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Abstract

Mollusks are a diverse group of animals not only at the species level but also with respect 
to their habitat and behavior. Gastropods comprise 80% of the mollusks with approxi‐
mately 62,000 living species including snails. Over the period of time, snails have evolved 
into marine, freshwater and terrestrial forms with a transitional shift in their feeding 
habits. From prehistoric times, mollusks have established an intimate relationship with 
humans. These animals are used as food, medicine, offering to gods and are also respon‐
sible for economic losses in the form of agricultural pests. As most of these animals feed 
on plant biomass, their guts have evolved to digest such lignocellulosic biomass with 
extraordinary efficiency. The plant fiber digestion in their guts depends predominantly 
on the metabolic activities of the gastro‐intestinal microflora. Besides digestive functions, 
the seasonal dynamic and spatial distribution of bacterial gut community largely influ‐
ences cold hardiness and many other metabolic properties in snails. Here, we assessed an 
overview of the various bacterial populations dwelling in digestive tracts of snails. This 
chapter provides insights into the gut microbiome of various snails that can be exploited 
for various industrial applications such as biomass degradation, production of biofuel, 
paper, wine and laundry detergents.
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1. Introduction

The phylum Mollusca is one of the most diverse groups of animals on earth that comprises 

50,000 living species. Mollusks are soft‐bodied animals that inhabit almost every kind of habitat. 

These are dominantly free‐living metazoans that possess a calcareous exoskeleton to provide 

structural support for a muscular foot and enclose mantle cavity which is generally used for 
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feeding, respiration and sometimes locomotion [1]. It constitutes the second largest, and most 

variable, invertebrate phylum. The living species of the mollusks are divided into seven classes, 

that is aplacophora, polyplacophora, monoplacophora, gastropoda, cephalopoda, pelecypoda 

and scaphopoda [2]. Gastropods are the largest group of mollusks, comprising about 80% of 

the living mollusks with ca. 62,000 living species. The first gastropods originated during the 
late Cambrian period and over 500 million years ago. Since then, gastropods have radiated 

into marine, freshwater and terrestrial environments, changing their food preferences from 

herbivorous to carnivorous, endo‐parasitism or symbiont‐mediated chemoautotrophy [3].

The class gastropoda is the most speciose among animals to inhabit a variety of habitats such 

as oceans, rivers, etc. and are the ones that have inhabited the land among mollusks [4]. The 

aquatic forms have adapted to benthic forms while others remained pelagic. The life span 

ranges from months to decades [5, 6] and in some cases life is marked by varying periods 

of dormancy [7]. All gastropods are commonly called head‐foot or cephalopodium which 

is a typical character of all gastropods because the head and foot arise from the same region 

making it very difficult to differentiate where the head ends or the foot begins [8]. The head 

of gastropods typically has two or four sensory tentacles with eyes and a ventral large foot, 

which gives them their name (in Greek, gaster is stomach and poda is feet). The anterior divi‐

sion of the foot, that is, propodium, is used for crawling. The shell in the larval stage is called 

protoconch. Most gastropods have a shell that typically opens on the right‐hand side. Several 

species have operculum that is used to close the shell opening.

Most species of gastropoda include slugs and snails where the snails possess coiled shells on 

their body. The term snail is often used to describe marine and freshwater snails, along with 

terrestrial ones. More generally, the term is applied to land snails than to those from the sea or 

freshwater [9]. Snails generally thrive in habitats rich in calcium, limestone, marl and places 

with concrete and cement. They are hermaphrodite but reciprocal copulation is required to 

produce viable eggs. Eggs are laid 8 days after copulation producing about 400 to 1000 eggs 

per year [10]. Cool and moist soil is necessary for the egg hatching producing juvenile snails 

that eat their egg shells and remain burrowed for 2 weeks. The juveniles feed on tender shoots 

of plants while the adult can also digest detritus. Under unfavorable conditions, snails can 

bury themselves under soil and remain inactive from months to years [11].

The terrestrial snails like Achatina fulica, Achatina achatina and Archachatina marginata are 

large‐sized terrestrial mollusks that can grow up to 20 cm in length and 10 cm in diameter. 

In these snails, the brownish shell having dark stripes generally covers half of the body [12]. 

Among these, the shell of A. fulica is smaller that can grow up to 3–4 inches, while A. achatina 

has a larger shell size of 10–11 inches [9].

Snails are both ecologically as well as economically very important animals. In the modern era 

of technology, the utility of snails is largely neglected, particularly in developed countries. Since 

snails dwell in a variety of niches, they could harbor a militia of micro‐biota which could be 

exploited for various biotechnological purposes. This work provides insights into the microbiome 

of various snails. Furthermore, for the first time, we assessed the probable applications of snails 
in general and their gut micro‐biota in particular for various biotechnology‐based industries.
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2. Origin and distribution of snails

The families Lymnaeae and Planorbidae originated from the common ancestor approximately 

250 million years ago during the Permian period. Some fossils belonging to family Bulininae 
and Planorbinae of the upper cretaceous have been obtained from Africa and India [13, 14]. 

The first fossil record for the family Achatinidae was obtained from the Pleistocene in Africa 
[15, 16] but the family clearly evolved much earlier. In the 1950s, Mead described the earliest 

achatinids that originated in Cameroon and Gabon, northward of the river Zambezi in Africa, 

which later spread to both arid and the sub‐arid areas of the southern continent and other 

moist parts east of the great watershed [17, 18]. This indicated that temperate species were 

directly evolved from tropical ancestors. Nonetheless, little is known about the evolutionary 
history of the achatinids.

