure to infection. The complex and multifactorial 

process of perinatal brain injury involves sensitization, whereby factors not severe enough by 

themselves to induce significant brain damage make the developing brain more susceptible 
to a second insult [238]. Substantial numbers of preclinical studies have demonstrated the 

sensitizing effects of gestational or neonatal systemic inflammation, gestational chronic mild 
maternal stress, and gestational hypoxia on perinatal excitotoxic or hypoxic-ischaemic lesions. 

Genetic factors have also been shown to influence the developing brain's response to sensitiz-

ing factors. Efforts to design therapies aimed to reduce the sensitizing effects of inflamma-

tion have been undertaken as neuroprotective agents, such as therapeutic hypothermia which 

have been performed mainly in models of pure hypoxia-ischaemia [238]. One of the main 

alterations following perinatal infection/inflammation is a persistent low-grade inflammation 
characterized by higher expression of inflammatory mediators and also microglial reactivity 
during adulthood [236]. Adult rodent exposed during early-life to LPS-enhanced expression 

of CD11b, IL-1β and IL-6 and also more activated microglia in the hippocampus, the striatum 
and substantia nigra/ventral tegmental area [239, 240]. This persistent low-grade inflamma-

tion sensitizes the brain to secondary injuries, which can lead to neurological disorders such 

as cerebral palsy, mood disorder, schizophrenia, or Parkinson disease [241].

Serotoninergic central system is vulnerable following a neonatal hypoxic-ischemic insult 

induced in a rat model [242] with a significant reduction in 5-HT levels, 5-HT transporter 
expression and 5-HT+ neurons is the dorsal raphe, 6 weeks after insult compared to control 
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animals. Inhibition of neuroinflammation by Minocycline within the first week after injury 
is sufficient to prevent long-term neuroinflammation as well as serotonergic system damage 
still. The loss of dorsal raphe 5-HT+ neurons has been suspected to be induced by an altera-

tion of one of their major target tissues: the prefrontal cortex [243].

7. Conclusion and perspectives

Both genetic and environmental factors that influence serotonin signalling during specific 
sensitive periods of development impact specific cellular events involved in the development 
of cortical circuits. Such alterations depending on the cellular target and the time of occur-

rence could result in a predisposition to a large spectrum of cognitive or psychiatric illnesses 

including autism and depression.

Acknowledgements

The work was supported by the INSERM. We warmly thank Pierre Gressens for his kind sup-

port, Stephane Peineau for kindly helping us with informatics and softwares and Zsolt Csaba 

for carefully reading and correcting our manuscript. T.V. thanks Hervé Langzam for fruitful 

discussions.

Author details

Tania Vitalis* and Catherine Verney

*Address all correspondence to: tnvitalis@gmail.com

PROTECT U1141, French Institute of Health and Medical Research, University Paris Diderot, 

University Sorbonne Paris Cité, Paris, France

References

[1] Peters A, Kara DA. The neuronal composition of area 17 of rat visual cortex. II. The non-

pyramidal cells. Journal of Comparative Neurology. 1985;234(2):242-263

[2] Peters A, Kara DA. The neuronal composition of area 17 of rat visual cortex. I. The pyra-

midal cells. Journal of Comparative Neurology. 1985;234(2):218-241

[3] Baraban SC, Tallent MK. Interneuron Diversity series: Interneuronal neuropeptides – 
endogenous regulators of neuronal excitability. Trends Neurosciences. 2004;27(3):135-142

[4] Ascoli GA, et al. Petilla terminology: Nomenclature of features of GABAergic interneu-

rons of the cerebral cortex. Nature Reviews Neuroscience. 2008;9(7):557-568

Serotonin - A Chemical Messenger Between All Types of Living Cells130



[5] DeFelipe J, et al. New insights into the classification and nomenclature of cortical GABA-
ergic interneurons. Nature Reviews Neuroscience. 2013;14(3):202-216

[6] Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: New roles for the synaptic strip-

per. Neuron. 2013;77(1):10-18

[7] Krencik R, van Asperen JV, Ullian EM. Human astrocytes are distinct contributors to the 

complexity of synaptic function. Brain Research Bulletin. 2017;129:66-73

[8] Marin O. Interneuron dysfunction in psychiatric disorders. Nature Reviews Neuro-

science. 2012;13(2):107-120

[9] Stolp H, et al. The long and the short of it: Gene and environment interactions during 

early cortical development and consequences for Long-Term neurological disease. Front 

Psychiatry. 2012;3:50

[10] Kinast K, et al. Genetic and pharmacological manipulations of the serotonergic system 

in early life: Neurodevelopmental underpinnings of autism-related behavior. Frontiers 

in Cellular Neuroscience. 2013;7:72

[11] Wonders CP, Anderson SA. The origin and specification of cortical interneurons. Nature 
Reviews Neuroscience. 2006;7(9):687-696

[12] Rakic P. Evolution of the neocortex: A perspective from developmental biology. Nature 

Reviews Neuroscience. 2009;10(10):724-735

[13] Budday S, Steinmann P, Kuhl E. Physical biology of human brain development. Frontiers 
in Cellular Neuroscience. 2015;9:257

[14] Nowakowski TJ, et al. Transformation of the radial glia scaffold demarcates two stages 
of human cerebral cortex development. Neuron. 2016;91(6):1219-1227

[15] Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: News from 

mouse molecular genetics. Nature Reviews Neuroscience. 2003;4(12):1002-1012

[16] Vitalis T, et al. Developmental expression pattern of monoamine oxidases in sensory  
organs and neural crest derivatives. Journal of Comparative Neurology. 2003;464(3): 

392-403

[17] Bonnin A, et al. Expression mapping of 5-HT1 serotonin receptor subtypes during fetal 
and early postnatal mouse forebrain development. Neuroscience. 2006;141(2):781-794

[18] Cote F, et al. Maternal serotonin is crucial for murine embryonic development. 

