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Abstract

Plotting two straight line graphs from the experimental data and determining the point of
their intersection solve a number of problems in analytical chemistry (i.e., potentiometric
and conductometric titrations, the composition of metal-chelate complexes and binding
interactions as ligand-protein). The relation between conductometric titration and the
volume of titrant added leads to segmented linear titration curves, the endpoint being
defined by the intersection of the two straight line segments. The estimation of the statis-
tical uncertainty of the end point of intersecting straight lines is a topic scarcely treated in
detail in a textbook or specialized analytical monographs. For this reason, a detailed
treatment with that purpose in mind is addressed in this book chapter. The theoretical
basis of a variety of methods such as first-order propagation of variance (random error
propagation law), Fieller’s theorem and two approaches based on intersecting confidence
bands are explained in detail. Several experimental systems described in the literature are
the subject of study, with the aim of gaining knowledge and experience in the application
of the possible methods of uncertainty estimation. Finally, the developed theory has been
applied to the conductivity measurements in triplicate in the titration of a mixture of
hydrochloric acid and acetic acid with potassium hydroxide.

Keywords: titrimetric, straight lines, breakpoint

1. Introduction

Titrimetry is one of the oldest analytical methods [1], and it is still found [2—4] in a develop-
ing way. It plays an important role in various fields as well as routine studies [5-9], being
used widely in the analytical laboratory given their simplicity, speed, accuracy, good repro-
ducibility, and low cost. It is, together with gravimetry, one of the most used methods to
determine chemical composition on the basis of chemical reactions (primary method).
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited.



60 Advances in Titration Techniques

Independent values of chemical quantities expressed in SI units are obtained through gra-
vimetry and titrimetry (classical analysis).

In titrimetry, the quantity of tested components of a sample is assessed by the use of a solution
of known concentration added to the sample, which reacts in a definite proportion. To identify
the stoichiometric point, where equal amounts of titrant react with equal amounts of analyte,
indicators are used in many cases to point out the end of the chemical reaction by a color
change.

Information on reaction parameters is usually obtained from an analysis of the shape of the
titration curve, whose shapes depend on some factors such as the reaction of titration, the
monitored specie (indicator, titrant, analyte or formed product) as well as the chosen [10, 11]
instrumental technique (Table 1) i.e., spectrophotometry, conductimetry or potentiometry, for
instance. The importance of titrimetric analysis has increased with the advance of the instru-
mental method of end point detection.

Linear response functions are generally preferred, and when the response function is nonlinear, a
linearization procedure has been commonly used with a suitable change of variables. Plotting
two straight lines graphs from the experimental data and determining the point of their intersec-
tion solve a number of problems in analytical chemistry [10, 11] (Table 1). In segmented linear
titration curves, the end point is defined by the intersection of the two straight segments. In some
common examples in analytical chemistry (conductometric, spectrophotometric and ampero-
metric titrations), this intersection lies beyond the linear ranges, and deviations from linearity
are often observed directly at the end point. All curvature points should be excluded from the
computation. The accuracy and precision of the results of a titrimetric determination are
influenced not only by the nature of the titration reaction but also by the technique [10, 11] of
the end-point location.

The problem of finding the breakpoint of two straight lines joined at some unknown point has a
long statistical history [12-14] and has received considerable attention in the statistical literature.
The problem in question is known by a variety of names (Table 2) [12-27]. Computer analy-
sis [28-31], elimination of outliers [32, 33], and confidence limits for the abscissa [22, 34, 35] have
been subject to study.

