
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 7

On Overcoming Barriers to Application of

Neuroinflammation Research

Edward L. Tobinick, Tracey A. Ignatowski and
Robert N. Spengler

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68940

Abstract

Throughout history, new ideas in medicine or science have met initial resistance by 
entrenched medical or scientific communities. Barriers to medical innovation fall into 
six main categories as listed here in order of historical chronology: (1) Theological, (2) 
Academic, (3) Scientific, (4) Financial, (5) Governmental, and (6) Commercial. Researchers 
in the field of neuroinflammation often encounter such obstacles that may include denial-
ism. Despite these barriers, recognition of the therapeutic potential of targeting neuroin-
flammation for treatment of stroke, traumatic brain injury, Alzheimer’s disease, spinal 
pain, and a variety of additional brain disorders has accelerated in the past 10 years. 
Consequently, a paradigm shift in scientific thinking regarding neuroinflammation as a 
therapeutic target is now underway.

Keywords: denialism, perispinal, etanercept, stroke, traumatic brain injury, Alzheimer’s, 
sciatica, neuroinflammation, spasticity, cognitive dysfunction, TNF

1. Introduction

I remember at an early period of my own life showing to a man of high reputation as a teacher some 

matters which I happened to have observed. And I was very much struck and grieved to find that, while 
all the facts lay equally clear before him, those only which squared with his previous theories seemed to 
affect his organs of vision. (Lister [1]).

There is growing scientific evidence of the central involvement of neuroinflammation in 
the pathogenesis of a diverse group of neurological disorders [2–31]. This is particularly 
 important since basic research fuels applied science’s innovations. Despite this evidence, 
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translation of neuroinflammation research findings by basic scientists into therapeutic meth-

ods that are widely employed has been hindered by the traditional barriers that are put into 
place by entrenched medical and scientific communities [32–40]. Of these barriers, denialism, 
the refusal to accept or even examine verifiable facts that conflict with one’s philosophy, is 
particularly onerous and may undermine public health [40, 41]. Recognition of the existence 
of these barriers and careful consideration of their nature promise to facilitate the treatment 
of neuroinflammatory disorders [22, 38, 42, 43].

2. Barriers to translation of medical innovation

A new scientific truth does not triumph by convincing its opponents and making them see the light, 
but rather because its opponents eventually die, and a new generation grows up that is familiar with 
it. (Planck [33]).

Barriers to medical innovation fall into six main categories, in approximate order of chro-

nology: (1) Theological, (2) Academic, (3) Scientific, (4) Financial, (5) Governmental, and (6) 
Commercial. Any one of these barriers by itself can present an insurmountable blockade to 
the translational practice of a new medical discovery. Within each of these categories, denial-
ism often operates to obstruct the progress of a new scientific discovery.

Historically, theological barriers to the acceptance of new scientific concepts have been formi-
dable [34]. Prominent historical examples include the resistance of the Church to the scien-

tific ideas of Galileo and Darwin [32, 34, 35, 40]. While theological barriers have diminished, 
they remain to the present day, including theological barriers to stem‐cell and contraception 
research and practice.

Academic barriers can also impede or prevent scientific progress [32, 34, 35, 38, 39]. Ever since 

scientists and physicians organized into special societies, these societies have wielded their 

political and economic power to influence the acceptance [or nonacceptance] of new scientific 
concepts relevant to their interests [32, 34, 35, 38–40].

Scientific barriers are complex and multifaceted [32, 34–37, 39]. Scientific communities orga-

nize around certain shared assumptions, termed “paradigms,” that form the foundations of 
their scientific beliefs [35]. New scientific discoveries, at odds with existing scientific dogma, 
have historically been attacked and willfully ignored, often by the reigning scientific “authori-
ties” of the time [32, 34–40].