Proceedings of the National Academy of Sciences of the United States. 2007;104(1):329-334

[19] Bonnin A, Levitt P. Fetal, maternal, and placental sources of serotonin and new implica-

tions for developmental programming of the brain. Neuroscience. 2011;197:1-7

[20] Vitalis T, Rossier J. New insights into cortical interneurons development and classifica-

tion: Contribution of developmental studies. Developmental Neurobiology. 2011;71(1): 

34-44

Sculpting Cerebral Cortex with Serotonin in Rodent and Primate
http://dx.doi.org/10.5772/intechopen.69000

131



[21] Berger-Sweeney J, Hohmann CF. Behavioral consequences of abnormal cortical 
development: Insights into developmental disabilities. Behavioural Brain Research. 
1997;86(2):121-142

[22] Levitt P, et al. New evidence for neurotransmitter influences on brain development. 
Trends Neurosciences. 1997;20(6):269-274

[23] Bonnin A, et al. The SSRI citalopram affects fetal thalamic axon responsiveness to 
netrin-1 in vitro independently of SERT antagonism. Neuropsychopharmacology. 

2012;37(8):1879-1884

[24] Lesch KP, Waider J. Serotonin in the modulation of neural plasticity and networks: 

Implications for neurodevelopmental disorders. Neuron. 2012;76(1):175-191

[25] Velasquez F, et al. The influence of 5-HTTLPR transporter genotype on amygdala-subgen-

ual anterior cingulate cortex connectivity in autism spectrum disorder. Developmental 

Cognitive Neuroscience. 2016;24:12-20

[26] Brummelte S, et al. Developmental changes in serotonin signaling: Implications for early 
brain function, behavior and adaptation. Neuroscience. 2017;342:212-231

[27] Serfaty CA, et al. Nutritional tryptophan restriction and the role of serotonin in develop-

ment and plasticity of central visual connections. Neuroimmunomodulation. 2008;15(3): 

170-175

[28] Yano JM, et al. Indigenous bacteria from the gut microbiota regulate host serotonin bio-

synthesis. Cell. 2015;161(2):264-276

[29] Papaioannou A, et al. Effects of neonatal handling on basal and stress-induced mono-

amine levels in the male and female rat brain. Neuroscience. 2002;114(1):195-206

[30] Papaioannou A, et al. Sex differences in the effects of neonatal handling on the animal's 
response to stress and the vulnerability for depressive behaviour. Behavioural Brain 
Research. 2002;129(1-2):131-139

[31] Provenzi L, et al. SLC6A4 methylation as an epigenetic marker of life adversity expo-

sures in humans: A systematic review of literature. Neuroscience & Biobehavioral 
Reviews. 2016;71:7-20

[32] Winter C, et al. Dopamine and serotonin levels following prenatal viral infection 

in mouse – implications for psychiatric disorders such as schizophrenia and autism. 

European Neuropsychopharmacology. 2008;18(10):712-716

[33] Winter C, et al. Prenatal immune activation leads to multiple changes in basal neurotrans-

mitter levels in the adult brain: Implications for brain disorders of neurodevelopmen-

tal origin such as schizophrenia. International Journal of Neuropsychopharmacology. 

2009;12(4):513-524

[34] Gupta V, et al. Molecular mechanism of monoamine oxidase A gene regulation under 

inflammation and ischemia-like conditions: Key roles of the transcription factors GATA2, 
Sp1 and TBP. Journal of Neurochemistry. 2015;134(1):21-38

Serotonin - A Chemical Messenger Between All Types of Living Cells132



[35] Miller AH, Raison CL. Are Anti-inflammatory therapies viable treatments for psychiat-
ric disorders?: Where the rubber meets the road. JAMA Psychiatry. 2015;72(6):527-528

[36] Cases O, et al. Aggressive behavior and altered amounts of brain serotonin and norepi-

nephrine in mice lacking MAOA. Science. 1995;268(5218):1763-1766

[37] Cases O, et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient 
mice: Role of a serotonin excess during the critical period. Neuron. 1996;16(2):297-307

[38] Popa D, et al. Lasting syndrome of depression produced by reduction in serotonin uptake 

during postnatal development: Evidence from sleep, stress, and behavior. Journal of 

Neurosciences. 2008;28(14):3546-3554

[39] Ansorge MS, et al. Early-life blockade of the 5-HT transporter alters emotional behavior 

in adult mice. Science. 2004;306(5697):879-881

[40] Ansorge MS, Morelli E, Gingrich JA. Inhibition of serotonin but not norepinephrine 

transport during development produces delayed, persistent perturbations of emotional 

behaviors in mice. Journal of Neurosciences. 2008;28(1):199-207

[41] Murphy DL, Lesch KP. Targeting the murine serotonin transporter: Insights into human 

neurobiology. Nature Reviews Neuroscience. 2008;9(2):85-96

[42] Pluess M, et al. 5-HTTLPR moderates effects of current life events on neuroti-
cism: Differential susceptibility to environmental influences. Progress in Neuro-
Psychopharmacology & Biological Psychiatry. 2010;34(6):1070-1074

[43] Karg K, et al. The serotonin transporter promoter variant (5-HTTLPR), stress, and 

depression meta-analysis revisited: Evidence of genetic moderation. Archives of General 

Psychiatry. 2011;68(5):444-454

[44] Suidan GL, et al. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities. 

PLoS One. 2013;8(3):e59032

[45] Rubenstein JL, Merzenich MM. Model of autism: Increased ratio of excitation/inhibition 

in key neural systems. Genes, Brain and Behavior. 2003;2(5):255-267

[46] Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nature  

Reviews Neuroscience. 2005;6(4):312-324

[47] Kawaguchi Y, Kondo S. Parvalbumin, somatostatin and cholecystokinin as chemical 

markers for specific GABAergic interneuron types in the rat frontal cortex. Journal of 
Neurocytology. 2002;31(3-5):277-287

[48] Sun QQ, Huguenard JR, Prince DA. Barrel cortex microcircuits: Thalamocortical feed-

forward inhibition in spiny stellate cells is mediated by a small number of fast-spiking 

interneurons. Journal of Neurosciences. 2006;26(4):1219-1230

[49] Inoue T, Imoto K. Feedforward inhibitory connections from multiple thalamic cells 

to multiple regular-spiking cells in layer 4 of the somatosensory cortex. Journal of 

Neurophysiology. 2006;96(4):1746-1754

Sculpting Cerebral Cortex with Serotonin in Rodent and Primate
http://dx.doi.org/10.5772/intechopen.69000

133



[50] Karube F, Kubota Y, Kawaguchi Y. Axon branching and synaptic bouton phenotypes in 

GABAergic nonpyramidal cell subtypes. Journal of Neuroscience. 2004;24(12):2853-2865

[51] Ferezou I, et al. 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocorti-

cal vasoactive intestinal peptide/cholecystokinin interneurons. Journal of Neuroscience. 

