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Abstract

The increasing age seems to have a negative impact on reproductive functions not 
only in women but also in men. Therefore, our aim was to review the data available in 
the literature regarding the impact of advancing age on fertility and the mechanisms 
underlying this association in both genders. The available data suggest that the effects 
of age on ovarian function cause a decrease in fertility starting 13 years before meno-
pause. Statistics show that 10% of women will have a decreased fertility starting with 
the age of 30. The impact of age on ovary is due to both decreased number and qual-
ity of the oocytes, resulting in a high rate of chromosomal aneuploidy in the embryo 
and mitochondria dysfunction. Assisted reproductive technologies aiming to identify 
competent embryo were created but for the moment the results are unsatisfactory. 
On the other hand, in men, the semen quality and testicular function were found to 
gradually decrease with age and most of the studies also describe a negative impact 
on fertility. The mechanisms underlying decreased fertility are mainly genetic and epi-
genetics changes. However, if the effects of age on male fertility in men can be overcome 
by assisted reproductive technologies is not clear yet as the results of the studies are 
inconsistent.

Keywords: aging, male fertility, female fertility

1. Introduction

The increasing age has a negative effect on reproductive function not only in women but 
also in men. This aspect seems to gain importance since in the last decades; there is a trend 

to an increased age in both genders at the first pregnancy. While the decreasing reproductive 
potential of women with age is well known, the modification of the reproductive function 
in men with increasing age is not entirely understood. The lack of a clear definition of an 
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advanced reproductive paternal age and the mechanisms involved interfere with adequate 

counselling of the couple regarding future fertility. Therefore, our aim was to review the data 

available in the literature regarding the impact of advancing age on fertility and the mecha-

nisms underlying this association in both genders.

1.1. Methods

We performed a review of the available data regarding the impact of advanced age on fertility 
in both men and women. We searched in PubMed and Google Scholar using the following 
key words: maternal age, paternal age, ovarian aging, fertility, infertility, chromosome aber-

rations, reproduction, pregnancy, pregnancy complications, assisted reproduction, ovary, 

and testes. Only articles written in English and French were selected.

2. Aging and fertility in men

2.1. Trend of increasing paternal age

A study published in 2006 showed an increase in paternal age over 2 decades among British 

couples from 29.2 years in 1980 to 32.1 years in 2002 [1, 2]. Moreover, the proportion of fathers 
aged 35–54 years increased from 25 in 1993 to 40% over 10 years [1]. These data probably par-

allel a worldwide change in reproductive dynamic, reflecting societal changes: couples start 
their families later waiting for a more favorable socio-economic environment and taking into 

account the change in women’s role in society and increased access to reproductive technolo-

gies. However, the exact impact on fertility and health of the offspring because of this increase in 
paternal age is not completely understood, although some studies suggest detrimental effects.

Although the effect of delaying time of conception in women is extensively studied and strate-

gies to counteract the negative consequences on the fetus are available, the potential effect of 
increasing age on male fertility has just started to be evaluated. While early studies failed to 
find an association between higher paternal age and infertility [3, 4], recent studies suggest a 

detrimental effect of increasing age on a chance to conceive. In one study published in 2000, 
couples with pregnancies of at least 24 weeks of gestation had a decreased chance of preg-

nancy within 12 months in comparison with men younger than 25 years (or 0.62 for men who 

are 30–34 years old, 0.5 for men who are 35–39 years old, and 0.51 for men ≥40 years old) [5]. 

Moreover, the increased paternal age seems to interact with the maternal age as suggested by 
the study of de La Rochbrochard and Thonneau which showed that men older than 40 years 

had an increased risk of infertility in couples with women older than 35 years [6]. Similarly, the 

study of Hassan and Killick confirmed that men older than 45 years associate with a decreased 
chance to achieve pregnancy within 1 year, in comparison to men younger than 25 years. [7].

The decline in male fertility with advancing age could be explained by several mechanisms. 