Financial barriers have always created difficulties for scientists because hypothesis gener-

ation, scientific discovery, data confirmation, and publication of a new scientific concept 
necessitates the gathering of sufficient financial resources to support what is characteristi-
cally a lengthy and expensive endeavor [39, 44]. Particularly expensive is drug develop-

ment, which typically requires hundreds of millions of dollars of investment to achieve a 
new FDA indication, with some recent Alzheimer clinical trials costing more than a billion 
dollars [44, 45].
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Governmental barriers have become increasingly complex over time, particularly so in recent 
decades. These barriers are justified by ethical, humanitarian, and public interest consider-

ations as illustrated, for example, by the Tuskegee experiment. Nevertheless, as exemplified 
by the considerations that led to the passage of the recent twenty‐first century Cures Act, 
governmental regulations have the potential to slow the pace of medical progress and may 
be subject to misuse.

Viewed in totality, the difficulty in achieving translation of any radically new or different 
medical innovation, particularly one that breaks new scientific ground, is readily appreciated 
[32, 34, 35, 38–40, 46]. Awareness of these barriers may help facilitate the process of success-

fully surmounting them [32, 34, 35, 38–40, 46–48].

3. Galileo: denialism during the dawning of the scientific method

What do you say to the leading philosophers of the university faculty here who, with the lazy obstinacy 
of a glutted adder, despite invitations a thousand times repeated, refuse even to glance either at the 
planets or the moon, or even at the telescope itself? Truly the eyes of these men are closed to the light of 
truth. (Galileo [40]).

Galileo is considered by many to be the father of the scientific method. Despite his many 
pioneering scientific discoveries, it is well known that his scientific work was actively resisted 
by the Church. The denialism regarding Galileo’s observational astronomical discoveries, 
including his discovery of the four largest moons of Jupiter, was, however, not limited to the 
theological barrier promulgated by Cardinal Bellarmine and the Roman Catholic Church, the 
dominant religion of Galileo’s Italy. Rather it notably included an academic barrier: denial-
ism by the university academics of the time, who joined the Church in refusing to even look 
through the telescope that Galileo had invented [32].

Galileo’s letter communicates the single reason he was imprisoned and his ideas obstructed: 
denialism, due to willful ignorance or “willful blindness” by the academics and theologians 
of his time to the natural scientific truths regarding astronomical bodies that he had discov-

ered [32]. It is tragic that willful blindness to life‐saving medical discoveries, epitomized by 
the example of Semmelweis, may persist for decades before such denialism is overcome and 
still operates today [1, 22, 32, 36–39, 43, 47, 49].

4. Denialism in the nineteenth century: Semmelweis

The innate resistance of science to revolutionary change means that when truly major change is called 
for, the scientific community often and wrongly opposes it at first.

Dogmatism in science and medicine: how dominant theories monopolize research and stifle the search 
for truth.(Bauer [39]).
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New medical discoveries need to overcome all of the enumerated barriers to achieve wide-

spread acceptance and translation [32, 34, 38, 39]. A well‐known historical example is illus-

trative of the existence of many such barriers. In mid‐nineteenth century Vienna, Ignaz 
Semmelweis, through astute observation and careful study, deduced and then provided 
compelling scientific evidence that handwashing by obstetricians prior to assisting in child-

birth dramatically reduced maternal mortality [36, 37]. His ground‐breaking discovery, how-

ever, failed to achieve acceptance during his lifetime, due to academic denialism [36, 37]. 
The entrenched obstetrical community of his time simply refused to recognize his life‐saving 
findings for decades [36, 37].

[Semmelweis] made the intriguing observation that obstetrical mortality within the conveniences of a 
hospital setting, and in the hands of sophisticated physicians, was far greater than that in the hands of 
simple midwives….He postulated that doctors coming from the autopsy room to the maternity ward 
brought with them the cause of childbed fever. His crude antiseptic measures, years before Lister, were 
sufficient to bring the mortality rate down from 25% to around 1%.