2002;22(17):7389-7397

[52] Rudy B, et al., Three groups of interneurons account for nearly 100% of neocortical 
GABAergic neurons. Developmental Neurobiology. 2011;71(1):45-61

[53] Olah S, et al. Regulation of cortical microcircuits by unitary GABA-mediated volume 
transmission. Nature. 2009;461(7268):1278-1281

[54] Tricoire L, Vitalis T. Neuronal nitric oxide synthase expressing neurons: A journey from 

birth to neuronal circuits. Frontiers in Neural Circuits. 2012;6:82

[55] Perrenoud Q, et al. Characterization of Type I and Type II nNOS-Expressing interneu-

rons in the barrel cortex of mouse. Frontiers in Neural Circuits. 2012;6:36

[56] Perrenoud Q, et al. Activation of cortical 5-HT(3) receptor-expressing interneurons 

induces NO mediated vasodilatations and NPY mediated vasoconstrictions. Frontiers 

in Neural Circuits. 2012;6:50

[57] Allman JM, et al. The von Economo neurons in the frontoinsular and anterior cingulate 

cortex. Annals of the New York Academy of Sciences. 2011;1225:59-71

[58] Dijkstra, A.A., et al., Von Economo Neurons and Fork Cells: A Neurochemical Signature 

Linked to Monoaminergic Function. Cereb Cortex, 2016;1-14. doi: 10.1093/cercor/

bhw358.

[59] Liu J, et al. Pathological changes of von economo neuron and fork neuron in neuropsy-

chiatric diseases. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2016;38(1):113-117

[60] Collins CE, et al. Cortical cell and neuron density estimates in one chimpanzee 

hemisphere. Proceedings of the National Academy of Sciences of the United States. 

2016;113(3):740-745

[61] Reemst K, et al. The indispensable roles of microglia and astrocytes during brain devel-

opment. Frontiers in Human Neuroscience. 2016;10:566

[62] Ge WP, Jia JM. Local production of astrocytes in the cerebral cortex. Neuroscience. 

2016;323:3-9

[63] Verney C, et al. Early microglial colonization of the human forebrain and possible 

involvement in periventricular white-matter injury of preterm infants. Journal of 
Anatomy. 2010;217(4):436-448

[64] Celada P, Puig MV, Artigas F. Serotonin modulation of cortical neurons and networks. 

Frontiers in Integrative Neuroscience. 2013;7:25

[65] Tork I. Anatomy of the serotonergic system. Annals of the New York Academy of Sciences. 

1990;600:9-34. discussion 34-5

Serotonin - A Chemical Messenger Between All Types of Living Cells134



[66] Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: Boulder 
Committee revisited. Nature Reviews Neuroscience. 2008;9(2):110-122

[67] Ginhoux F, et al. Fate mapping analysis reveals that adult microglia derive from primi-

tive macrophages. Science. 2010;330(6005):841-845

[68] Daneman R, et al. Pericytes are required for blood-brain barrier integrity during embryo-

genesis. Nature. 2010;468(7323):562-566

[69] Nie K, Molnar Z, Szele FG. Proliferation but not migration is associated with blood ves-

sels during development of the rostral migratory stream. Developmental Neuroscience. 

2010;32(3):163-172

[70] Rakic S, Zecevic N. Emerging complexity of layer I in human cerebral cortex. Cerebral 

Cortex. 2003;13(10):1072-1083

[71] Barber M, Pierani A. Tangential migration of glutamatergic neurons and cortical pattern-

ing during development: Lessons from Cajal-Retzius cells. Developmental Neuroscience. 
2016;76(8):847-881

[72] Super H, et al. Disruption of neuronal migration and radial glia in the developing cere-

bral cortex following ablation of Cajal-Retzius cells. Cerebral Cortex. 2000;10(6):602-613

[73] Herz J, Chen Y. Reelin, lipoprotein receptors and synaptic plasticity. Nature Reviews 

Neuroscience. 2006;7(11):850-859

[74] Lakatosova S, Ostatnikova D. Reelin and its complex involvement in brain devel-

opment and function. The International Journal of Biochemistry & Cell Biology. 
2012;44(9):1501-1504

[75] Kriegstein AR, Noctor SC. Patterns of neuronal migration in the embryonic cortex. 
Trends in Neurosciences. 2004;27(7):392-329

[76] Corbin JG, et al. Regulation of neural progenitor cell development in the nervous sys-

tem. Journal of Neurochemistry. 2008;106(6):2272-2287

[77] Hansen DV, et al. Neurogenic radial glia in the outer subventricular zone of human neo-

cortex. Nature. 2010; 464(7288):554-561

[78] LaMonica BE, et al. OSVZ progenitors in the human cortex: An updated perspective on 
neurodevelopmental disease. Current Opinion in Neurobiology. 2012;22(5):747-753

[79] Dehay C, Kennedy H. Cell-cycle control and cortical development. Nature Reviews 

Neuroscience. 2007;8(6):438-450

[80] Flames N, et al. Delineation of multiple subpallial progenitor domains by the combinato-

rial expression of transcriptional codes. Journal of Neuroscience. 2007;27(36):9682-9695

[81] Xu Q, et al. Origins of cortical interneuron subtypes. Journal of Neuroscience. 2004;24(11): 

2612-2622

Sculpting Cerebral Cortex with Serotonin in Rodent and Primate
http://dx.doi.org/10.5772/intechopen.69000

135



[82] Butt SJ, et al. The temporal and spatial origins of cortical interneurons predict their phys-

iological subtype. Neuron. 2005;48(4):591-604

[83] Miyoshi G, et al. Physiologically distinct temporal cohorts of cortical interneu-

rons arise from telencephalic Olig2-expressing precursors. Journal of Neuroscience. 