The habitats of terrestrial snails range from dense tropical forests in Africa to the fringing 

riparian forests of Savannah [19, 20]. The members of the family Achatinidae comprise more 

than 200 species in 13 genera that are native to Africa. Several species have attained pest 
nature within their native African range when the habitat was modified by human activities 
and cropping. Furthermore, due to the increased mobility of humans and globalization of 

trade and travel, several alien species have been accidentally or purposefully transported to 

areas outside of the African continent. In these new areas, Achatinidae have caused signifi‐

cant economic and ecological impacts [21]. Due to its invasive capacity, Achatina fulica has 

spread from East Africa to many regions around the globe including rainforests, tropics, 

subtropics, etc. Apart from anthropogenic activities [22], the higher adaptability of this snail 

to variety of habitats is often contributed by its gut micro‐biota that it selectively chooses 

from the favorable environments for successful dispersion [23]. However, terrestrial spe‐

cies have a great capacity of adaptation, survival and may contain an intriguing micro‐biota 

serving in the efficient degradation [24] of ingested lignocellulosic plant biomass into many 

useful products. Due to its fast distribution and voracious feeding, this species is now con‐

sidered as the most destructive terrestrial gastropod [12]. The A. fulica has been blamed as 

an intermediate vector of many worms and microorganisms, causing a variety of ailments 

[25]. The species was introduced to the USA in 1939, to India in 1947 near Kolkata and to 

Brazil in 1980s.

The widespread distribution of A. fulica is caused by a number of factors [26]. Sometimes, it 

has been deliberately introduced by humans as pet and in some cases as a source of food or 

for ornamental and medicinal purposes (Figure 1). It is also transported unintentionally with 

agricultural, horticultural and other commercial products or in containers in which they are 

shipped. They were also transported accidentally with military equipment in many countries 

[27]. The land snail, A. fulica, spreads extensively along rivers and streams, either on floating 
mats of vegetation or by surviving long enough in the water to float downstream.

The pulmonate snails are native to Africa but are currently found in Asia, the Pacific, 
Madagascar, Indonesia, Australia, the Caribbean Basin, the United States and South America 
(Colombia, Venezuela, Ecuador, Brazil and Argentina) [28, 29].
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3. Uses of snails

From prehistoric times, it is quite evident that mollusks have a precarious relationship with 

humans. Many snails are known to damage the wooden ships and poison scuba divers. 

Researchers have also found that snails actually harbor a secret that could help humans to stay 

healthy and pain free. Even some authors quoted that guts of mollusks contain a unique set 

of microorganisms that might save human lives. During evolution, snails have also coevolved 

with ancient bacteria that reside in their guts. In return, the bacteria also express some drug‐

like molecules that help the snail’s proper functioning and ward off diseases [30]. For example 

the Leuconostoc mesenteroides strain isolated from the gut of Cornu aspersum produced some bac‐

teriocins‐like substance that inhibited the growth of the pathogen Propionibacterium acnes [31].

3.1. Snails as food

The gastropods, particularly snails, have been used both as food as well as treatment for a 

variety of human diseases. The fossil remains of prehistoric shellfish found in caves indicate 
that snails have served as a delicacy for humans for thousands of years. The snails are easy to 

culture and majorly composed of muscles. Snails are a rich source of proteins containing high 

amounts of essential amino acids [32]. From the twentieth century, the food qualities of snails 

Figure 1. Different methods involved in the isolation and identification of microbes of the snail gut.
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were so appreciated that it was a highly sought‐after food. They are preferred as a food source 

in certain parts of Africa, Asia and South America. In recent decades, the snail’s consumption 

has increased throughout European countries, which consequently lead to their gradual dis‐

appearance from freely dwelling areas. This decrease in population contributed to predation 

of the species and introduction of pathogens that harmed the productivity of snails [33, 34]. 

The inedible parts of snails are also used in animal‐feed preparations as shown in Figure 1.

3.2. Medicinal uses

Hippocrates reportedly said that crushed snails can be used to relieve inflamed skin and pain. 
Two decades ago, slime of the Chilean snail was reported to quickly heal the skin lesions 

with no scars. This innovation later led to the production of “Elicina” which is snail slime‐

based fairness products. Recently in 2010, Missha, a USA‐based cosmetic company launched 

a branded fairness cream, “Aqua Cell Renew Snail Cream”, containing 70% slime. The com‐

pany also claimed that this cream reduces pigments, acne, scars and combats wrinkles [35]. 

Though snail slime contains unusual crystals of calcite, it may find some use in orthopedics 
also. This is because scientists at the Herriot‐Watt University stated that calcite may be used 
for the development of bone cement by using inorganic crystals in organic matrix [36].

3.3. Religious importance of snails

In southern Miami, snail invasion is very severe because they are linked to religious rituals. In 

Candomblé religion, coloration of the shell is considered very important for offerings to their 
gods, Orishas, and symbolizes the personality of an Orisha (e.g., red indicates fire and fury, 
white indicates tranquility and age while yellow is for prosperity and wealth). However, the 

color preference can vary between nations of different areas of the religion. For example, sac‐

rificial animals or their parts that are offered to Obatala (white Orisha) should be completely 
white such as the white blood of A. fulica [37].

3.4. Ecological importance

Some snails that climb the trees rasping on the surface of leaves can influence biosphere com‐

munity succession and nutrient cycling. Snails also provide some antimicrobial barriers to the 

plants by secreting the wax layer which contains antimicrobial compounds [38]. Mucus secreted 

by the gastropods has been shown to have selective antimicrobial properties as well [39, 40]. 

Moreover, some snails are also used for monitoring the environmental pollution. Such is the 

species of Arianta arbustorum, which can tolerate higher concentrations of the heavy metals, like 

cadmium, lead and copper, indicating elevated levels of metal pollution in their niches [41].

4. Impact of snails on agriculture

Many researchers have reviewed the impacts of invasive mollusks on agriculture [42, 43] bio‐

diversity and human health. However, the annual costs associated with damage to the envi‐

ronment and agriculture due to alien species in the USA have been recently estimated to be 
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US$120 billion. The combined costs associated with damage for the United States, the United 

Kingdom, Australia, South Africa, India and Brazil have been estimated as US$314 billion per 
year [43]. In the tropics, the loss caused by the snails is threefold. Primarily, there is loss of the 

agricultural products followed by the cost of labor and materials associated with the manage‐

ment of such pests. Lastly, there is opportunity losses related to the changes in agricultural 

practice such as cultivation of pest‐resistant species only.