Semmelweis’s thinking was greeted with skepticism, and, at times, derision. His colleagues resented the 
constraints he had placed on them and the implications that they were the agents of death [49].

It is not difficult to see how Semmelweis’s findings threatened their specialty [36, 37, 49]. 
Semmelweis faced denialism by the leading obstetrical specialists of his time, a barrier he 
was unable to overcome [32, 34–39]. Additionally, Semmelweis’s discovery that handwashing 
prevented life‐threatening maternal infection conflicted with the scientific dogma followed by 
the obstetricians and general medical community of his time [32, 34–39].

A different and opposite historical example demonstrates the value of medical specialty 
support for the dissemination of medical innovation. In 1884 Sigmund Freud and his col-
league Carl Koller were studying the medicinal effects of cocaine in Vienna [50, 51]. Koller 
discovered that topical eyedrops containing cocaine could be fashioned into an aqueous 
solution that produced effective local anesthesia of the cornea [50, 51]. On September 11, 
1884, he performed the first ophthalmologic surgery using cocaine as a local anesthetic 
on a patient [50]. Koller’s preliminary report was presented by his friend, opthalmologist 
Joseph Brettauer, at the conference of the German Opthalmologic Society in Heidelberg on 
September 15, 1884 [50]. Koller’s discovery was rapidly embraced by the world‐wide opthal-
mology community [50]. Within months cocaine was being used to achieve painless eye 
surgery around the world [50].

5. Commercial barriers to application of scientific discoveries

When the work was presented, my results were disputed and disbelieved, not on the basis of science but 
because they simply could not be true. (Marshall [47]).

Neither Semmelweis nor Koller faced commercial barriers to application of their medical dis-

coveries. In the twenty‐first century, commercial barriers may be those most significant in 
preventing translation of a new scientific discovery [39]. This is particularly true with respect 
to translation of new discoveries regarding drugs and biologics [39, 44]. Marshall faced years 
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of skepticism and resistance from gastroenterologists prior to his 2005 Nobel Prize for the 
discovery of Helicobacter pylori as a cause of peptic ulcers, recognition that led to the com-

mercialization of his discoveries by Procter and Gamble [47]. Regulatory approval of new 
indications for existing drugs or biologics requires voluminous specialized regulatory filings 
and, traditionally, the completion of multiple, large, randomized, controlled clinical trials 
[44]. These requirements routinely necessitate not only the expenditure of hundreds of mil-
lions of dollars but also the explicit cooperation of the drug’s manufacturer [44, 45]. Without 
such cooperation, regulatory approval is not possible.

There is a widespread misconception that drug manufacturers readily provide financial sup-

port for the implementation of randomized clinical trials (RCTs) of their drugs for any new 
indication supported by the peer‐reviewed medical literature [52]. In fact, many novel uses of 
drugs are discovered by clinicians, rather than by drug manufacturers [44, 52]. In reality, com-

panies consider the competitive landscape, market size, cost and difficulty of manufacturing, 
anticipated regulatory hurdles, patent structure (indications, patent life, etc.) covering their 
drug and its competitors and their projected earnings in their calculus [44]. Additional diffi-

culties involved in successful RCT design include selection of indication, suitable patient pop-

ulation and inclusion criteria, exclusion criteria, drug dosing (amount and dosing interval), 
drug formulation (vehicle, pH, viscosity), and delivery method (particularly critical for cen-

tral nervous system indications) [44, 51]. Independent drug discovery start‐ups and academic 
research centers are, in many ways, more suited to performing such research, but have dif-
ficulty independently financing such costly undertakings. Alternative funding sources, such 
as government research grants, are extraordinarily competitive, particularly for researchers 
unaffiliated with leading research universities.

6. Medical dogma as a barrier to neuroinflammation research

The Semmelweis case shows in striking fashion that too much respect for the dominant paradigm can 
damage the interests of patients. (Gillies [36]).