2007;27(29):7786-7798

[84] Wonders CP, et al. A spatial bias for the origins of interneuron subgroups within the 

medial ganglionic eminence. Developmental Biology. 2008;314(1):127-136

[85] Kessaris N, et al. Genetic programs controlling cortical interneuron fate. Current Opinion 

in Neurobiology. 2014;26:79-87

[86] Fogarty M, et al. Spatial genetic patterning of the embryonic neuroepithelium gener-

ates GABAergic interneuron diversity in the adult cortex. Journal of Neuroscience. 
2007;27(41):10935-10946

[87] Touzot A, et al. Molecular control of two novel migratory paths for CGE-derived inter-

neurons in the developing mouse brain. Development. 2016;143(10):1753-1765

[88] Vucurovic K, et al. Serotonin 3A receptor subtype as an early and protracted marker of 

cortical interneuron subpopulations. Cerebral Cortex. 2010;20(10):2333-2347

[89] Miyoshi G, et al. Prox1 regulates the Subtype-Specific development of caudal gangli-
onic Eminence-Derived GABAergic cortical interneurons. Journal of Neuroscience. 
2015;35(37):12869-12889

[90] Inta D, et al. Neurogenesis and widespread forebrain migration of distinct GABAergic 
neurons from the postnatal subventricular zone. Proceedings of the National Academy 

of Sciences of the United States. 2008;105(52):20994-20999

[91] Riccio O, et al. New pool of cortical interneuron precursors in the early postnatal dorsal 

white matter. Cerebral Cortex. 2012;22(1):86-98

[92] Frazer S, Otomo K, Dayer A. Early-life serotonin dysregulation affects the migration and 
positioning of cortical interneuron subtypes. Translational Psychiatry. 2015;5:e644

[93] Ma T, et al. Subcortical origins of human and monkey neocortical interneurons. Nature 

Neuroscience. 2013;16(11):1588-1597

[94] Verney C. Phenotypic expression of monoamines and GABA in the early development 
of human telencephalon, transient or not transient. Journal of Chemical Neuroanatomy. 

2003;26(4):283-292

[95] Petanjek Z, Berger B, Esclapez M. Origins of cortical GABAergic neurons in the cyno-

molgus monkey. Cerebral Cortex. 2009;19(2):249-262

[96] Yu X, Zecevic N. Dorsal radial glial cells have the potential to generate cortical interneu-

rons in human but not in mouse brain. Journal of Neuroscience. 2011;31(7):2413-2420

Serotonin - A Chemical Messenger Between All Types of Living Cells136



[97] Paredes MF, et al. Extensive migration of young neurons into the infant human frontal 

lobe. Science. 2016;354(6308):aaf7073

[98] Meyer G. Building a human cortex: The evolutionary differentiation of Cajal-Retzius 
cells and the cortical hem. Journal of Anatomy. 2010;217(4):334-343

[99] Verney C, Derer P. Cajal-Retzius neurons in human cerebral cortex at midgestation 
show immunoreactivity for neurofilament and calcium-binding proteins. Journal of 
Comparative Neurology. 1995;359(1):144-153

[100] Molliver ME, Kostovic I, van der Loos H. The development of synapses in cerebral cor-

tex of the human fetus. Brain Research. 1973;50(2):403-407

[101] Duque A, et al. Secondary expansion of the transient subplate zone in the developing 

cerebrum of human and nonhuman primates. Proceedings of the National Academy of 

Sciences of the United States. 2016;113(35):9892-9897

[102] Zecevic N, Verney C. Development of the catecholamine neurons in human embryos 

and fetuses, with special emphasis on the innervation of the cerebral cortex. Journal of 

Comparative Neurology. 1995;351(4):509-535

[103] Kostovic I, Rakic P. Developmental history of the transient subplate zone in the visual 

and somatosensory cortex of the macaque monkey and human brain. Journal of 

Comparative Neurology. 1990;297(3):441-470

[104] Kostovic I, Rakic P. Cytology and time of origin of interstitial neurons in the white mat-

ter in infant and adult human and monkey telencephalon. Journal of Neurocytology. 

1980;9(2):219-242

[105] Defelipe J, et al. Cortical white matter: Beyond the pale remarks, main conclusions and 
discussion. Frontiers in Neuroanatomy. 2010;4:4

[106] Xu G, et al. Late development of the GABAergic system in the human cerebral cor-

tex and white matter. Journal of Neuropathology & Experimental Neurology. 2011; 
70(10):841-858

[107] Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Developmental 

Neuroscience. 2011;33(3-4):199-209

[108] Rezaie P, et al. Microglia in the cerebral wall of the human telencephalon at second 

trimester. Cerebral Cortex. 2005;15(7):938-949

[109] Monier A, et al. Distribution and differentiation of microglia in the human encepha-

lon during the first two trimesters of gestation. Journal of Comparative Neurology. 
2006;499(4):565-582

[110] Monier A, et al. Entry and distribution of microglial cells in human embryonic 

and fetal cerebral cortex. Journal of Neuropathology & Experimental Neurology. 

2007;66(5):372-382

Sculpting Cerebral Cortex with Serotonin in Rodent and Primate
http://dx.doi.org/10.5772/intechopen.69000

137



[111] Verney C, et al. Microglial reaction in axonal crossroads is a hallmark of noncystic peri-

ventricular white matter injury in very preterm infants. Journal of Neuropathology & 
Experimental Neurology. 2012;71(3):251-264

[112] Baud O, et al. Gestational hypoxia induces white matter damage in neonatal rats: A 
new model of periventricular leukomalacia. Brain Pathology. 2004;14(1):1-10

[113] Olivier P, et al. Prenatal ischemia and white matter damage in rats. Journal of 
Neuropathology & Experimental Neurology. 2005;64(11):998-1006

[114] Olivier P, et al. Moderate growth restriction: Deleterious and protective effects on white 
matter damage. Neurobiology of Disease. 2007;26(1):253-263

[115] Oberheim NA, et al. Astrocytic complexity distinguishes the human brain. Trends in 

Neurosciences. 2006;29(10):547-553

[116] Howard B, Chen Y, Zecevic N. Cortical progenitor cells in the developing human telen-

cephalon. Glia. 2006;53(1):57-66

[117] Baud O, et al. Perinatal and early postnatal changes in the expression of monocar-

boxylate transporters MCT1 and MCT2 in the rat forebrain. Journal of Comparative 

Neurology. 2003;465(3):445-454

[118] Belanger M, Allaman I, Magistretti PJ. Brain energy metabolism: Focus on astrocyte-
neuron metabolic cooperation. Cell Metabolism. 2011;14(6):724-738

[119] Fayol L, et al. Immunocytochemical expression of monocarboxylate transporters in the 

human visual cortex at midgestation. Brain Research. Developmental Brain Research. 
2004;148(1):69-76

[120] Ribatti D, et al. Development of the blood-brain barrier: A historical point of view. The 
Anatomical Record. 2006;289(1):3-8

[121] Walther DJ, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. 