First of all, sexual dysfunction is one of the possible contributors as the frequency of the 
sexual intercourse significantly decreases with age and can significantly impact the fertility 
[8, 9]. Furthermore, semen parameters and testosterone levels can be altered with advancing 
age and an increased number of genetic abnormalities could appear.
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The decline in testosterone levels as men age has been consistently reported in cross-sectional 

[10, 11] and longitudinal studies [12–17]. However, the clinical significance of this decline 
and the utility of testosterone administration are not completely clarified. Whether this pro-

cess is part of the physiological aging or is influenced by other factors (potentially correct-
able) is also a subject of research. A longitudinal study published in 2013 comprising 2736 
community-dwelling men aged 40–79 years [18] demonstrated that the age-related changes in 

testosterone levels could be influenced by lifestyle modifications: weight loss was associated 
with a proportional increase and weight gain with a proportional decrease in testosterone, 

free testosterone, and sex hormone-binding globulin (SHBG). Moreover, smoking cessation 
was related to a greater decline in testosterone in comparison to smokers. The number of 

comorbid conditions or physical activities did not seem to have an influence on hypothalamic-
pituitary-testicular (HPT) axis function [18]. However, this study, in agreement with the pre-

vious studies, confirmed the modest decline of testosterone and free testosterone with age, 
while SHBG and luteinizing hormone (LH) increased, although the mean values of hormones 
remain within normal ranges.

Although the testosterone level decreases with age, only a small proportion of aging men 

present with testosterone levels below the normal range are being diagnosed with late onset 

hypogonadism. Among subjects included in the European Male Aging Study (EMAS), the 
prevalence of late onset hypogonadism was of 2.1 among men over 40 years old and 5.1% 

among men over 70 years old [19].

This decrease in testosterone levels seems to be the consequence of a decline in testicular and 

hypothalamic function with age. Histopathological postmortem studies support this hypoth-

esis showing a reduced number of Leydig cells (∼44% lower in men aged 50–76 than in men 

aged 20–48) [20]. It was also demonstrated that the Leydig cells responsiveness to LH admin-

istration is decreased in older men [21]. An exaggerated response of gonadotropin-releasing 

hormone (GnRH) to the negative feedback of testosterone and estrogen was also suggested to 
be involved in hypogonadism of older men [22].

However, the decrease in testosterone levels in aging men is not universally found, being 

probably influenced by numerous factors. A study published in 2010 demonstrated an asso-

ciation between polymorphisms in genes related to the pituitary-testicular endocrine function 

and circulating LH, testosterone, and estradiol levels [23].

Whether this decrease in testicular function has an impact on spermatogenesis is an interest-
ing aspect which needs further clarification, taking into account the close correlation between 
gonadal steroids and spermatogenic functions in men.

The reports about changes of semen parameters with increasing age started in 1970 and many 

studies were published until today. Most of these studies found a decrease of semen volume, 
percentage of motile spermatozoa, and of normal morphology [24–26]. In turn, sperm concen-

tration was reported to be unchanged [27], decreased [26], and even increased with advancing 

age [28] in healthy men. On the other hand, studies on infertile men demonstrated an unal-

tered [29] or an increase in sperm concentration [28]. However, most of these studies included 

a limited number of older subjects, making difficult to analyze the impact of aging on semen 
parameters. The study by Brahem et al. [30] demonstrated an effect of age of decreasing semen 
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volume and vitality only in infertile patients in comparison with men with proven fertility. In 
contrast, the sperm concentration significantly increased with age [30]. The alteration of sperm 

parameters with age could be due to age-related histological changes observed in the testis. 

For instance, a study of the testes of 26 postmortem male subjects aged 16–80 years found a sig-

nificant decline in the number of Sertoli cells with age [31]. Another histological study showed 

that subjects over 50 years old have a decreased number of Sertoli cells and failure of spermato-

genic cell development evident from the spermatid level. However, an increased apoptosis 

index and a decreased proliferation index were observed only in men over 70 years [32].