At the point of intersection (xj), the two lines have the same ordinate. The estimation of
statistical uncertainty of end points obtained from linear segmented titration is the subject

Technique Measured property

Conductimetric titrations Electrical conductivity

Potentiometric titrations Potential of an indicator electrode
Spectrophotometric titrations Absorbance

Amperometric titrations Diffusion current at a polarizable indicator

(dropping mercury or rotating platinum) electrode

Table 1. Instrumental end point detection techniques more widely applied.
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Name Authors

Breakpoint Jones and Molitoris [12]; Shanubhogue et al. [15]

Changepoint Csorgo and Horvath [16]; Krishanaiah and Miao [17]

Common intersection point Rukhin [18]

Hockey stick regression Yanagimoto and Yamamoto [19]

Intersystem crossing Kita et al. [20]

Piecewise linear regression Vieth [21]

Segmented regression Piegorsch [22]

Transition Bacon and Watts [23]

Two phase linear regression Christensen [24]; Lee et al. [25],; Seber [26, 27]; Shaban [14]; Sprent [13]

Table 2. Names received in the literature for the intersecting point of two straight lines.

of this chapter. The topic is scarcely treated in [36, 37] analytical monographs. The method of
least squares is the most common and appropriate choice and when the relative statistical
uncertainties of the x data are negligible compared to the y data. Single linear regression or
weighted linear regression may be applied depending on whether the variance of y is constant
or varies from point to point with the magnitude of the response y, respectively.

The theoretical basis of a variety of method such as first-order propagation of variance for
the abscissa or intersection, the application of Fieller’s method [38-43], and other methods
based on intersecting hyperbolic confidence bands as weighted averages [57, 58] of the
abscissas of the confidence hyperbolas at the ordinate of intersection will be dealt in detail
in this book chapter. In addition, several experimental systems will be the subject of study,
with the aims of gaining knowledge and experience in the application of these methods to
uncertainty estimation.

2. Theory

V-shaped linear titration curves (Table 1) are well known in current analytical techniques
such as conductimetry, radiometry, refractometry, spectrophotometric and amperometric
titrations as well as in Gran’s plot. In this kind of titrations, the end point is usually located
at the intersection of two lines when a certain property (conductance, absorbance, diffusion
current) is plotted against the volume x of titrant added to the unknown sample containing
the analyte.

Let N; observations on the first line

Yy = a1 +bix (1)

and N, observations on the second
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Y, =+ box (2)

where a5, by, a5, b, are the usual least squares estimates of the kth line (k =1, 2), respectively. As
it is stated in the introduction section when the relative statistical uncertainties of the x data are
negligible compared to the y data, the use of the least squares method is the most common
alternative. The ordinate variance can be considered on a priori grounds to vary systematically
as a function of the position along the curve, so that weighted least squares analysis is
appropriate. Formulae for calculating the intercept a, the slope b and their standard errors by
weighted linear regression [59] are given in Table 3, where the analogy with simple linear
regression (i.e., w; = 1), is evident.

Note that in summation (1) and (2) by dividing by N; and N, respectively, we get
v, =a +bixy (3)

yZ =y + byXxy (4)

At the point of intersection, the lines (1) and (2) have the same ordinate y, =, and the
abscissa of intersection (denotes by %) is given by

a; +b1x; = ax + boxg (5)
. =M __&
M —b, Ab (6)

Random error in the points produces uncertainty in the slopes and intercepts of the lines, and
therefore in the point of intersection. The probability that a confidence interval contains the
true value is equal to the confidence level (e.g., 95%).

° Equation ° Slope
y;, = a+bx; b= Sxy/Sxx
Weights Intercept
w; =1/s? a=y—bx
Explained sum of squares Weighted residuals
S5Reg = Zwi@i_?)z w0y, = 9;)

Residual sum of squares
SSE =Y wi(y,—9,)°
Mean
X = Z w,—x,-/z w;
y= Z wiy;/ Z Wi
Sum of squares about the mean
2
SXX = Zwi(x,- = f)
_\2
Syy =Y _wi(y; =7)
Sxy = Y wilxi = %)(y, — )

Correlation coefficient
r = Sxy/v/SxxSvy
Standard errors

2 _ SSE _ Syy—b’Sxx
y/x T n-2" n—2

=52, (> wixd)/(Sxx Y wi)
Sg = Sﬁ/x/SXX
Cov(a, b) = %s;/x/sxx

S

Table 3. Formulae for calculating statistics for weighted linear regression.
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3. First-order propagation of variance for Vx|

The precision of the point of intersection and the corresponding statistical confidence interval
can be found in the simplest way by considering the random error propagation law [60]. Some
authors [61, 62] evaluate the uncertainty in X; on this way. First-order propagation of variance
retains only first derivatives in the Taylor expansions and this procedure leads to