Science. 2003;299(5603):76

[122] Patel PD, Pontrello C, Burke S. Robust and tissue-specific expression of TPH2 versus 
TPH1 in rat raphe and pineal gland. Biological Psychiatry. 2004;55(4):428-433

[123] Cote F, et al. Disruption of the nonneuronal tph1 gene demonstrates the importance 

of peripheral serotonin in cardiac function. Proceedings of the National Academy of 

Sciences of the United States. 2003;100(23):13525-13530

[124] Shih JC, Grimsby J, Chen K. The expression of human MAO-A and B genes. Journal of 
Neural Transmission Supplement. 1990;32:41-47

[125] Grimsby J, et al. Tissue distribution of human monoamine oxidase A and B mRNA. 
Journal of Neurochemistry. 1990;55(4):1166-1169

[126] Vitalis T, et al. Developmental expression of monoamine oxidases A and B in the cen-

tral and peripheral nervous systems of the mouse. Journal of Comparative Neurology. 

2002;442(4):331-347

Serotonin - A Chemical Messenger Between All Types of Living Cells138



[127] Wu HH, Choi S, Levitt P. Differential patterning of genes involved in serotonin metabo-

lism and transport in extra-embryonic tissues of the mouse. Placenta. 2016;42:74-83

[128] Steinbusch HW. Distribution of serotonin-immunoreactivity in the central nervous sys-

tem of the rat-cell bodies and terminals. Neuroscience. 1981;6(4):557-618

[129] Lidov HG, Molliver ME. An immunohistochemical study of serotonin neuron devel-

opment in the rat: Ascending pathways and terminal fields. Brain Research Bulletin. 
1982;8(4):389-430

[130] Muzerelle A, et al. Conditional anterograde tracing reveals distinct targeting of indi-

vidual serotonin cell groups (B5-B9) to the forebrain and brainstem. Brain Structure and 
Function. 2016;221(1):535-561

[131] Wallace JA, Lauder JM. Development of the serotonergic system in the rat embryo: An 

immunocytochemical study. Brain Research Bulletin. 1983;10(4):459-479

[132] Aitken AR, Tork I. Early development of serotonin-containing neurons and pathways 

as seen in wholemount preparations of the fetal rat brain. Journal of Comparative 

Neurology. 1988;274(1):32-47

[133] Radnikow G, Feldmeyer D, Lubke J. Axonal projection, input and output synapses, and 

synaptic physiology of Cajal-Retzius cells in the developing rat neocortex. Journal of 
Neurosciences. 2002;22(16):6908-6919

[134] Janusonis S, Gluncic V, Rakic P. Early serotonergic projections to Cajal-Retzius cells: 
Relevance for cortical development. Journal of Neurosciences. 2004;24(7):1652-1659

[135] Hornung JP, Celio MR. The selective innervation by serotoninergic axons of calbindin-

containing interneurons in the neocortex and hippocampus of the marmoset. Journal of 

Comparative Neurology. 1992;320(4):457-467

[136] Azmitia EC, Gannon PJ. The primate serotonergic system: A review of human and ani-

mal studies and a report on Macaca fascicularis. Advances in Neurology. 1986;43:407-468

[137] Berger B, et al. Regional and laminar distribution of the dopamine and serotonin 
innervation in the macaque cerebral cortex: A radioautographic study. Journal of 

Comparative Neurology. 1988;273(1):99-119

[138] Hornung JP. The human raphe nuclei and the serotonergic system. Journal of Chemical 

Neuroanatomy. 2003;26(4):331-343

[139] Levitt P, Rakic P. The time of genesis, embryonic origin and differentiation of the brain 
stem monoamine neurons in the rhesus monkey. Brain Research. 1982;256(1):35-57

[140] Berger B, Alvarez C, Goldman-Rakic PS. Neurochemical development of the hippocam-

pal region in the fetal rhesus monkey. I. Early appearance of peptides, calcium-binding 

proteins, DARPP-32, and monoamine innervation in the entorhinal cortex during the 

first half of gestation (E47 to E90). Hippocampus. 1993;3(3):279-305

[141] Verney C, et al. Immunocytochemical evidence of well-developed dopaminergic and 

noradrenergic innervations in the frontal cerebral cortex of human fetuses at midgesta-

tion. Journal of Comparative Neurology. 1993;336(3):331-344

Sculpting Cerebral Cortex with Serotonin in Rodent and Primate
http://dx.doi.org/10.5772/intechopen.69000

139



[142] Verney C, Lebrand C, Gaspar P. Changing distribution of monoaminergic markers in 

the developing human cerebral cortex with special emphasis on the serotonin trans-

porter. The Anatomical Record. 2002;267(2):87-93

[143] Lebrand C, et al. Transitory uptake of serotonin in the developing sensory pathways of 

the common marmoset. Journal of Comparative Neurology. 2006;499(4):677-689

[144] Lauder JM, Krebs H. Serotonin as a differentiation signal in early neurogenesis. 
Developmental Neuroscience. 1978;1(1):15-30

[145] Shuey DL, Sadler TW, Lauder JM. Serotonin as a regulator of craniofacial morpho-

genesis: Site specific malformations following exposure to serotonin uptake inhibitors. 
Teratology. 1992;46(4):367-378

[146] Yavarone MS, et al. Serotonin uptake in the ectoplacental cone and placenta of the 

mouse. Placenta. 1993;14(2):149-161

[147] Moiseiwitsch JR, Lauder JM. Serotonin regulates mouse cranial neural crest migration. 

Proceedings of the National Academy of Sciences of the United States. 1995;92(16): 

7182-7186

[148] Whitaker-Azmitia PM, et al. Serotonin as a developmental signal. Behavioural Brain 
Research. 1996;73(1-2):19-29

[149] Buznikov GA, Lambert HW, Lauder JM. Serotonin and serotonin-like substances as 
regulators of early embryogenesis and morphogenesis. Cell Tissue Research. 2001; 

305(2):177-186

[150] Bonnin A, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 
2011;472(7343):347-350

[151] Smidt MP, et al. A second independent pathway for development of mesencephalic 

dopaminergic neurons requires Lmx1b. Nature Neuroscience. 2000;3(4):337-341

[152] Hendricks T, et al. The ETS domain factor Pet-1 is an early and precise marker of cen-

tral serotonin neurons and interacts with a conserved element in serotonergic genes. 