Today, more than 150 years after Semmelweis and 30 years after Marshall’s discovery, medi-
cal dogma still operates to interfere with medical progress [32, 34, 35, 38, 39, 47, 53]. The 
example of most relevance to neuroinflammation research is the dogma surrounding the use 
of antiamyloid therapeutics for Alzheimer’s disease [53, 54]. The continuing clinical trial fail-
ure of these drugs suggests that the underlying hypothesis is, in some way, faulty [45, 53, 

54]. It is well known that investments in developing and testing antiamyloid drugs [all of 
which have failed] have dominated Alzheimer research funding for more than two decades, 
effectively funneling billions of dollars of research money away from competing drugs, such 
as therapeutics directly targeting neuroinflammation [45, 53, 54]. The recent announcement 
from the new UK Dementia Research Institute acknowledges these accumulated failures and 
indicates a resulting shift in research direction [53]. As Bart De Strooper, the new head of the 
institute, recently said, “The evidence suggests that inflammation is another key factor in kill-
ing brain cells and we should be targeting that” [53].
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7. Perispinal injection as a novel method for delivery of CNS drugs

So how should scientists respond to denialism? The first step is to recognize when it is present. Denial-
ism changes the rules of the game. Conventional approaches to scientific progress such as hypothesis 
generation and testing, and argument and counterargument which seek to elicit the underlying truth 
no longer apply. (McKee and Diethelm [41]).

Rapid neurological improvement after perispinal etanercept challenges the dogma that etan-

ercept, and other large molecules, cannot reach the brain in therapeutically effective amounts 
after perispinal delivery1 [51]. In fact, the ability of perispinal injection to deliver a physiologi-
cally effective dose of a drug to the spinal cord was first demonstrated by Corning in 1885 
[51]. The difficulty of delivering large molecules to the central nervous system (CNS) after 
peripheral delivery has long presented an obstacle to neuroinflammation research and trans-

lation of that research into viable commercial products in humans [10, 22, 51]. The unique 
anatomy of the cerebrospinal venous system (CSVS) (Figure 1), the anatomic route by which 
perispinal etanercept is delivered to the CNS, has been confirmed by independent authori-
ties [51, 55–59]. Increasing awareness of the potential of perispinal injection as a method for 
effective delivery of large molecules to the CNS promises to dramatically alter the therapeutic 
possibilities for brain disorders [9, 10, 18, 21, 22, 25, 28, 30, 31, 42, 43, 55, 57, 59, 60].

8. Overcoming denialism in the twenty‐first century: perispinal 
etanercept

Confronted with any illness of whatever type or severity, a doctor has two ethical imperatives. The 
first is to ensure that a specific patient receives the best available current medical care. The second is to 
develop new treatments so that the patient and others with the same problem can be treated completely, 
easily, and economically. The second ethical imperative will, if it leads to a successful outcome, have an 
enormous effect on the health and well‐being of humankind. (Horrobin [46]).

Denialism remains a potent barrier to scientific progress, even in the twenty‐first century, 
as evidenced by holocaust denialism, tobacco‐cancer denialism, AIDS denialism, and other 
examples of incorrect beliefs promulgated in the face of undeniable facts. Perispinal etaner-

cept, a novel off‐label treatment for four neuroinflammatory indications (spinal neuropathic 
pain, including sciatica; Alzheimer’s disease; and chronic neurological dysfunction after 
stroke or traumatic brain injury) has emerged as a new therapeutic modality with unique 
clinical effects documented in the peer‐reviewed medical literature [7, 8, 10, 51, 62–68]. The 
scientific rationale for the use of perispinal etanercept for these indications is extensive and 
has been previously reviewed [10, 19, 51, 65, 66, 68]. As the National Academy of Medicine 
has recently stated, “Complementing randomized clinical trials, the ability to collect data from actual 
clinical practice presents a great opportunity to gain new insights about the efficacy and safety of new 
drugs… [69].” This is exactly what has been done with perispinal etanercept and demonstrates 

1“Perispinal delivery” is used here to denote perispinal injection superficial to the ligamentum flavum, utilizing the 
vertebral venous plexuses as a route to penetrate the relevant physiological barriers (ligamentum flavum and meninges).
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the major role of clinicians in the discovery of new indications for existing drugs [7, 16, 51, 52, 

62, 63, 67, 68].