Among mollusks, the giant African land snail, A. fulica tops the list of agricultural pests. A. 

fulica (Lissachatina fulica) is a herbivore, feeding primarily on vascular plants [21] and plant 

tissues containing high protein and calcium content [44, 45]. All Achatinidae species need cal‐

cium for the formation of shell and reproduction. Thus, environments rich in calcium carbon‐

ate, such as limestone landscapes having a pH of 7.0–8.0, and urban areas with abundant 

concrete are preferred [28].

The adult snail of A. fulica daily consumes large quantity of plant material approximately 10% 

of its weight [46]. The seedling stage of plants is most preferred and vulnerable. The extent 

of damage is based on the chemical composition of the plant and varies spatially as well as 

temporarily [47]. Many researchers have stated that infestations by snails to the nursery stage 

are so severe that demands change in cultivation practice. For example, in Malaysia, Guam 

and Indonesia, during the season of peak infestations of A. fulica, it is almost impossible to 

grow vegetables [27, 48, 49].

A. fulica is considered the most damaging land snail in the world as it can dwell on over 

500 different crop species. It is a non‐host specific pest of crops like peanuts, beans, peas, 
cucumbers and melons. If fruits and vegetables are not available, snails can feed on variety of 

ornamental plants, tree barks and even paint on houses [21]. The snail also allies with other 

soil invertebrates to decompose the leaf litter [50] and is the most destructive pest; it is ranked 

second among the 100 worst alien invasive species [51]. It affects tropical and subtropical 
areas, causing large damages to farms, commercial plantations and domestic gardens. It can 

also be found on trees, decaying materials and next to garbage deposits [17]. In urban areas, 

the deposition of solid waste by humans is primarily responsible for the proliferation of pests 

[12]. This species has attained pest status also due to its voracious feeding, competing for 
physical space with the native fauna resulting in disequilibrium of biodiversity [12]. Apart 

from being an agricultural nuisance, snails can thrive in cities, crawl up the walls of buildings 

and skid cars on highways [27].

5. Control strategies for snails

Snails are important both ecologically as well as economically due to a variety of factors. The 

prolific breeder A. fulica, soon after the introduction to a new habitat, reproduces at alarming 

rates making the control strategy very difficult. The control strategy of the pest is based on 
physical, chemical as well as biological methods. The physical control includes collection and 

destruction of snails and their eggs from the infested site or campaigns organized by local 

agencies voluntarily supported by health service officials, local people, students and teach‐

ers. After collection, snails are crushed and buried deep into the soil, covered with kaolin. 

Eradication of the species involves a huge amount of chemicals, hand collection and extensive 
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public awareness programs like posters, documentaries, etc. Metaldehyde is the principal 

component of molluscicides and is indiscriminately used for the control of the snail A. fulica, 

consequently causing loss of productivity of local crops. For example, in Sao Paulo, farmers 

unknowingly used the molluscicide “metaldehyde” in banana fields to target snails, which 
killed many species including bats, skunks, lizards and small rodents which were beneficial 
as natural control agents of agricultural pests [12]. The physical methods are very time‐con‐

suming and tedious while the chemicals have resistance problems, killing the non‐target flora 
and fauna. Therefore, biological control is the option that seems very fruitful and ecofriendly. 

But predatory snails (e.g., rosy wolf snail: Euglandina rosea) and flatworms have also failed 
to control some species such as A. fulica [52, 53]. As snails are ecologically and economically 

important due to the pest nature, the bacterial flora present in the gastrointestinal (GI) tract of 
snails may have an important role in digestion. These functionally specialized GI tract regions 

may be unique microenvironments and could harbor unusual bacterial communities.

6. Process of digestion in snails

In an ecosystem, the ability to procure enough food is pivotal for the survival of an organism. 

Feeding is necessary for the maintenance of metabolism, growth and reproductive success 

of animals. The process of digestion is characterized by a specific set of enzymes that often 
break the refractory food substances [54]. The alimentary tract of land snails is remarkably 

simple, possibly because of terrestrial life styles. The alimentary canal is usually divisible 

into buccal mass, esophagus, crop, stomach, intestine and rectum along with appendages like 

salivary and digestive glands (hepatopancreas) [55]. In A. fulica, like other gastropods, the 

food scraped by radula and ingested by the buccal mass is mixed with the secretions of the 

salivary gland and accumulates in the crop (ingluvius), a distensible muscular compartment. 

The crop and stomach are filled via two cannaliculi with the juice produced by the digestive 
glands. The medial part of the gut is surrounded by the digestive gland, which secretes more 

enzymes into the mid‐gut lumen and also absorbs nutrients. The epithelium of the digestive 

tube is ciliated along almost its entire length, allowing the food to mix with digestive juices 

and helping to transport the alimentary mass. The ciliated epithelia also allow the microbial 

flora to anchor on the digestive tube [56]. The gut of the giant African land snail, A. fulica, is 

large enough to act as a fermentation vessel where a number of metabolic reactions are medi‐

ated by the host symbionts. The unabsorbed part of the alimentary mass (bolus) is compacted 

and passed directly into the rectum. The snail’s digestion is primarily extracellular [55].

7. Role of the gut bacteria in snails

The gastrointestinal tracts of animals are modified as per their food requirement and physi‐
ological adaptations. All the herbivores that feed on lignocellulosic feed stock share two com‐

mon features, that is enlarged digestive tract and gut micro‐biota. Digestive tract is usually 

long enough having different regions such as esophagus, crop, rumen, caecum and rectal 
paunch while gut microbes provide the host with a unique set of necessary enzymes for the 

digestion of plant materials [57, 58]. The guts of herbivores that largely feed on lignocellulosic 
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rich plant materials act as natural bioreactors for the degradation of plant biomass making 

them efficient sources of industrially important bacteria [59]. In many herbivores and omni‐

vores, the digestion of the plant biomass is of immense importance for the energy capture 

[60]. Therefore, bacterial flora present in the GI tract of these animals may have an important 
role in digestion. These functionally specialized GI tract regions may be unique microenvi‐

ronments and could harbor unusual bacterial communities.