Journal of Neuroscience. 1999;19(23):10348-10356

[153] Alenina N, et al. Growth retardation and altered autonomic control in mice lacking 

brain serotonin. Proceedings of the National Academy of Sciences of the United States. 

2009;106(25):10332-10337

[154] Migliarini S, et al. Lack of brain serotonin affects postnatal development and serotoner-

gic neuronal circuitry formation. Molecular Psychiatry. 2012;18(10):1106-1118

[155] Jankovic BD. Neuroimmunomodulation: Facts and dilemmas. Immunology Letters. 
1989;21(2):101-118

[156] Zhuang X, Silverman AJ, Silver R. Brain mast cell degranulation regulates blood-brain 
barrier. Journal of Neurobiology. 1996;31(4):393-403

Serotonin - A Chemical Messenger Between All Types of Living Cells140



[157] Cases O, et al. Plasma membrane transporters of serotonin, dopamine, and norepineph-

rine mediate serotonin accumulation in atypical locations in the developing brain of 

monoamine oxidase A knock-outs. Journal of Neuroscience. 1998;18(17):6914-6927

[158] Lebrand C, et al. Transient developmental expression of monoamine transporters in the 

rodent forebrain. Journal of Comparative Neurology. 1998;401(4):506-524

[159] Vitalis T, et al. Interactions between TrkB signaling and serotonin excess in the devel-
oping murine somatosensory cortex: A role in tangential and radial organization of 

thalamocortical axons. Journal of Neuroscience. 2002;22(12):4987-5000

[160] Dehay C, et al. Cell-cycle kinetics of neocortical precursors are influenced by embryonic 
thalamic axons. Journal of Neuroscience. 2001;21(1):201-214

[161] Edgar JM, Price DJ. Radial migration in the cerebral cortex is enhanced by signals from 

thalamus. European Journal of Neuroscience. 2001;13(9):1745-1754

[162] Hoyer D, et al. International Union of Pharmacology classification of receptors for 
5-hydroxytryptamine (Serotonin). Pharmacological Reviews. 1994;46(2):157-203

[163] Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity 

of 5-HT receptors. Pharmacology Biochemistry and Behavior. 2002;71(4):533-554

[164] Raymond JR, et al. Multiplicity of mechanisms of serotonin receptor signal transduc-

tion. Pharmacology & Therapeutics. 2001;92(2-3):179-212

[165] Millan MJ, et al. Signaling at G-protein-coupled serotonin receptors: Recent advances 

and future research directions. Trends in Pharmacological Sciences. 2008;29(9):454-464

[166] Chameau P, van Hooft JA. Serotonin 5-HT(3) receptors in the central nervous system. 

Cell Tissue Research. 2006;326(2):573-581

[167] Tecott LH, Maricq AV, Julius D. Nervous system distribution of the serotonin 5-HT3 
receptor mRNA. Proceedings of the National Academy of Sciences of the United States. 

1993;90(4):1430-1434

[168] Morales M, Bloom FE. The 5-HT3 receptor is present in different subpopulations  
of GABAergic neurons in the rat telencephalon. Journal of Neuroscience. 1997;17(9): 

3157-3167

[169] Davies PA, et al. The 5-HT3B subunit is a major determinant of serotonin-receptor func-

tion. Nature. 1999;397(6717):359-363

[170] Krabbe G, et al. Activation of serotonin receptors promotes microglial injury-induced  

motility but attenuates phagocytic activity. Brain, Behavior, and Immunity. 2012;26 
(3):419-428

[171] Kolodziejczak M, et al. Serotonin modulates developmental microglia via 5-HT2B 
receptors: Potential implication during synaptic refinement of retinogeniculate projec-

tions. ACS Chemical Neuroscience. 2015;6(7):1219-1230

Sculpting Cerebral Cortex with Serotonin in Rodent and Primate
http://dx.doi.org/10.5772/intechopen.69000

141



[172] Johnson DS, Heinemann SF. Embryonic expression of the 5-HT3 receptor subunit, 

5-HT3R-A, in the rat: An in situ hybridization study. Molecular and Cellular Neuro-

science. 1995;6(2):122-138

[173] Chameau P, et al. The N-terminal region of reelin regulates postnatal dendritic matura-

tion of cortical pyramidal neurons. Proceedings of the National Academy of Sciences of 

the United States. 2009;106(17):7227-7232

[174] Riccio O, et al. Excess of serotonin affects neocortical pyramidal neuron migration. 
Translational Psychiatry. 2011;1:e47

[175] Dayer AG, et al. 5-HT6 receptor: A new player controlling the development of neural 

circuits. ACS Chemical Neuroscience. 2015;6(7):951-960

[176] Lee S, et al. The largest group of superficial neocortical GABAergic interneurons expresses 
ionotropic serotonin receptors. Journal of Neuroscience. 2010;30(50):16796-16808

[177] Narboux-Neme N, et al. Postnatal growth defects in mice with constitutive depletion of 

central serotonin. ACS Chemical Neuroscience. 2013;4(1):171-181

[178] Dooley AE, Pappas IS, Parnavelas JG. Serotonin promotes the survival of cortical gluta-

matergic neurons in vitro. Experimental Neurology. 1997;148(1):205-214

[179] Bielenberg GW, Burkhardt M. 5-hydroxytryptamine1A agonists. A new therapeutic 
principle for stroke treatment. Stroke. 1990;21(12 Suppl):IV161-IV163

[180] Ahlemeyer B, et al. S-100beta protects cultured neurons against glutamate- and stauro-

sporine-induced damage and is involved in the antiapoptotic action of the 5 HT(1A)-

receptor agonist, Bay x 3702. Brain Research. 2000;858(1):121-128

[181] Stankovski L, et al. Developmental cell death is enhanced in the cerebral cortex of 

mice lacking the brain vesicular monoamine transporter. Journal of Neuroscience. 