The age-related decline in semen parameters could be also determined by the deterioration of the 

function of the seminal vesicle (contributing to ejaculate volume), prostate, and epididymis [33].

2.2. The genetic modifications during aging

2.2.1. DNA fragmentation

The results of a meta-analysis, including 26 studies and 10,220 patients, showed an increased 

DNA fragmentation paralleling advancing age [34]. The study by Moskovtsev et al. [35] eval-

uated infertile men, showing that the DNA fragmentation index increased gradually from 

15.2 in men <30 years to 19.4, 20.1, 26.4, and 32.0% in men in the age groups 30–35, 35–40, 

40–45, and over 45 years [35]. The association between DNA fragmentation and increasing 

age was also found in men with normozoospermia and oligoasthenoteratozoospermia [36].

Sperm DNA fragmentation seems to be an important determinant of fertility since it was 

reported to be associated with a reduced chance to conceive, a higher time of conception 

[37–39], and poorer outcomes in intrauterine insemination and IVF (in vitro fertilisation)/
ICSI (intracytoplasmic sperm injection) [40–44]. Moreover, it is possible that altered sperm 
DNA integrity has an impact on early embryonic development according to studies reporting 

a reduction of embryo morphokinetic parameters [45, 46], a reduced implantation rate, [47] 

and a poor embryo’s post-implantation development resulting in pregnancy loss [48]. The 

study of Sivanarayana et al. [49] showed that sperms with abnormal forms (elongated, thin, 

round, pyri, amorphous, micro-, and macro-forms) and abnormal motility parameters were 
significantly associated with a higher DNA fragmentation index [49]. Therefore, the selection 

of morphologically normal spermatozoa for ICSI procedure could provide a possible expla-

nation for the divergent results of studies evaluating the association of DNA fragmentation 

and ICSI outcome.

2.2.2. Aneuploidies

Chromosomal aberrations are frequently found in human gametes (21% of oocytes and 
9% of spermatozoa) [50], with a predominance of aneuploidies in oocytes, whereas struc-

tural chromosomal abnormalities predominate in spermatozoa. Chromosomes 21, 22, and 
16 are usually overrepresented in aneuploid gametes. In turn, sex chromosomes are par-

ticularly prone to non-disjunction in human sperm. Whereas the frequency of aneuploidy 
seems to be increased in infertile male sperm [33], the advanced paternal age is not con-

vincingly associated with the presence of aneuploid sperms [50, 51]. Except an increased 
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risk for trisomy 21, there are contradictory evidences for trisomy 18, 13, 47 XXY, and 45X 

[52] associated with paternal age. Bosch et al. [53] also reported a positive linear associa-

tion of age with the structural and numerical abnormalities of chromosome 9 in sperm 

of the healthy donors, but these findings are limited by the reduced number of subjects 
(n = 18) [53]. A study published in 2011 reviewed the data on the association between 

paternal age and the presence of aneuploidy in sperms and concluded that in spite of 

decades of research and ‘’innumerable microscope hours”, the literature is inconclusive 

[54]. The authors suggested that a low efficacy of FISH (fluorescence in situ hybridiza-

tion) in detecting aneuploidies can be involved in the results of the studies and proposed 
that the array-based approaches will be a better method in addressing the question of a 
paternal age effect [54]. However, other methodological problems of the previous papers 

can be also involved as the number of patients was quite small in most of the studies and 

the age range was not always wide enough to be able to detect an association. A study 

published in 2005, evaluating testicular samples of subjects aged 29–102 years, reported 

that spermatogenesis is not invariably affected by age and the frequency of aneuploidies 
is increased only in older individuals with arrested spermatogenesis, suggesting an inter-

action between these two conditions [55]. An experimental study on mice also observed 

an association of increased age not only with sex chromosomal disomy and a high rate of 

germ cell apoptosis but also a high inter-individual variability in germ cell apoptosis. The 

authors concluded that the compromised apoptosis could contribute to high aneuploidies 

rate observed in older mice [56].