7.1. Abundance of bacterial symbionts in snails

During the past century, scientists have focused on microbes that secrete the cellulose hydro‐

lyzing enzymes. For instance, Seillière [61] pioneered the isolation of bacterial cellulases from 

the gut of the terrestrial gastropod H. pomatia. Similarly, Florkin and Lozet [62] studied the 

cellulases, whereas Jeuniaux [63] observed that chitinases from H. pomatia, of microbial origin, 

played a major role in the digestion of plant components in all phytophagous snails.

Charrier et al. [64] observed that density of bacteria in C. aspersum and H. pomatia was up to 

5.109 CFU g−1 fresh tissue in the distal intestine, while in proximal region it was from 10 to 1000 

fold lower than in the distal part. The H. pomatia was the least colonized by bacteria. The C. 

aspersum that fed on carboxymethyl cellulose (CMC) harbored approximately 107 g−1 bacteria 

and while those fed on native cellulose contained 106 g−1 [65]. In another study carried out in 

aerobic and anaerobic conditions by the same authors, it revealed that gram‐positive bacteria 

were in the range of 1.57 × 109 ± 0.10 × 109 CFUg−1 in the intestine. Although the score of gram‐

negative aerobic bacteria accounted for 5.77 × 108 ± 1.35 × 108 CFUg−1 in the intestine, but it 

comprised only 27% of the total bacterial load in H. aspersa [66]. However, Simkiss observed 

only 0.71 × 106 CFU g−1 body weight in H. aspersa [67]. In a similar report, researchers [68] 

noted less than 106 g−1 bacteria growing on sterile paper. In the intestine of Tegula funebralis, 

the number of culturable bacteria was 25 × 105 only [69].

Several strains growing on chitin have been isolated from different species of snails such as 
C. gillenii, B. agrestis, B. noackiae and E. malodoratus. The presence of chitinolytic bacteria in 

H. pomatia has been reported by Jeuniaux [63] where he observed the bacterial density in the 

range of 106 CFUg−1 of the tissue. By culture‐dependent method, Pawar with his coauthors 
[70] enumerated from 103 to 106 CFU from the whole GI tract of A. fulica. Koleva et al. [31], 

while studying the gut bacteria of C. aspersum, stated that bacterial diversity varies with the 

different stages of life cycle and accounted for maximum 1.6 × 109 CFU ml−1 gut extract dur‐

ing the active stage. Since more than 95% of the bacteria in any environment including guts 

of animals are un‐culturable, their composition and community structure cannot be studied 

completely by culture‐dependent approaches. As most of these studies were done using cul‐

ture‐dependent approaches, they might have not revealed much of bacterial composition and 

community structure in the GI tract of snails. More research is needed to study the bacterial 

diversity of snails by using advanced in‐silico and meta‐genomic approaches, harnessing the 

vast diversity of microbes in the snail guts. Very few studies have been carried out to analyze 

the bacterial populations in snails by using metagenomic methods. The complete details of 

the processes and protocols involved in the isolation and identification of the gut microbes are 
beyond the scope of this chapter, however, briefing the outline of most of these methodologies 
would be helpful. The brief outline of all these methodologies is given in Figure 2.
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8. Host‐symbiont interactions

Recent evidence for the presence of various kinds of bacteria in the snails suggested that a 

symbiotic relationship is developed between the host and the microbes during the course of 

evolution. Hitherto, a large number of eukaryotic symbionts have been isolated from snails 

in the families particularly, Achatinidae, Ampullariidae, Helicidae, Planorbidae, etc. as given 

below in Table 1 [71]. Further, identification of the isolated gut bacteria has been done in 
vetigastropods of the genus Haliotis and in several other pulmonates. Among pulmonates, 

representatives of the genera Biomphalaria, Bulinus, Helisoma [72], Helix, Cornu [64, 66] and 

Achatina [70, 73, 74] have also been studied.

The advanced techniques like meta‐genomics have proved that the gut bacteria perform many 

beneficial activities for the host. These resident bacteria help the host in processes such as 
digestion of complex molecules into simpler forms, generating energy, synthesis of cofactors, 

amino acids for basic metabolism as well as preventing the growth of pathogens. Some of the 

bacteria isolated from the snail caused the fermentation of sugars like glucose, lactose, manni‐

tol, rhamnose, arabinose, maltose, etc. showing the positive interaction of the snails with their 

gut flora [75]. Some authors [40] reported the presence of several bacterial OTUs  belonging 

Figure 2. Ecological, economic and industrial utility of snails.
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to oceanospirillales, enterobacteriaes, alteromonadales, along with α‐Proteobacteria and 
Rhizobiales in the fecal samples of Achatinella mustelina. Some snails thrive in toxic habitats 

like deep sea vents due to energy provided by the bacteria. The scaly foot snail, Chrysomallon 

squamiferum, discovered from the Kairei vent of Indian Ocean, flourishes by using a similar 
strategy, exploiting energy harnessed by the gut symbionts. That is why this snail can grow 

to up to 45 mm in size, when most of its close relatives did not grow beyond 15 mm in the 

absence of endosymbionts [76].

The physiology and diet of the host are the main components that determine the community 

structure of an organism. The gut microbiome of many animals including snails has been 

characterized recently [23, 70]. Animals are known to choose their gut microbes selectively/

functionally, and the microbial cells outnumber their hosts by many folds [77, 78]. Snails, 

like other invertebrates, eat soil to get the useful microbes that may augment in digestion. In 

turn, micro‐biota provides important implications to the host’s immune system [79] prevent‐

ing invasion by exogenous pathogenic microbes [80, 81]. This in other words indicates that 

changes in microbial flora of the snail could have a negative impact such as without which 
they may stop feeding and ultimately die [82].