Rapid neurological improvement is characteristic for each of the four off‐label indications, 
often noticeable within minutes of the first dose [7, 8, 16, 51, 62, 64, 67, 68, 70, 71]. The spec-

trum of improvement as well as its rapidity are novel and may be attributed to the unique 
physiological effects of etanercept as well as the novel perispinal method of delivery enabled 
by the cerebrospinal venous system [8, 10, 16, 51, 55, 65, 68]. For example, in a series of 612 
consecutive patients with chronic poststroke neurological dysfunction treated with perispinal 
etanercept, statistically significant improvements in motor impairment, spasticity, sensory 
impairment, cognition, psychological/behavioral function, aphasia, and pain, with evidence 
of a strong treatment effect even in the subgroup of patients treated more than 10 years after 
stroke, have been documented [16].

Significant neurological improvement of the degree documented after perispinal etanercept 
had not been previously noted with any therapeutic modality, but recently, the possibility of 
motor recovery years after stroke has been confirmed using modified bone marrow‐derived 

Figure 1. The cerebrospinal venous system, detail of Plate 5 from Breschet [61], Courtesy of the Sidney Tobinick 
Collection. ©2017 Edward Tobinick, used with permission.
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mesenchymal stem cells [72]. This stem cell trial involved 18 patients with stable, chronic 
stroke treated with surgical transplantation of specialized allogeneic stem cells by needle 
injection into the peri‐infarct brain after burr‐hole craniostomy [72]. The clinical results in this 
trial were not attributed to the conversion of these specialized cells into neuronal cells [72–74]. 
Rather, as one scientist not involved with the trial suggested in his letter to the lead author,

….injecting SB623 cells into the chronic poststroke brain can be predicted to generate, over time, an 
increasingly anti‐tumor necrosis factor state in this compartment. This would be consistent with clinical 
observations (http://www.strokebreakthrough.com/videos‐by‐category/) that introducing a widely used 
specific antitumor necrosis factor agent, etanercept, into this same compartment through Batson’s plex-
us, followed by a short period of head‐down positioning, has led to safe and rapid onset of poststroke im-
provements similar to those reported to evolve slowly after intracranial introduction of SB623 cells [73].

The lead author of the stem cell study responded,

Immunomodulation related to protein and molecular factors secreted by the SB623 cells could be one of 
the mechanisms underlying the observed neurological recovery in our patients and could suggest that 
there is ongoing chronic inflammation >6 months after stroke that is suppressing intact neural circuits 
and rendering them nonfunctional. This concept has some support in the recent preclinical and clinical 
literature. In addition, it is conceivable that the transplanted SB623‐secreted factors are enhancing na-
tive neurogenesis or synaptogenesis, potentially through blocking excess tumor necrosis factor effects 
after stroke, although this is unproven [74].

Furthermore, the favorable effects of etanercept on spinal neuropathic pain, first documented 
clinically after perispinal injection [7, 10, 62, 65, 75], have been confirmed in four subsequent 
randomized, double‐blind, placebo‐controlled clinical trials [76–79]. These studies and others 
have led “to the emergence of TNF inhibitors as available strategies for clinical treatment of 
pain associated with intervertebral disc herniation” [60] and foreshadowed the reduction in 
central pain reported after stroke and traumatic brain injury (TBI) in patients treated with 
perispinal etanercept [16, 67, 68].

Additional scientific support for the perispinal etanercept stroke and TBI results has come 
from basic science studies of etanercept in stroke and TBI models, all of which demonstrated 
favorable results [80–86]. Recent independent scientific publications have also been support-
ive of these results [15, 18, 20–26, 28–31, 42, 59, 60, 79, 87–105].