The study by De Souza et al. [57] showed that older fathers have an increased risk of hav-

ing children with Klinefelter syndrome and XYY syndrome [57], in accordance with the 

described paternal origin of these sex chromosomes. Although slightly, the risk of Patau and 
Edwards syndromes was also increased. Arnedo et al. reported that the paternal age was asso-

ciated with a higher frequency of sperm XY disomy only in fathers with paternally inherited 

Klinefelter syndrome offspring [58].

Trisomy 21 is the most common trisomy in newborns, and it is clearly related to increased 

maternal age. Surprisingly, the risk for Down syndrome seems to be negatively related to 

paternal age according to a study reporting a double risk for Down syndrome in all mater-

nal age groups for younger fathers [59]. On the other hand, another study showed that 

paternal age is positively associated with a high risk for Down syndrome only when moth-

ers are older than 35 [60]. However, the overall paternal contribution to Down syndrome 

appearance seems to be low as only in 5–10% of cases, excess 21 chromosome is of paternal 

origin [61].

Older studies reported no relationship between paternal age and autosomal trisomies [62, 63] 

or even a decreased risk of trisomy 13 for men older than 39 years [64] in comparison to a 

younger age group.

A recently published study evaluating the influence of the paternal age on the aneuploidies 
rates in embryos obtained from donated oocytes found that men older than 50 years had 

higher aneuploidy rates in embryos compared to the groups of men younger than 39 years 

and between 40–49 years old [65].
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2.3. Abnormalities of the chromosomal structure

Due to the continuous process of spermatogenesis during the lifetime of a man, the spermato-

gonia are prone to an increased risk of mutations through a high number of cell divisions. 

This process could be aggravated with increasing age due to the toxic effect of oxidative stress 
and decreased DNA repair capacity [66, 67]. Moreover, increased paternal age is considered 
one of the major sources of mutations in humans [66].

2.4. Telomere length

Telomeres are regions of repetitive nucleotide sequences found at the end of the chromo-

somes, which have the function to protect the end of the chromosome from deterioration or 

from fusion with other chromosomes. Telomere length shortens with age and is associated 

with aging-related disorders. Telomere length decreases with every replication and, when a 

critical length is reached, cell division stops and cellular death appears. Although telomere 

shortening is considered to be related to advanced age and senescence [68], several studies 

reported a longer leucocytes telomere length in offspring of older fathers [69]. These findings 
are consistent with the longer telomere length reported in a subset of the sperm of older men. 

Probably this aspect is due to the selection of a particular germline stem cell subtype during 
the aging process with prolonged survival [69] but at the same time with affected mechanisms 
of healthy sperm selection [36].

The mechanisms connecting paternal age and telomere length of the offspring are not clearly 
elucidated. Although genome-wide association studies identified a number of genes linked 
to telomere length in general population, it is unlikely that increased number of mutations 

appearing with age in the paternal germline is the explanation for the observed association 

due to the rarity of these mutations [70].

One possible explanation is the age-dependent selection pressure in the male germline 

cells, older individuals having sperms with longer telomeres due to the selection process. 

This hypothesis is sustained by studies reporting a predominance of the sperm with longer 

telomers in older men [69].

Another hypothesis is offered by the different telomerase activities in somatic and germ-line 
cells. As such, telomerase is repressed in most somatic cells, whereas its activity is sustained 

in male germ-line stem cells [71]. Although the role of telomerase is to maintain the length of 

telomeres, after every replication of male germinal cells, a small increase with few base pairs 

seems to appear [72]. Due to the high number of replications of the germinal male cells over 

the life span, these small elongations accumulate, resulting in a significant increase of the 
telomere length in sperms of older men [70].

While most of the studies evaluated the relationship between paternal age and leucocytes telo-

mere length, the positive correlation between paternal age and offspring sperm telomere length 
was for the first time reported in 2013 by a study evaluating a small sample (81 subjects) of 
young men (18–19 years old) [73]. However, in this study, the maternal age was also positively 

correlated to sperm telomere length, and the contribution of each parents’ age was difficult to 
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established due to the high correlation between parents age. They also found that sperm telo-

mere length is related to sperm count, being lower in oligozoospermic than in normozoosper-

mic men. These results confirmed the findings of Thilagavathi et al. [74] which reported shorter 

sperm telomere length in men with idiopathic infertility in comparison with controls [74]. 