Vit = (gf;)ZV[AaH (gfg,) vian +2(3) (%) cov(aa, ab)
Ab

- <5(A—Ab“))2V[Aa]+ <%>2V[Ab] 2 a(ag > (aAA:> Cov(Aa, Ab)  (7)

V[Aa]  Aa*V[Ab] _ AaCov(Aa, Ab)
=z ' ;2 3
Ab Ab Ab

valid in those cases, in which the standard deviations of the ordinate data are a small fraction
of their magnitude. Taking into account Eq. (6), Eq. (7) may be rewritten as follows

Vi = — <V[Aa] A% viab] - 22 Coo(ag, Ab)>
T AR AD Ab ®)
_ V[Ad +x 2 V[Ab] + 2%;Cov(Aa, Ab)
Ab?
Then, the standard error estimate of x; is as follows
s(x1) = V' V[x] 9)

The end point x; depends on four least squares parameters a;, a5, by, b, that are random
variables. Segment one parameters depend only on measurements made along segment one
and these are statistically independent of the measurements along segment two. However, Aa,
and Ab are correlated random variables because each involves b; and b,. Note that, a; and a,
are related to b; and b, by means of Egs. (1) and (2).

The variances of Aa and Ab are given by
V[Aa] = V[u1 - ﬂz] = V[lh] + V[ﬂz] (10)

VIAb] = V[by — by] = V[b1] + V[b2] (11)

and for the covariance between Aa and Ab, we get [63]

Cov(Aa, Ab) = Cov(ay — ap, by — by)
= Cov (yl — blfl — (yZ — bzfz), bl — b2> = COU(yl — yZ — blfl + bzfg, bl — bz)
= COU(yl — ]72, b] — bz) — C00<b1f1 — bzfg, bl — bz) (12)
= —COU(b1f1 — bzfz, bl — bz)
= —x1V[b1]| — %V [bs]

63
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It should be noted that in the calculations, the variance regression estimates from both line
segments are pooled into a single s,°, by using the following formula which weights each
contribution according to the corresponding [64—67] degrees of freedom

o T Y S 0T (N -2+ (Na —2) "
b (N1 —2) + (N2 — 2) Ni+N;,—4

The standard deviation in Eq. (13) is calculated on the assumption that the sy, values for the
two lines are sufficiently similar to be pooled.

From expression in Table 3 for the variance of the intercept (s,” = V[a]), we may derive

sz{ S ] sXH(ZZwZI:J Z_SX”(ZM) (Zzww>

Sxx (Z wl-) Sxx (Z wi)

L[St (P w)# 2[ L 2]

= S = S — —|— _—

Sxx <Z wi> Z w;  Sxx|

in which s° is s,y in Table 3; Yw; is the sum of weights, which simply reduces to N, the number

of points if the non-weighted least squares analysis is used. Taking into account Eq. (14), Egs. (10)
and (11) lead to

(14)

e R R [ R
V[Ad] = I~ A +<Sy%) +(Sﬁ) s (16)
(35w)y| (Xe), Eh/ (Bt
2 2
VIS = Vil + Vi) = g = [(sxlxn ’ (leX)z] % 1)
Cov(Aa, Ab) = —x,V[by] — X,V[by] = — [ ( 52)1 + ( 52)2]55 (18)

Once the values of V[Aa], V[Ab] and Cov[Aa,Ab] are known from Egs. (16), (17) and (18),
respectively, the estimate of the variance of the intersection abscissa of the two straight lines,
V[x;], is calculated by applying Eq. (8).
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4. Confidence interval on the abscissa of the point of intersection of two
fitted linear regressions

The use of confidence intervals is another alternative to express the statistical uncertainty of x;.
This method depends on the distribution function of the random variable ;. If the ordinates y;
are assumed to have Gaussian (normal) distribution, the least squares parameters as well as
Aa, and Ab are also normally distributed [68]. However, X;, which even is regarded as the ratio
of two normally distributed variables, is not normally distributed and, indeed, becomes more
and more skewed [69] as the variance levels increase. For sufficiently small variance though,
X1, is approximately normally distributed. Under these circumstances, confidence intervals
may be calculated from the standard deviation of x;, which is also accurate only when
variances are small.