2007;27(6):1315-1324

[182] Cheng A, et al. Monoamine oxidases regulate telencephalic neural progenitors in  

late embryonic and early postnatal development. Journal of Neuroscience. 2010;30(32): 

10752-10762

[183] Roerig B, Feller MB. Neurotransmitters and gap junctions in developing neural circuits. 
Brain Research. Brain Research Reviews. 2000;32(1):86-114

[184] Bittman K, et al. Cell coupling and uncoupling in the ventricular zone of developing 
neocortex. Journal of Neuroscience. 1997;17(18):7037-7044

[185] Khan N, Deschaux P. Role of serotonin in fish immunomodulation. The Journal of 
Experimental Biology. 1997;200(Pt 13):1833-1838

[186] Boehme SA, et al. Cutting edge: Serotonin is a chemotactic factor for eosinophils and 
functions additively with eotaxin. Journal of Immunology. 2004;173(6):3599-3603

[187] Vitalis T, et al. Embryonic depletion of serotonin affects cortical development. European 
Journal of Neuroscience. 2007;26(2):331-344

Serotonin - A Chemical Messenger Between All Types of Living Cells142



[188] Waider J, et al. GABA concentration and GABAergic neuron populations in limbic 
areas are differentially altered by brain serotonin deficiency in Tph2 knockout mice. 
Histochemistry and Cell Biology. 2013;139(2):267-281

[189] Murthy S, et al. Serotonin receptor 3A controls interneuron migration into the neocor-

tex. Nature Communications. 2014;5:5524

[190] Jakab R.L, Goldman-Rakic PS. Segregation of serotonin 5-HT2A and 5-HT3 receptors 

in inhibitory circuits of the primate cerebral cortex. Journal of Comparative Neurology. 

2000;417(3):337-348

[191] Riccio O, et al. Excess of serotonin affects embryonic interneuron migration through acti-
vation of the serotonin receptor 6. Journal of Molecular Psychiatry. 2009;14(3):280-290

[192] Lauder JM. Neurotransmitters as growth regulatory signals: Role of receptors and sec-

ond messengers. Trends Neurosciences. 1993;16(6):233-240

[193] Bar-Peled O, et al. Fetal human brain exhibits a prenatal peak in the density of serotonin 
5-HT1A receptors. Neuroscience Letters. 1991;127(2):173-176

[194] Homberg JR, Schubert D, Gaspar P. New perspectives on the neurodevelopmental 

effects of SSRIs. Trends in Pharmacological Sciences. 2009;31(2):60-65

[195] Smit-Rigter LA, et al. Prenatal fluoxetine exposure induces life-long serotonin 5-HT(3) 
receptor-dependent cortical abnormalities and anxiety-like behaviour. Neurophar-

macology. 2012;62(2):865-870

[196] Smit-Rigter LA, Wadman WJ, van Hooft JA. Alterations in apical dendrite bun-

dling in the somatosensory cortex of 5-HT(3A) receptor knockout mice. Frontiers in 

Neuroanatomy. 2011;5:64

[197] Gonzalez-Burgos I, et al. Tryptophan restriction causes long-term plastic changes in cor-

ticofrontal pyramidal neurons. International Journal of Developmental Neuroscience. 

1996;14(5):673-679

[198] Feria-Velasco A, del Angel AR, Gonzalez-Burgos I. Modification of dendritic develop-

ment. Progress in Brain Research. 2002;136:135-143

[199] Gross C, et al. Serotonin1A receptor acts during development to establish normal anxi-

ety-like behaviour in the adult. Nature. 2002;416(6879):396-400

[200] Vitalis T, Ansorge MS, Dayer AG. Serotonin homeostasis and serotonin receptors as 

actors of cortical construction: Special attention to the 5-HT3A and 5-HT6 receptor sub-

types. Front Cell Neuroscience. 2013;7:93

[201] Vitalis T, et al. Effects of monoamine oxidase A inhibition on barrel formation in the 
mouse somatosensory cortex: Determination of a sensitive developmental period. 

Journal of Comparative Neurology. 1998;393(2):169-184

[202] Salichon N, et al. Excessive activation of serotonin (5-HT) 1B receptors disrupts the for-

mation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. 

Journal of Neuroscience. 2001;21(3):884-896

Sculpting Cerebral Cortex with Serotonin in Rodent and Primate
http://dx.doi.org/10.5772/intechopen.69000

143



[203] Persico AM, et al. Barrel pattern formation requires serotonin uptake by thalamo-

cortical afferents, and not vesicular monoamine release. Journal of Neuroscience. 
2001;21(17):6862-6873

[204] Rebsam A, Seif I, Gaspar P. Refinement of thalamocortical arbors and emergence of bar-

rel domains in the primary somatosensory cortex: A study of normal and monoamine 

oxidase a knock-out mice. Journal of Neuroscience. 2002;22(19):8541-8552

[205] van Kleef ES, Gaspar P, Bonnin A. Insights into the complex influence of 5-HT signal-
ing on thalamocortical axonal system development. European Journal of Neuroscience. 

2012;35(10):1563-1572

[206] Upton AL, et al. Excess of serotonin (5-HT) alters the segregation of ispilateral and 

contralateral retinal projections in monoamine oxidase A knock-out mice: Possible role 

of 5-HT uptake in retinal ganglion cells during development. Journal of Neuroscience. 

1999;19(16):7007-7024

[207] Bennett-Clarke CA, et al. Effect of serotonin depletion on vibrissa-related patterns 
of thalamic afferents in the rat's somatosensory cortex. Journal of Neuroscience. 
1994;14(12):7594-7607

[208] Osterheld-Haas MC, Van der Loos H, Hornung JP. Monoaminergic afferents to cor-

tex modulate structural plasticity in the barrelfield of the mouse. Brain Research 
Developmental Brain Research. 1994;77(2):189-202

[209] Bonnin A, et al. Serotonin modulates the response of embryonic thalamocortical axons 
to netrin-1. Nature Neuroscience. 2007;10(5):588-597

[210] Azmitia EC, et al. 5-HT1A agonist and dexamethasone reversal of para-chloroamphet-

amine induced loss of MAP-2 and synaptophysin immunoreactivity in adult rat brain. 

Brain Research. 1995;677(2):181-192

[211] Wilson CC, Faber KM, Haring JH. Serotonin regulates synaptic connections in the den-

tate molecular layer of adult rats via 5-HT1a receptors: Evidence for a glial mechanism. 