Therefore, the number of studies linking infertility and low sperm count to shorter sperm telo-

mere length is limited, and the question whether shorter sperm telomere length is the cause of 

infertility (through increased apoptosis of germ cells, impaired spermatogenesis, and reduced 

sperm count) or a marker of damaged spermatogenesis is yet to be answered by future studies.

Moreover, a study published in 2015 [75] reported a marked increase in sperm telomere 

length heterogeneity as men age and a longer length in samples with normal parameters in 

comparison with samples with abnormal parameters. These findings could have implications 
for infertile couples treated with assisted reproduction techniques due to a high probability of 

shorter telomere length in the offspring, taking into account the reported association between 
shorter telomere and depression, autism, neoplasia, and general poor health.

The exact implication of the paternal age at conception on the offspring health is not com-

pletely understood. Although it was generally considered to have a negative impact through 

the association with rare conditions like achondroplasia, Marfan syndrome, autism, and 
schizophrenia, it is also possible to be associated with a reduced risk of atherosclerosis and 
increased survival as longer telomere length confer this advantage [70].

Although telomere length is a complex genetic trait [76], several studies reported a possible 

impact of many other factors on telomere length like obesity, sleep disorders, smoking, and 

socio-economic factors, making the study the relationship between parental age and telomere 

length even more complicated.

2.5. Epigenetics

Data on the epigenetic changes related to paternal age are limited and refer mainly to modifi-

cations of methylation patterns observed in rats [77] and are considered to be involved in the 

appearance of Huntington disease, Alzheimer’s disease, autism, or schizophrenia in humans [33].

3. Aging and fertility in women

Ovarian aging is a complex phenomenon that involves not only the reproductive function of 

the woman but also her global health status. Aging is characterized by a reduced number of 
oocytes and decreased fertility. Ovarian failure at menopause is associated with cardiovascu-

lar diseases, cognitive dysfunction, depression, and osteoporosis. The heat intolerance and 

hot flushes affect the quality of women life. Menopause is the final event in ovarian aging, 
with a mean age of occurrence of 51 years for the Caucasian population, with a range of 
individual variations due to genetic and environmental factors. Menopause is preceded by 
pre-menopause, a period that can last up to 10 years, characterized by a marked decline in 
fertility. The human follicles dynamic undergoes tremendous changes during this period, 
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represented by a high rate of follicular atresia and a low rate of follicular growth, followed by 

exhaustion of follicular reserve, and, finally, occurrence of menopause.

The status of the women nowadays is changing, moving from high mortality and high fecun-

dity to low mortality and low fecundity. There are remarkable changes in the dynamic of 

the world population and in the age distribution. It is estimated that in 2025, the number of 
women over 60 years old will equal the number of women 15–24 years, reversing the actual 

status [78]. Moreover, there is a continuous increase in the number of employed women which, 
in association with the increase in educational demands of women, will contribute to the 

postponed age of maternity. Therefore, current trends of the society determine an increased 

number of women to try to conceive at an older age. This decision generates a serious health 

problem due to the decreased fertility and a high rate of pregnancy complications associated 

with advanced age. The statistics show that the fertility is decreased by 31% in women, 35–39 

years old, in comparison with women who are 20–24 years, and the same decrease in fertility 

is mirrored by the success in assisted reproductive techniques [79].

The epidemiological studies reflect these societal changes, reporting an increase in the age of 
women at first birth from 22.7 in 1980 to 28.2 years in 2003 [80]. This change in the maternal 

age at first birth is relevant, taking into account that women over 30 years old who had not 
yet conceived had lower chances to obtain pregnancy than women who previously conceived 

at younger ages [80].