However, the construction of the confidence interval (limits) for the equivalence point by using
the Student’s t-test

)%[ + ta/zs(f(]) (19)

where t,, is the Student’s ¢ statistics at the 1 — a confidence level (i.e., leaving an area of a/2 to
the right) and for the number of degrees of freedom (N;+N, — 4) inherent in the standard
deviation of x;, could be misleading. Note that because x; involves the ratio of random vari-
ables, first-order propagation of variance is not exact [69]. Evidently, x; is a random variable
not normally distributed unless s(x;) is small enough. When the variances of the responses are
not necessarily small, a solution to this problem is to apply the called Fieller’s theorem [38-43].
Another point of view is focused on the problem in the calculation of the limits of the
confidence intervals by using the confidence bands for the two segmented branches.

5. The Fieller’s theorem

This theorem [38-43] is supported by two capital premises:

i. Any linear combination z of normally distributed random variables is itself normally
distributed.

ii.  If the standardized variable —2= is distributed as N(0, 1), then z is distributed as .

Va4

Consider now any pair of individual line segments written as a difference z as follows
z= [ﬂ1 + b1x1] — [az + ble] = Aa + x;Ab (20)

Note that for any such pair of lines, the difference z is not, in general, zero, because the “best”
end point cannot be the one for each pair of lines of the collection. However, the mean (z) of all
these z values is zero and z are normally distributed because it is formed as a linear combina-
tion of normally distributed variables. Taking into account that 4, a5, b; and b, are normally

65
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distributed, then z will be normally distributed. Then, in the vicinity of the intersection point, z
has zero mean and its variance is

V[z] = V[Aa + x;Ab] = V[Aa] + x7V[Ab] + 2x;Cov(Aa, Ab) (21)

and therefore, —%— is distributed as N(0, 1) and according to (ii)

VT

N

—¢ (22)

vV

This is called Fieller’s Theorem [34, 38]. The development of Eq. (11) leads to the equation

(Aa + x;Ab)? )
5 =t (23)
V[Aa] 4 x7V[Ab] 4 2x;Cov(Aa, Ab)
which on rearrangement leads to
(Aa)* + 2x;AaAb + x2(Ab)? = PV[Aa] + Px2V[Ab] + 2£2x;Cov(Aa, Ab) (24)

which may be factored as

((Aa)2 - tZV[Aa]) +2x (AaAb — Cov(Aq, Ab)) T ((Ab)2 - tZV[Ab]> —0  (25)

The solution of Eq. (25) gives the confidence limits for x; estimated, where t,, is the appropri-
ate value of the Student distribution at a « significance level (confidence level 1 — &) for N; + N,
— 4 degrees of freedom. Note that in Egs. (21), (23), (24) and (25), the corresponding values of V
[Aa], V[AD] and Cov[Aa, Ab] are given by Egs. (16), (17) and (18), respectively, as in the first-
order propagation of variance for V[x;].

The first and last groups of symbols enclosed in braces in Eq. (25) has the form of hypothesis
tests, that is, two-tailed tests, for significant difference of intercepts and significant difference of
slopes, respectively. When the hypothesis test for different slope fails, the coefficient of X/

Topic Reference

Arrhenius plot Cook and Charnock [44]; Han [45]; Puterman et al. [46]
Calibration curves Baxter [47]; Bonate [48]; Mandel y Linning [49]; Schwartz [50-52]
Estimation of safe doses Yanagimoto and Yanamoto [19]

Estimation of uncertainty in binding constants Almansa Lopez et al. [53]

Models for biologic half-life data Lee et al. [25]

Position and confidence limits of an extremum Asuero and Recamales [54]; Heilbronner [55]

Standard addition method Franke et al. [56]

Table 4. Some applications of Fieller theorem in analytical chemistry.
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becomes negative finding two complex roots [22], so Fieller confidence interval embraces the
entire x-axis (the lower and upper limits should strictly be set to —eo and o, respectively) at the
chosen level of confidence.