Sr. No. Snail Habitat of snail Family Microbes 

studied

Methodology References

1 Achatina achatina Terrestrial Achatinidae Bacteria Biochemical [9]

2 Achatina fulica Terrestrial Achatinidae Bacteria, fungi, 
virus, protozoa

16Sr RNA/

metagenomics/ 

Microscopic

[23, 70, 73, 74, 

137]

3 Achatina mustelina Terrestrial Achatinidae Bacteria and 
fungi

Metagenomics [40]

4 Archachatina 

marginata

Terrestrial Achatinidae Bacteria and 
fungi

Biochemical [119, 138]

5 Batillus cornutus Marine Turbinidae Bacteria 16S rRNA [139]

6 Helix aspersa/Cornu 

aspersum

Terrestrial Helicidae Bacteria and 
yeast

16S rRNA/

Biochemical
[31, 67, 68, 

140, 141]

7 H. pomatia Terrestrial Helicidae Bacteria Metagenomics [131]

8 Indoplanorbis 

exustus

Freshwater Planorbidae Bacteria Biochemical [75]

9 Lymnaea stagnalis Freshwater Lymnaeidae Bacteria Biochemical [75]

10 Pomacea 

canaliculata

Freshwater Ampullariidae Bacteria 16S rRNA [71]

11 Pila globosa Freshwater Ampullariidae Bacteria 16S rRNA [142]

12 Pila ovata Freshwater Ampullariidae Bacteria Biochemical [115]

13 Tegula funebralis Marine Tegulidae Bacteria Biochemical [69]

14 Trochus niloticus Marine Tegulidae Bacteria Biochemical [143]

Table 1. Species of snails that have been used for isolation of microorganisms.
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8.1. Cellulose‐degrading bacteria

The plant biomass is comprised of three major components that is cellulose (50%), hemicellulose 

(30%) and lignin (20–30%). All herbivores do not possess the ability to digest plant polysaccha‐

rides and instead depend on their gut symbionts to derive the nutritionally important com‐

pounds from the ingested material [83–85]. Therefore, many researchers have extrapolated the 

gut microbiomes of many animals by using meta‐genomics approach. Such studies have revealed 

that the gut of herbivores is a home to a consortium of microbes that have evolved to efficiently 
degrade and ferment the plant cellulose ingested by the host [86, 87]. These organisms possess 

a complex enzyme system known as cellulosome, and the complete enzymatic system includes 

three different enzyme types, that is exo‐β‐1, 4‐glucanases (EC 3.2.1.91), endo‐β‐1, 4‐glucanases 
(EC3.2.1.4) and β‐1, 4‐glucosidase (EC 3.2.1.21) along with several cofactors [88]. Cellulases act by 

hydrolyzing the β‐1, 4 bonds in cellulose, releasing some small chains of oligosaccharides which 
are concurrently broken into monosaccharides by β‐glucosidases [89]. The hydrolysis of lignin 

occurs due to the concomitant action of a specific set of enzymes such as laccase, lignin peroxi‐
dase, etc. In lignin degradation, the ligninolytic enzymes primarily alter the structural conforma‐

tion of lignin by breaking several stable bonds resulting in production of free radicals [90]. From 

application point of view, bacteria are generally preferred over the fungi due to their higher 

growth rate allowing fast production of recombinant proteins [91]. Additionally, some glycoside 

hydrolases (GHs) of bacterial nature form multi‐enzyme complexes called cellulosome provide 

increased synergy, stability and catalytic efficiency [92], while others are multifunctional, har‐

boring both endoglucanase and xylanase activities [93]. A list of different groups of bacteria can 
be isolated from snails and thereby exploited for industrial applications. Therefore, enzymes of 

bacterial origin could offer specific biotechnological interests due to their less dependency on 
mediators. However, the lignocellulose‐hydrolyzing enzymes secreted by bacteria are inducible, 

extracellular and cell associated [90]. Recently, Chang and his team [94] isolated a Bacillus strain 

that has a repertoire to remove lignin from rice straw; this biomass can be subsequently treated 

with lactic acid bacteria (LAB) to improve the sugars yield. These sugars can be further utilized 
for the production of bioethanol, biogas and bio‐hydrogen by fermentations [70].

Some of the microbes such as bacteria Fibrobacter succinogenes, R. flavefaciens and R. albus 

[95] and some fungi are primarily responsible for degradation of plant cell walls. R. albus8 is 

anaerobic, fibrolytic and gram‐positive bacterium present in herbivores and can degrade both 
cellulose and hemicellulose [60, 96]. But R. flavefaciens and R. champanellensis are very efficient 
cellulose degraders due to their cellulosome secretion which is lacking in case of R. albus8 [97].

The symbiotic bacteria from the gut of gastropods are considered to participate in the diges‐

tion of carbohydrates, such as cellulose and hemicellulose comprising the major part of the 

plants (Table 2). Recently, we reported the presence of lignocellulolytic bacteria in the GI tract 

of A. fulica [73]. However, Koch et al. [71] reported that P. canaliculata can survive till 56 days 

on a cellulose‐rich diet and concluded the existence of bacterial endoglucanases that helps the 

snail to utilize cellulose polymer. Earlier studies [65, 68] showed that H. aspersa contains very 

few cellulose‐degrading bacteria though some authors [64] claimed the complete absence of 

these bacteria in the gut. Many authors have demonstrated the degradation of native cellu‐

lose, mannan and laminarin by the snails [98, 99], thereby a large set of bacteria producing 

hydrolytic enzymes may be involved. The cellulases of animal origin were first studied by 
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Sr. No. Snail species Bacteria NCBI accession  

no. (16S rRNA)