Ovarian aging implies qualitative and quantitative alteration of ovarian reserve and a con-

secutive decline in fertility. In women, the ovarian pool, which is formed during intrauterine 
life, is gradually depleted and the number of oocyte aneuploidies are gradually increasing 

with age. Therefore, the number of miscarriages and implantation failure are rising with age. 

The ovarian pool gradually declines, but there are some crucial steps at 34, 37, and 40 years 

when the decline accelerates. This ovarian pool is not subsequently renewed [81].

The age-related decline in follicle number is bi-exponential but doubles beyond a critical 

point at the age of 37.5, when the number of follicles became less than 25,000 [82, 83]. From 
this point till menopause, the time interval is around 13 years, this time period being char-

acterized by a decline in fertility (a subfertility status). If we consider women who enter 
menopause at 45 years, the cut-off value of less than 25,000 follicles will be reached at the 
age of 32. From a statistical point of view, 10% of women will enter menopause at 45 years, 
so there is 10% of women in the population who could potentially present subfertility since 

32 years[84].

During intrauterine life, the ovary comprises 6 millions of oocytes surrounded by granulosa 

somatic cells, but because of atresia, only 1 million of primordial follicles remain at birth. At 

menarche, only 3,00,000 oocytes are left. During the female lifespan, approximately 400–500 

follicles will ovulate [85].

Assisted reproduction technology had poor results in cases of ovarian aging, raising the 

economical, medical, and social cost of the procedures. On the other hand, oocyte donation 

programs have difficulties in finding donors. Social freezing of the oocytes creates various 
financial and storage problems and involves ethical issues and unequal access to medical care.
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Ovarian aging is a complex process that implies genetic modifications and metabolic changes, 
causing a decreased competence of the oocytes to become a viable embryo that could implant 

and ovulate. Aging is associated with chromosomal aberrations of the oocytes, an increase 

in ovarian DNA fragmentation, a shortening of the ovarian telomere length, a decreased 

mitochondrial function, dysfunction of the granulosa cells, and a decreased testosterone 

production by the ovary. The use of Fourier transform infrared spectroscopy (FTIR) showed 
meaningful macromolecular and biochemical changes in human ovaries. The decline in ovar-

ian quality with age was associated with important modifications on composition and distri-
bution of all principal biomolecules: proteins, lipids, carbohydrates, and nucleic acids.

During the developmental stages of folliculogenesis, the oocyte growth is accompanied by the 

proliferation and differentiation of the granulosa cells. At the antral stage, the granulosa cells 
differentiate in two very different phenotypically populations: the cumulus granulosa cells 
(CGCs) and the mural granulosa cells. The CGCs are involved in oocyte growth and matura-

tion and the mural granulosa cells are responsible for steroidogenesis [86, 87]. There are gap 

junctions between the CGCs and the oocyte. The accumulation of damages in granulosa cells 
during the long quiescent phase before entering the growing phase, or the alteration of cross-

talk between granulosa cells and oocyte, contributes to the impact of aging on oocyte [87].

Both the oocytes and primordial follicles could stay in the ovary till the fifth decade and then 
start to grow and form mature oocytes. 60% of women over 40 remain infertile, comparable 

with 6% at the age group 20–24 [88]. The chance of pregnancy in a cycle is 30% for women 

between 27–29 years and 15% for women between 37–39 years. Natural delivery can occur 

after 45 years also but represents only 0.2% of total deliveries. However, most of the women 

that conceive at this age are multiparous [89]. It seems that the highest quality oocytes are 
used in the early reproductive years, leaving the less-competent oocytes for the fifth decade 
[90]. The chromosomal aberrations in the older ovaries are responsible for the increased num-

ber of embryo aneuploidies and miscarriages.

Kalmbach et al. [91] proposed the telomere shortening in the female germline as a central 

mechanism of reproductive aging in women [91]. The arguments for their theory are the stud-

ies on mice that demonstrated an association of telomere shortening with increases embryo 

fragmentation, cell cycle arrest, apoptosis, and chromosome abnormalities [92, 93]. In humans, 
it was reported that shorter telomeres in the oocytes of women undergoing in vitro fertiliza-

tion were linked to the presence of fragmented, aneuploid embryos that fail to implant [94].