This method has been extensively described in some other contexts in analytical and chemical
literature (Table 4).

6. Use of hyperbolic confidence bands for the two linear branches

Several procedures dealing with hyperbolic confidence bands approximate them by straight
lines and give symmetric confidence intervals for estimated x; [58, 61, 70-72]. Evidently, the
best confidence interval would be obtained by the projection on the abscissa of the surface
between the four hyperbolic arcs [73].

Because a confidence band, bounded by two hyperbolic arcs, is associated with each regression
line, it is obvious that the point of intersection, x;, is only a mean value, with which a certain
confidence interval is associated. If the signal values both before and after the point of inter-
section are normally distributed around the line with a constant standard deviation, the point
of intersection and its statistical confidence interval will be estimated by the projection of the
intersection onto the abscissa. The confidence interval (x;, x,,) for the true value of the equiva-
lence point is given by the projection on the abscissa of the common surface delimited by the
four hyperbolic arcs.

For the first line, we get:

Yo * t Sym (26)

and for the second line:

Yoz * tzsyoz <27)

t; and t, are the corresponding t Student values for @/2 = 0,05 and N; — 2 and N, — 2 degrees of
freedom, respectively. Hence, the lower value x; of the confidence interval is obtained by
solving the following equation:

Yo — tlsym = VYo + tQSyoz <28>

The higher value x,, is obtained from the equation:

Yo1 + tlsym =Yoo — t2syoz <29>

From Egs. (1) and (3) we get

Yy =Y, +bi(x —x1) (30)

and then the variance of the fitted y; value will be given by

67
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V[]?ﬂ = le] + (x — fl)ZV[bl] = M + (x _ f1)2 V[yl]

( o o )vw

Note that the variance of the (weighted) mean of the values

] (V) (V) )y,
Zw)l
_(Z ) VIV vy,

(E=))  &w),

and that the mean 1; value and the slope b; are uncorrelated random variables (property,
which was also applied in Eq. (12) without further demonstration) as shown as follows. Taking
into account that

Z b1 (vVw w),y; and by = Z a1 (vVw w),y; where

Vil =
(32)

and then

(Vo) (x 7))
Cov(by, a 1 Viy]=0 34
o(by,c1) = (D men )VI(VD) ] = E:(SXX)l () ] (34)

From Eq. (31), we get for the standard error of the fitted value

syor = V[yy] = \l (le> + (JE —7)11)2 51 <y01 =V 1= V[%]) (35)

Thus, the lower value, x;, for the confidence interval is obtained by solving the equation

1 (x; — %) 1 (x) — %)’

ar + bix; + tlﬁJ (Z w) + S0, b+ tZSZJ (Z w) " (Sxx),
: 2

by, for example, successive approximations with an Excel spreadsheet. The higher value x,, is
obtained in the same way from the equation that follows also by successive approximations

(36)
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2 = \2

(xy — 1) (xy —X)

1 1
a; + bix, + t151J (Z w>1 + (SXX)1 =ay + byx, + tQSZJ (Z w>2 T (Sxx)2

The point of view of Liteanu et al. [57, 58] is very interesting: the authors consider the point of
intersection x; as belonging to the linear regression before the equivalence point. Then, a
certain interval is associated with it. If it is regarded as belonging to the linear regression after
the equivalence point, however, another interval is associated with it. As the equivalence point
belongs concurrently to both linear regressions, the confidence interval of the two segments
can be got by taking the weighted averages of the branches of the two separate sets of
confidence intervals. So, we obtain the ultimate confidence interval (x/, x*) where

(37)

(N1 —2) I(\;cll)i L 2(I\_b4— 2)(x1)y _ o (38)

(N = 2) ()t + (N2 =D _,
N1+ N, -4 I

(39)

The two values of the limits of the confidence interval will be given by the two solutions of the
equations

yp=a1 +bi(x); £ t5 ! + <(xl)1 - fl) (40)
T, o
N2
y; = ap + ba(xp), £ 15, (le>2 . <(x1(?gzx;)7:2> (41)

As the estimation method used assumes the worst case in combining random error of the two
lines, the derived confidence limits are on the pessimistic (i.e., realistic) side.