Gram stain References

1 Achatina fulica Klebsiella pneumoniae AB680060 −ve [23, 73, 74]

2 Sphingobacterium mizutaii NR042134 −ve

3 Sphingobacterium multivorum FJ459994 −ve

4 Microbacterium sp. AB646581 +ve

5 Uncultured Flavobacterium sp. DQ168834 −ve

6 Aeromonas punctata NR029252 −ve

7 Microbacterium sp. AB646581 +ve

8 Klebsiella variicola NR025635 −ve

9 Aeromonas caviae AB626132 −ve

10 Aeromonas caviae JF920485 −ve

11 Streptomyces kunmingensis NR043823 +ve

12 Cellulosimicrobium sp. AB188217 +ve

13 Cellulosimicrobium funkei JQ659848 +ve

14 Klebsiella sp. AB114637 −ve

15 Enterobacter sp. JQ396391 −ve

16 Stenotrophomonas sp. DQ242478 +ve

17 Cellulosimicrobium cellulans AB166888 +ve

18 Cellulosimicrobium sp. HM367604 +ve

19 Agromyces allii NR_04393 +ve

20 Nocardiopsis sp. HQ433551 +ve

21 Microbacterium binotii JQ659823 +ve

22 Bacillus subtilis +ve

23 Ochrobactrum sp. KJ669202 −ve

24 Achromobacter xylosoxidans KJ669206 −ve

25 Klebsiella sp. KJ669189 −ve

26 Enterobacter sp. KJ669197 −ve

27 Enterobacter cloacae KJ669195 −ve

28 Bacillus. sp. KR866144 +ve

29 Archachatina 

marginata

Bacillus subtilis NA +ve [119]

30 E. casseliflavus NA +ve

31 Streptococcus faecalis NA +ve

32 Staphylococcus aureus NA +ve

33 Pomacea Nostoc sp. NA −ve

canaliculata
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Biedermann and Moritz [100], in Helix spp., at the end of nineteenth century. Further, snails 

possess a micro‐biota specialized in a variety of functions, thus contributing to an extraor‐

dinary (up to 80%) efficiency to digest plant biomass [24]. The abundance of carbohydrate‐

secreting bacteria and the rate of enzyme activity in various parts of the herbivorous guts 

are inversely proportional to each other, therefore, bacteria have become complementary for 

digestion of food. However, Payne et al. [101] also reported that wherever the enzyme pro‐

duction is less or nil, the enzymes released by the gut microflora would be of much help for 
digestion. The bacterial glycoside hydrolase (GH) genes and carbohydrate‐binding modules 

(CBMs) are abundant in the digestive tract of animals [84, 102–106] which suggest the poten‐

tial role of microbial symbionts in the hydrolysis of plant material to help extract nutrients 

[107]. The metagenomic and in silico studies have proved that gut symbionts perform useful 

functions to the host such as production of amino acids, energy generation and act as a barrier 

against diseases [108]. Recent works by researchers [23, 72] using advanced microbiological 

techniques elucidated that snails contain a vast array of microbial diversity within their guts.

Sr. No. Snail species Bacteria NCBI accession  

no. (16S rRNA)

Gram stain References

34 Helix aspersa Pseudomonas sp. NA −ve [68, 133]

35 Xanthomonas sp. NA −ve

36 Acinobacter sp. NA −ve

37 Vibrio sp. NA −ve

38 Enterobacteriae sp. NA −ve

39 Bacillus sp. NA +ve

40 Staphylococcus sp. NA +ve

41 Micrococcus sp. NA +ve

42 Bulinus africanus, 

Biomphalaria 

pfeifferi, Helisoma 

duryi 

Chloroacidobacteria NA −ve [72]

43 Chryseobacterium NA −ve

44 Comamonadaceae NA −ve

45 Bacillus spp. NA +ve

46 Aeromonas spp. NA −ve

47 Verrucomicrobiae spp. NA −ve

48 Batillus conutus Bacillus sp. JMP A HM776393 +ve [139]

49 Bacillus sp. JMP B HM776394 +ve

50 Staphylococcus sp. JMP‐C HM776395 +ve

51 Pila globosa Klebsiella oxytoca KF017601 −ve [142]

NA: not available.

Table 2. Cellulose degrading bacteria isolated from the digestive tract of different snails.
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8.2. Lactic acid bacteria

The lactic acid bacteria (LAB) comprise a significant proportion of the gut‐bacterial communi‐
ties of many animals including pigs, fowls, rodents, chicken, horses, gastropods and insects. 

These bacteria are vital for the host as they behave as protagonists in maintaining the eco‐

logical equilibrium between the different species of microorganisms inhabiting these envi‐
ronments. This microbial community takes part in the fermentation of the food, providing 

energy to the host [64]. Koleva et al. [31] isolated 55 strains of LAB from the gut of C. asper‐

sum (Table 3). Based on 16S rRNA sequencing, Lactobacillus (18), Enterococcus (17), Lactococcus 

Sr. No. Snail Bacteria NCBI accession  

no. (16S rRNA)

Gram stain References

1 Helix pomatia Buttiauxella agrestis DQ223869 −ve [64]

2 Citrobacter gillenii DQ223882 −ve

3 Buttiauxella agrestis DQ223871 −ve

4 Lactococcus lactis DQ223875 +ve

5 Kluyvera intermedia DQ223868 −ve

6 Lactococcus sp. DQ223877 +ve

7 Obesumbacterium proteus DQ223874 −ve

8 Enterobacter amnigenus DQ223879 −ve

9 Enterococcus raffinosus DQ223885 +ve

10 Enterococcus malodoratus DQ223886 +ve

11 Cornu aspersum, Buttiauxella noackiae DQ223870 −ve [66]

12 Clostridium sp. DQ223883 +ve

13 Raoultella terrigena DQ223873 −ve

14 Enterobacter amnigenus DQ223878 −ve

15 Citrobacter gillenii DQ223881 −ve

16 Enterococcus casseliflavus DQ223887 +ve

17 Citrobacter sp. DQ223880 −ve

18 Helix aspersa Lactobacillus brevis NA +ve [31]

19 Lactobacillus plantarum NA +ve

20 Lactococcu lactis NA +ve

21 Weissella confusa NA +ve

22 Lactobacillus curvatus NA +ve

23 Enterococcus mundtii NA +ve

24 E. faecium NA +ve

NA: not available.