Our current thinking regarding the rapid and sustained neurological improvement docu-

mented after perispinal etanercept for neuroinflammatory indications involves the following 
mechanisms, each of which involves amelioration of neuroinflammatory pathophysiology by 
etanercept (Table 1).

8.1. Immediate neutralization of excess TNF

Rapid neutralization of TNF by binding to excess circulating TNF is a known physiological 
effect of etanercept and the main scientific rationale behind its use for its approved indications 
[10]. Excess TNF has been implicated in the pathogenesis of Alzheimer’s disease, stroke, TBI 
and neuropathic pain [10, 18, 21, 60, 65, 66, 68].
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8.2. Modulation of neurotransmission at the individual synapse

TNF’s role as a gliotransmitter that modulates synaptic transmission and synaptic strength sup-

ports this as a physiological mechanism underlying the clinical effects of perispinal etanercept 
[8, 10, 15, 16, 65, 66, 68, 71, 106]. When applied exogenously to superfused brain tissue, TNF 
inhibits the stimulation (stimulations 1 and 2, S1 and S2, at 2 Hz, 120 shocks) evoked release 
of norepinephrine from noradrenergic axon terminals in the isolated median eminence [107]. 
Similarly, when TNF is applied to slices of the hippocampus, it inhibits stimulated (S1 at 1 HZ 
and S2 at 4 Hz) norepinephrine release in a concentration‐ and frequency‐dependent manner 
[108–110]. In both studies, the addition of TNF was 15–16 minutes prior to stimulation, indicat-
ing that TNF does not require a long exposure time to develop modulatory effects. Interestingly, 
TNF inhibition of stimulated norepinephrine release under physiological conditions is altered 
in pathophysiological conditions. For example, the inhibition of stimulated norepinephrine 
release by TNF is supersensitized, or increased, during conditions whereby TNF expression 
is enhanced in the brain (chronic pain) [111, 112]. Thus, it is proposed that descending mono-

aminergic pain pathways providing endogenous analgesia are no longer engaged [23]. The 
rapid alleviation of chronic pain experienced by patients receiving perispinal etanercept may 
be explained by disinhibition of norepinephrine release and descending pain modulation.

8.3. Modulation of neuronal network function by mediation of synaptic scaling

The central role of TNF in modulating synaptic scaling and synaptic strength and thereby 
modulating neuronal network function may help explain the rapid and widespread neu-

rological effects of perispinal etanercept, including its rapid improvement of cognition in 
Alzheimer’s disease, poststroke cognitive dysfunction, and cognitive dysfunction after trau-

matic brain injury [8, 15, 16, 62, 67, 68, 71, 106].

8.4. Reduction of microglial activation

Etanercept has been shown to reduce microglial activation in multiple experimental models 
[81, 113, 114]; reviews: [10, 19]. Activated microglia release excess TNF, contributing to the 

Physiological effect

1. Immediate neutralization of excess TNF

2. Modulation of neurotransmission at the individual synapse

3. Modulation of neuronal network function (synaptic scaling)

4. Reduction of microglial activation

5. Reduction in neuropathic pain

6. Activation of neurogenesis

Table 1. Mechanisms of amelioration of neuroinflammatory pathophysiology by etanercept.
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neurotoxicity and perturbations in synaptic mechanisms seen in neuroinflammatory disor-

ders [10, 19, 26, 63, 68, 81, 93, 114, 115]. Reduction of microglial activation may be a mecha-

nism whereby perispinal etanercept reduces central homeostatic dysregulation of TNF levels 
induced by microglial activation after stroke or traumatic brain injury.