Mitochondria represent the powerhouse of the cells, producing the energy necessary for cel-
lular functions. The ATP required for cellular energetic needs is produced by mitochondrial 
oxidative phosphorylation (OXPHOS). A toxic product of OXPHOS is endogenous reactive 
oxygen species (ROS). Natural defense mechanisms protect the cells against the damages 
produced by ROS, but if these mechanisms are decreased, the cells could be damaged. In the 
ovary, ROS may be involved in the regulation of follicular development or apoptosis through 

the modulation of ROS scavenging systems [95].

The theory of the free radicals’ role in ovarian aging, which is 50 years old, says that these 

free radicals progressively accumulate with age and determine damages of the ovarian 
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 compartments and the decrease in ovarian function [96]. The evidences for this old theory are 

provided by studies showing a significant increase in oxidatively damaged lipids, proteins, 
and DNA [97] and a decrease in antioxidant defense in aging ovary [98, 99].

The increase of oxidative stress with ovarian aging could contribute to follicular atresia and 

a poor quality of oocytes as well [98]. Moreover, oxidative stress damages the telomeres and 
accelerates their shortening.

Mitochondria have their own genome in the form of mtDNA. This DNA is unstable in aging 
ovary. The maternal transmission of mtDNA is well established, and paternal transmission 

of mtDNA is being seen only in some pathological cases. Oocytes have a well-defined role 
in eliminating paternal mtDNA, but this ability has decreased in poor quality oocytes. The 

close relationship observed between mitochondrial dysfunctions and poor reproductive per-

formance, which could be solved by injection of healthy mitochondria from another woman, 

led to the concept that the age of the ovary is related to the age of the mitochondrial function. 

Other signs of ovarian aging are point mutations or deletions of mitochondrial DNA.

Another theory is referring to the carbonyl stress in the aging follicle. Reactive carbonyl spe-

cies (RCS) are reactive endogenous metabolites derived from metabolic processes. Unlike 
ROS, the damages produced by the RCS to the cells are more severe due to the increased sta-

bility of these products and their ability to attach to targets far from the site of their formation 
[100]. RCS determine post-translational modifications which finally form advanced glycation 
end-products (AGEs). Between AGEs and oxidative stress, there is a complex interplay with 
oxidative stress contributing to AGEs production [101].

These products accumulate in the ovary and promote the wide spatiotemporal spread of oxi-

dative stress. These modifications affect the ovarian microenvironment during folliculogen-

esis, influencing the developmental capacity of the oocytes. It was also suggested that AGEs 
produce perturbation in perifollicular vascularization by a complex relationship with vascular 
endothelial growth factor (VEGF) [102, 103]. Therefore, the maturation, chromosomal con-

stitution of the oocytes, and granulosa cell metabolism are modified. The granulosa cells are 
affected by oxidative stress including the glycosylation end products, resulting in a decrease in 
proliferation and an increase in apoptosis of the cells. Proteins modified by AGEs interact with 
specific receptors (RAGE) and through them determine the activation of the cell’s response. 
The soluble RAGE could be measured in the follicular fluid and in the serum, and this is the 
method for quantifying the role of AGEs in ovarian aging and ovarian dysfunction. The study 
of Sato et al. [104] demonstrated that toxic AGE level in follicular fluid and in serum is nega-

tively correlated with follicular growth, fertilization, and embryonic development [104].