Brain Research. 1998;782(1-2):235-239

[212] Pont-Lezica L, et al. Physiological roles of microglia during development. Journal of 

Neurochemistry. 2011;119(5):901-908

[213] Wake H, et al. Resting microglia directly monitor the functional state of synapses in 

vivo and determine the fate of ischemic terminals. Journal of Neuroscience. 2009;29(13) 

:3974-3980

[214] Paolicelli RC, et al. Synaptic pruning by microglia is necessary for normal brain devel-

opment. Science. 2011;333(6048):1456-1458

[215] Paolicelli RC, Gross CT. Microglia in development: Linking brain wiring to brain envi-

ronment. Neuron Glia Biology. 2011;7(1):77-83

[216] Hoshiko M, et al. Deficiency of the microglial receptor CX3CR1 impairs postnatal 
functional development of thalamocortical synapses in the barrel cortex. Journal of 

Neuroscience. 2012;32(43):15106-15111

Serotonin - A Chemical Messenger Between All Types of Living Cells144



[217] Brunner HG, et al. Abnormal behavior associated with a point mutation in the struc-

tural gene for monoamine oxidase A. Science. 1993;262(5133):578-580

[218] Naoi M, Riederer P, Maruyama W. Modulation of monoamine oxidase (MAO) expres-

sion in neuropsychiatric disorders: Genetic and environmental factors involved in type 

A MAO expression. Journal of Neural Transmission (Vienna). 2016;123(2):91-106

[219] Glover ME, Clinton SM. Of rodents and humans: A comparative review of the neu-

robehavioral effects of early life SSRI exposure in preclinical and clinical research. 
International Journal of Developmental Neuroscience. 2016;51:50-72

[220] Rurak D, et al. Third trimester fetal heart rate and Doppler middle cerebral artery blood 

flow velocity characteristics during prenatal selective serotonin reuptake inhibitor 
exposure. Pediatric Research. 2011;70(1):96-101

[221] El Marroun H, et al. Maternal use of selective serotonin reuptake inhibitors, fetal growth, 

and risk of adverse birth outcomes. Archives of General Psychiatry. 2012;69(7):706-714

[222] Casper RC, et al. Follow-up of children of depressed mothers exposed or not exposed 

to antidepressant drugs during pregnancy. Journal of Pediatrics. 2003;142(4):402-408

[223] Oberlander TF, et al. Pain reactivity in 2-month-old infants after prenatal and postnatal 

serotonin reuptake inhibitor medication exposure. Pediatrics. 2005;115(2):411-425

[224] Casper RC, et al. Length of prenatal exposure to selective serotonin reuptake inhibitor 

(SSRI) antidepressants: Effects on neonatal adaptation and psychomotor development. 
Psychopharmacology (Berl). 2011;217(2):211-219

[225] Croen LA, et al. Antidepressant use during pregnancy and childhood autism spectrum 

disorders. Archives of General Psychiatry. 2011;68(11):1104-1112

[226] Oberlander TF, et al. Prenatal effects of selective serotonin reuptake inhibitor antide-

pressants, serotonin transporter promoter genotype (SLC6A4), and maternal mood 

on child behavior at 3 years of age. Archives of Pediatrics and Adolescent Medicine. 

2010;164(5):444-451

[227] Yubero-Lahoz S, et al. Platelet SERT as a peripheral biomarker of serotonergic neu-

rotransmission in the central nervous system. Current Medicinal Chemistry. 2013;20 

(11):1382-1396

[228] Janusonis S. Serotonin dynamics in and around the central nervous system: Is autism 

solvable without fundamental insights? International Journal of Developmental 

Neuroscience. 2014;39:9-15

[229] Levitt P, Campbell DB. The genetic and neurobiologic compass points toward common 
signaling dysfunctions in autism spectrum disorders. Journal of Clinical Investigation. 

2009;119(4):747-754

[230] Page DT, et al. Haploinsufficiency for Pten and Serotonin transporter cooperatively 
influences brain size and social behavior. Proceedings of the National Academy of 
Sciences of the United States. 2009;106(6):1989-1994

Sculpting Cerebral Cortex with Serotonin in Rodent and Primate
http://dx.doi.org/10.5772/intechopen.69000

145



[231] Giudici V, et al. Serotonin reuptake inhibitors in pregnancy: Can genes help us in pre-

dicting neonatal adverse outcome? BioMed Research International. 2012;2014:276918

[232] Hammer C, et al. Replication of functional serotonin receptor type 3A and B variants 
in bipolar affective disorder: A European multicenter study. Translational Psychiatry. 
2012;2:e103

[233] Perroud N, et al. Methylation of serotonin receptor 3A in ADHD, borderline personal-

ity, and bipolar disorders: Link with severity of the disorders and childood maltreat-

ment. Depress Anxiety. 2016;33(1):45-55

[234] Gatt JM, et al. Early life stress combined with serotonin 3A receptor and brain-derived 
neurotrophic factor valine 66 to methionine genotypes impacts emotional brain and 

arousal correlates of risk for depression. Biological Psychiatry. 2010;68(9):818-824

[235] Gatt JM, et al. Impact of the HTR3A gene with early life trauma on emotional brain 
networks and depressed mood. Depress Anxiety. 2010;27(8):752-759

[236] Pierre WC, et al. Neonatal microglia: The cornerstone of brain fate. Brain, Behavior, and 
Immunity. 2017;59:333-345

[237] Hagberg H, et al. The role of inflammation in perinatal brain injury. Nature Reviews 
Neurology. 2015;11(4):192-208

[238] Fleiss B, et al. Inflammation-induced sensitization of the brain in term infants. 
Developmental Medicine & Child Neurology. 2015;57(Suppl 3):17-28

[239] Fan LW, et al. Dopaminergic neuronal injury in the adult rat brain following neona-

tal exposure to lipopolysaccharide and the silent neurotoxicity. Brain, Behavior, and 
Immunity. 2011;25(2):286-297

[240] Williamson LL, et al. Microglia and memory: Modulation by early-life infection. Journal 

of Neuroscience. 2011;31(43):15511-15521

[241] Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: 
Implications for neurologic and neuropsychiatric disease in children and adults. Annals 

of Neurology. 2012;71(4):444-457

[242] Wixey JA, et al. Efficacy of post-insult minocycline administration to alter long-term 
hypoxia-ischemia-induced damage to the serotonergic system in the immature rat 

brain. Neuroscience. 2011;182:184-192

[243] Reinebrant HE, Wixey JA, Buller KM. Neonatal hypoxia-ischaemia disrupts descend-

ing neural inputs to dorsal raphe nuclei. Neuroscience. 2013;248:427-435

Serotonin - A Chemical Messenger Between All Types of Living Cells146