Table 3. List of lactic acid bacteria used by snails in fermentation of digested food.
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(12) and Leuconostoc (7) accounted for 33, 32, 21 and 13% of the bacterial diversity, respec‐

tively, including the strains belonging to genus Weissella. Among these genera, Enterococcus 

and Lactococcus exhibited the lactic acid activity, thereby indicating their role in the digestive 

physiology of the snail. However, the LAB are also reported to have a stimulatory response 
in a marine gastropod Nassarius obsoletus [109]. The epiphyte enterococci being the dominant 

lactic acid bacterium in the snail’s intestine is quite interesting. Lactococcus lactis is a nonpatho‐

genic bacterium that has been extensively used in the dairy industry for the manufacture of 

buttermilk, yogurt and cheese. These microbes are also routinely used in the fermentation 
process of wines, beer, bread and pickles.

Enterococcus, a LAB, inhabiting the gut of many herbivores, is considered as beneficial for 
the hosts because it forms a biofilm‐like structure on the gut epithelium which could pre‐

vent the host gut from colonization of pathogenic microbes [110]. The members of the genus 

Enterococcus also produce some bacteriocins. The synergistic effect of this biofilm formation 
and production of antimicrobial compound probably impedes the entrance and establish‐

ment of perilous pathogens in the snail gut [111, 112].

8.3. Proteolytic bacteria

Proteases are enzymes that perform proteolysis, that is, hydrolysis of peptide bonds between 

two amino acids of a polypeptide chain. Protease enzymes are ubiquitous [113] in nature. 

Some proteases determine the lifetime of functional molecules like hormones, antibodies, 

or other enzymes that are very important for physiological processes. In the present era of 

advanced technology, more research is being done on eco‐friendly products replacing the 

chemical processes by using enzymatic methods. Proteases have a high demand in industries 

like bread and meat industry, pharmaceuticals and agro‐waste disposal management [114]. 

They are widely used in the film industry for recovery of silver from X‐ray films, in the chemi‐
cal industry for peptide synthesis, in the feed and food industry for production of protein 

hydrolysates, by waste processing companies, in the field of textile processing for degum‐

ming of silk and processing of wool and in the manufacture of detergents, pharmaceuticals 

and leather [115].

Though produced by many microorganisms, that is fungi, yeast, actinomycetes and molds, 

the proteases of bacterial origin are considered as most significant [116] because bacte‐

ria can be manipulated genetically to generate new enzymes with desired properties for 

the specific applications [117]. The bacterial proteases constitute about two‐thirds of the 

industrially important enzymes and account for about 60% of the total worldwide sale in 

markets. Protease‐producing bacteria are also useful for the ecosystem as these microbes 

decompose the dead and decaying animal or plant matter that is primarily composed of 
proteins. They can create pollution‐free environment and are responsible for the recycling 

of nutrients.

Ariole and Ilega [115] isolated the proteolytic Pseudomonas aeruginosa from the gut of freshwa‐

ter snail, Pila ovata. They concluded that this bacterium augmented the snail in degradation 

of nutrients showing a maximum proteolytic activity of 372 U/ml at pH 9. The saprophagous 

nature of H. pomatia suggests that its gut can be a site for protein digestion [118]. Proteolytic 
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activity contributed by the bacteria was also reported by Koleva et al. [31] in the gut of C. 

aspersum during the actively feeding stage.

In the African snail, A. marginata, the five‐cellulase‐and‐protease‐positive bacteria, belong‐

ing to genus B. subtilis, S. aureus, S. casseliflavus and S. faecalis, have been studied [119]. Few 

researchers have reported the protein digestion augmented by the gut symbionts in case of 

gastropods [120–122], with a 32‐kDa protease present in gut lumen and midgut gland of P. 

canaliculata.

Snails are cheap, easy to rear and collect and contain copious microbes in their guts that can be 

exploited for various industrial purposes. The industrially important enzymes, like cellulases 

and proteases, can be isolated, extracted and purified from the gut microbes of snails thereby 
reducing the cost of imported materials. These enzymes are not only used in biofuel produc‐

tion but also harvested for other industries like pharmaceutical, waste disposal and detergent 

industries [119].

8.4. Chitinolytic bacteria

The omnivorous snails feed on insects that are a rich source of chitin, and in some cases, traces 

are often detected in gastropod feces. The body of phytophagous gastropods consists of 10% 

nitrogen, while food plants dined by snails contain only 4% of nitrogen. Chitin and its deriva‐

tives like chitosans could serve as a readily available nitrogen source for the gut bacteria and 

ultimately their host can take advantage of chitin‐derived products [123].

Functional studies described extensively the importance of bacterial gut flora for the 
snail’s digestion and nutrient supply [124]. Since the endogenous enzymatic activity in 

the intestine of the snail is very low, the snails may use their allochthonous and autoch‐

thonous bacteria for organic matter degradation [23, 99]. The digestive tract also harbors 

bacteria with special functions like metal chelation [67] and fermentation activity [64, 66], 

particularly on chitin and soluble cellulose, thereby providing nitrogen, lactate and acetate 

that are used as precursors as well as energy sources [70]. The DGGE fingerprinting tech‐

nique along with NMDS analysis have revealed that intestine of the land snail H. pomatia 

harbors a unique set of bacterial flora. These authors also stated that sequences related to 
Pseudomonadaceae and Enterobacteriaceae spp. dominated the intestinal and digestive 

gland of snail populations. However, Kiebre‐Toe et al. [125] and Charrier et al. [64] also 

reported the dominance of Pseudomonas sp., Pantoea sp. and Buttiauxella sp. in the intestine 

of Helix sp.