One of the first endocrinological markers of ovarian aging is the early rise in day 3 follicle-
stimulating hormone (FSH), together with the early elevation in estradiol levels and a more 
rapid growth of the follicles. First, there is a shortening of the follicular phase of the ovary 
and, later in the aging process, it is affected by the length of luteal phase and the value of 
serum luteal progesterone. Higher day 3 FSH level generally correlates with lower ovarian 
reserve and lower chances for pregnancy, the exception being FSH receptor variant. The cut-
off value for subfertile population is generally considered a serum FSH of 12.3 UI/l. Other two 
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markers of ovarian aging are antimullerian hormone (AMH) and antral follicle counts (AFC). 
AFC could be visualized by transvaginal ultrasonography, but the way AFC is performed dif-
fers between the centers. There are centers measuring follicles between 2–10 mm and others 

measuring follicles between 2–6 mm. It seems that smaller follicles, less than 6 mm, correlate 
better with ovarian reserve. In ART (assisted reproductive technology) literature, a lower AFC 
is associated with poor response to ovarian stimulation, although variable cut-offs were used, 
usually less than six. It was suggested that AFC is a better marker of ovarian reserve than 
AMH due to the factors potentially influencing circulating level of AMH (for instance, obe-

sity). For AMH, the cut-off value for subfertility is considered 1 ug/l (Singer). It was also sug-

gested that the response to ovarian stimulation during ART is a predictor of menopause based 

on the observation that women with a poor response experience early menopause and show 

menstrual cycle characteristics seen in ovarian aging. For the evaluation of the fertility poten-

tial of the women, it is important not only the age but also the number of years that elapse till 

menopause. At this moment, there is no gold standard for evaluating functional ovarian age. 

It seems that FSH-stimulated serum inhibin B level correlates best with ovarian age [105]. This 

stimulated serum inhibin B level reflects the pool of immature follicles, those not visible by 
ultrasound and not capable of estradiol production. With age the pool of immature follicles 
decreases accompanied by a decrease of serum level of inhibin B.

Very interestingly, in women with polycystic ovary syndrome (PCOS) with aging, the regular 
cycles are more regular, serum androgen levels decrease, and insulin resistance is ameliorated. In 
this case, the diminished pool of growing antral follicles determines a decrease in the AMH level. 
Women with PCOS have a large initial pool of follicles, having a low risk for early ovarian aging.

A particular case of ovarian aging is represented by women with premature ovarian failure 

(POF), representing 20% of infertile population. These patients associate with an increased risk 
of miscarriages [106] and a poor response to ovarian stimulation. POF refers to women with 
ovarian insufficiency before the age of 40. The genetic and autoimmune factors are the most 
important causes of POF. POF could appear also iatrogenic after surgery or chemotherapy [107].

Ovarian aging is accompanied by endometrial aging. The old endometrium is still responsive 

to ovarian steroids and is characterized by increase in collagen content, a reduced number 
of stromal cells, reduced tissue deoxyribonucleic acid contents, and fewer estrogen recep-

tors on endometrial cells. There is significant evidence that aging endometrium is a major 
determinant of reduced fecundity, where age and aging ovaries are the major determinant 

of higher abortion rate with age. In women older than 35 years, endometrial biopsy shows 
delayed or absent secretory maturation which determines implantation failure. However, 

IVF donor programs show satisfactory pregnancy rates in older women; therefore, from the 
reproductive point of view, the aging ovary is more important than the aging endometrium.

4. Conclusions

The inexorable effect of age on ovarian function is well known with a gradual decline in fer-

tility by the age of 40, followed by an abrupt decrease thereafter and a cessation of ovarian 
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 function at menopause. The impact of age is not only due to a decreased number but also due 

to a decrease in quality of the oocytes, resulting in a high rate of chromosomal aneuploidy and 

a reduced implantation rate. The main mechanism assumed to be involved in ovarian aging 

is a reduced defense against oxidative stress, ROS, and RCS accumulation which damage the 
ovarian compartments, generating shortening of the telomeres and mitochondrial dysfunction.

On the other hand, in men, the semen quality and testicular function were found to gradually 

decrease with age, and most of the studies also describe a negative impact on fertility. The mech-

anisms underlying decreased fertility are genetic (chromosomal aneuploidies, DNA mutations) 
and epigenetics changes. However, whether these effects of aging in men can be overcome by 
assisted reproductive technologies is not clear yet as the results of the studies are inconsistent.
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