8.5. Reduction in neuropathic pain

Brain TNF is overexpressed during the development of neuropathic pain [4, 111, 116, 117]. 
Treatment using TNF inhibitors has been shown to reduce neuropathic pain in both basic sci-
ence models and in the clinical setting [5, 10, 16, 19, 25, 60, 62, 68, 76–79, 99, 114]. Preclinical 
studies have shown that blockade of TNF synthesis in the brain is antinociceptive [99]. Also, 
clinical case studies report that targeting TNF centrally is analgesic [62, 71, 79]. This may be 
due to blockade of TNF that restores neurotransmission homeostasis along pain pathways.

8.6. Activation of neurogenesis

Although there is some conflicting data, a variety of experimental models suggest that 
TNF or other pro‐inflammatory cytokines, if present in excess, may inhibit neurogenesis 
[118–122]. TNF and interleukin‐1 are involved in the decrease of neurogenesis evidenced 
in pain and depression models [123–125]. Mice receiving sciatic nerve chronic constriction 
injury to induce neuropathic pain developed depressive‐like behavior for 4 weeks follow-

ing ligature placement that was associated with increased hippocampal TNF and impaired 
dentate gyrus neurogenesis dependent on TNF receptor‐1 signaling [126]. There is data 
suggesting that inflammatory blockade may restore adult neurogenesis [122]. This, theo-

retically, might be a potential mechanism that could contribute to the increasing neurologi-
cal improvement observed after perispinal etanercept treatment over the course of months 
in some patients [16, 63, 68, 120–122].

Perispinal etanercept has successfully traversed a variety of scientific, academic, and gov-

ernmental barriers to achieve scientific acceptance and recognition [9, 11, 13, 15, 18, 20–26, 

28–31, 42, 57, 59, 60, 79, 81, 82, 88–91, 93–98, 100–105, 114, 115, 123, 125, 127–133]. This was 
accomplished despite considerable misinformation published online by competing medical 
specialists, who refused the opportunity to observe, first‐hand, the rapid neurological effects 
of perispinal etanercept, despite repeated invitations to do so [43, 48]. Such denialism is in 
the tradition of that faced by Galileo, Semmelweis, Lister and Marshall, but it has no place in 
science or medicine [1, 22, 32, 33, 35–39, 41–43, 47].

As Glaziou and colleagues have stated [134]:

Confident inferences about the effects of treatment are justified in several situations in which treatment 
effects are unlikely to be confused with the effects of biases. These include, in particular, … interven-
tions … where there is a rapid response on a stable background [134].

The rapid neurological improvement repeatedly observed in thousands of patients with 
chronic, intractable neurological dysfunction after treatment with perispinal etanercept, 
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combined with strong, independent, basic science support, constitutes compelling evidence 
that mandates the recognition of these clinical effects and the initiation of the necessary 
actions, including the funding of randomized clinical trials, by the relevant medical special-
ties and governmental agencies, for the benefit of the public.

9. Overcoming barriers to the application of neuroinflammation research

I by no means expect to convince experienced naturalists whose minds are shocked with a multitude of 
facts all viewed, during a long course of years, from a point of view directly opposite to mine….But I 
look with confidence to the future, to young and rising naturalists, who will be able to look at both sides 
of the question with impartiality.

Charles Darwin [135], The Origin of Species, 1845.

The key to overcoming barriers to application of neuroinflammation research is education. It 
is essential that medical students and neuroscientists receive training in basic immunology, 

the role of cytokines in physiology and pathophysiology and the essential concepts under-

lying neuroinflammation. Because neuroinflammation is not concrete and visible under the 
microscope in the same way that pathology such as amyloid plaques are, improved meth-

ods, access and utilization of new and emerging methods for imaging neuroinflammation are 
also essential. Today, fortunately, the initial promise of neuroinflammation research is bearing 
fruit, and a paradigm shift in scientific thinking in this regard is well underway. Recognition 
of the necessity of neuroinflammation research for the successful development of new treat-
ments for neurological disease must be a key goal of society. The allocation of sufficient 
research and educational funding to this end is essential.
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