Lesel et al. [65] isolated the chitinolytic bacteria from the H. pomatia where chitinolytic bacteria 

were 10 times more abundant in the stomach and intestine than in the crop. In Redix peregra, 

the chitobiase activity was reduced when fed on antibiotic‐treated diet, which also resulted 

in the loss of bacteria. This dual reduction indicates the synthesis of chitobiase by the bacteria 

inhabiting the gut [54]. Same conclusion was recounted by the Jeuniaux [126] and Donachie 

et al. [127] for the pulmonate H. pomatia and krill (Megunyctiphunes norvegicu) by showing a 

reduction in the enzymatic activity of the gut after the treatment of antibiotics.
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8.5. Sulfate‐reducing bacteria

Snails are copper‐dependent animals as they use copper for the formation of the respira‐

tory pigment haemocyanin. They also contain pore cells that can recycle the copper within 

the body. The sulfate‐reducing bacteria increase the availability of copper to their snail hosts 

possibly by the effect of their metal‐chelating activities [67]. The sulfate‐reducing bacteria 

Desulvibrio sp. found in the crop of H. aspersa chelates the metals like Cu, Zn, Fe and Ni and 

make them ready for absorption. Similarly, some authors [128] concluded that digestive 

gland of the pulmonate H. aspersa acts as the store of Pb, Zn and Cd, which would represent a 

detoxification system. On the other hand, Simkiss [67] demonstrated the presence of sulfate‐

reducing bacteria in the crop of the snail C. aspersum.

Recently, Koch et al. [72] isolated the Pseudomonas, Enterobacter and Lactococcus bacterial spe‐

cies that were capable to degrade uric acid. However, in snails, uricase is found in several 

tissues, shuts down during estivation and does not participate in uric acid oxidation during 

arousal from this state [129]. However, tissue uricase along with bacterial uricase plays a role 

in nitrogen recycle of animals. In P. canaliculata, many bacteria not only help in digestion but 

also take part in recycling of uric acid like in arthropods.

9. Effect of gut physiology on the bacteria

The community structure of the microbes inhabiting the gut is predominantly altered by 

physiological states like hibernation and aestivation of the host [126, 130]. The physiological 

states like aestivation or hibernation are characterized by marked decrease in bacterial diver‐

sity due to expulsion of gut contents where some phylotypes are intentionally eliminated from 

the body. This gut clearance and other physico‐chemical modifications may be responsible for 
the restructuration of the bacterial community like absence of mollicutes and α‐proteobacteria 
in H. pomatia [131]. The snails also choose their gut biota as per physiological requirements. At 

the beginning of hibernation, certain groups are reduced and disappear while those that were 

meager during active stage may gain in space and become dominant. Further, during aesti‐

vation, the snails also lose large quantities of water, which may affect the viability of the gut 
bacteria and eventually their number and metabolism [31]. This could also be reason for the 

loss of allochthonous bacterial populations. During hibernation, there is a noticeable reduc‐

tion of water content of the body along with reduction of food and low temperatures, which 

induce the snail to select the psychotropic bacteria only. These studies indicate that the gut 

flora is altered by different life stages and related physiological processes of the snails [132].

Though the bacteria survive during different physiological states like starvation, aestivation 
and hibernation of the snails, there is always a reduction in their number [64, 68] and these 

bacteria can be considered as autochthonous members of the snail gut. During these stages, 

mucous ribbon acts as the main nutritive medium for the bacterial growth [133]. In C. asper‐

sum, amylolytic bacteria are adopted by vertical transmission [31] whereas proteolytic and cel‐

lulolytic bacteria were seen only during the adult stages of the animal. The higher cellulolytic 
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and proteolytic activity within the snail were predominately exhibited in active stage only 

indicating the transient nature of these bacteria, that is being ingested with the food from the 

environment thereby augmenting and improving digestion processes [65]. However, proteo‐

lytic bacteria were completely absent during hibernation, aestivation and in juvenile stages. 

The hibernation was marked with the decline of cellulolytic bacteria.

In H. pomatia, γ‐proteobacteria and α‐proteobacteria were the most abundant classes in all 
populations of snails. Only one phylotype of firmicutes has been reported during hibernation 
of snail populations. In non‐hibernating snails, firmicutes were found only in the proximal 
intestine and digestive gland. In active snails, firmicutes were observed in distal intestine, 
with Mollicute specimen established abundantly in all three gut regions. However, they were 

restricted to the distal intestine and digestive gland at the beginning of hibernation [131].

The changes in the pH of the gut have serious effects on the microbial community. During 
anaerobioses, these bacteria in turn change the pH of the gut through fermentative reac‐

tions [119] producing end products that affect the acid‐base balance of the digestive tract. 
But Churchill and Storey [134] postulated that in dormant snails, there is no accumulation of 

end‐products (lactate and succinate) in dormant snails.

Besides all these functions that are contributed by the bacteria to their hosts, they also influ‐

ence cold hardiness in their hosts. In snails such as H. pomatia and C. aspersum, the gut bacteria 

participate in ice‐nucleating activity thereby reducing the cold hardiness in these snails [131, 

135]. H. pomatia is known to decrease its supercooling point ca. by 3°, from –2 during its active 

state to –7°C in hibernation depending on the geographic location [136]. Lastly, enzymes 

secreted by the gut microbial community are very suitable for various biotechnological appli‐

cations within the food, pharmaceutical and chemical industries along with detoxification of 
many hazardous chemicals.

In conclusion, snails present a vast diversity among mollusks with inherent industrial impor‐

tance. Snails provide benefits not only as food for humans but are also routinely used in agri‐

culture for the control of many insect pests. Though there are pros and cons associated with 

mollusks, a key need is better knowledge of the basic biology of these useful animals, with 
rigorous documentation of their habitats for the possible conservation. Little is known about 
the composition of snail micro‐biota because a large number of species have been underesti‐

mated. Understanding the microbial ecology of snails may illustrate many useful processes 

like development of medicines from mucus or utilization of gut symbionts to challenge the 

emerging issues of environmental pollution and energy crisis. There is a dire need to explore 

more and more diversity of microbes that is encrypted in extreme environments like diges‐

tive tracts of snails. To accomplish this, many advanced techniques like high throughput next 

generation sequences (NGSs) along with other metagenomic techniques can be employed to 

unleash the role of these microbes in the host physiology.
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