On rearrangement Eq. (40) and squaring, we have

1 ((xl)l ~ 71>2

2
(v - a1~ bar)y ) =633 2 (42)
Sxx)
(Xw), 1
which by simple algebra it may be ordered in powers of x; as
st X197
by — 11)352—2<b —m)— 1 11>x
(8- et =2 (a0 - 0
_ 43)
1 2 (
+ gy — ) — s} teo | =0

=),

69
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and taking into account the values of V[b], Cov[a;, b1] and V[a,] (see Table 3), we get finally
(b = BV ]) ()] - 2(ba(y; — a1) + BCov(ar, b)) (1), + (y, — )’ = BVIm] =0 (44)

whose roots give the two values of (x;),. Since the point of intersection x; belongs to one of the
response functions, then a certain confidence interval is associated with it.

Similarly, if it is regarded as belonging to the other response function, there is another confi-
dence interval associated with it

(b3 — BV[ba])(x1); — 2<bz(% — 1) + 55Cov(ay, bz)) (1), + (y; — @2)* — BV[a] = 0 (45)

Because the intersection point belongs concomitantly to the two response functions, the two
segments which together compose the confidence interval, will be obtained by averaging the
segments of the two separate confidence intervals, Egs. (40) and (41). The two values of the limits
of the confidence interval will be the two solutions of the second degree Egs. (44) and (45).

The bands mentioned in this section are [63] for the ordinate of the true line at only a single point.
If we desire the confidence bands for the entire line, the critical constant |/2F; , , should be

substituted for t,,, originating wider bands.

7. Statistical uncertainty of endpoint differences

When we are dealing with the titration of a mixture of a strong and a weak acid that is,
hydrochloric and acetic acids, then if x; is the volume at which the straight lines one and two
intersect and x;; the volume at which the two and three lines intersect, the difference x;—x;
denoted as Ax, is given by

. . —Aay Aa
AXIXH —X] = Ab22+A—bi

(46)

By multiplying Ax by the molarity of titrant, we have the amount in millimoles of the second
acid, that is, acetic acid, in the reaction mixture.

First-order propagation of variance applied to Ax leads to [65] the following expression

V[Ax] = V[x;] + V[x1] + Cov(Aay, Aaz) + Cov(Aay, Aby) + Cov(Aay, Aby) + Cov(Aby, Aby) (47)

where

Cov(Aar, Aay) =2 <VW2ib+l ZZY[Z”D (48)
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CO”()(A{J[L Abz) =2 <—Ab1Ab2 (49)

L X, X1V [by]
Cov(Aay, Aby) = -2 (7&71 Ab, (50)

- JAC[JACHV[bQ]
COU(Abl, Abz) =2 <W (51)

The standard error estimate is given by
Sar = \/V[fcl] + Vixg + ZCO”U (52)
4

where } 4 is the sum of Egs. (48)—(51).

Attempts to derive confidence limits for Ax as we get in the previous Fieller’s theorem
section fails because the quantity analogous to z of Eq. (20) involves products of random
variables. Therefore, this quantity is not normally distributed and so exact confidence
limits cannot be found in terms of Student’s t distribution. Because in this case the exact
confidence limits cannot be calculated, we use the small variance confidence interval

Cl = Zta/zsAx (53)

8. Application to experimental system

A bibliographic search allows us to demonstrate the importance of conductivity measure-
ments despite their antiquity. The general fundamentals of this technique are collected in
Gelhaus and Lacourse (2005) [74] and Gzybkoski (2002) [75]. Its importance in the educa-
tional literature has been highlighted [76, 77] and many examples have been recently
published in the Journal of Chemical Education i.e., studies on sulfate determination [78];
the identification and quantification of an unknown acid [79], electrolyte polymers [80, 81],
acid and basic constants determinations [82], its use in general chemistry [83], microcom-
puter interface [84] and conductometric-potentiometric titrations [85]. An accurate method
of determining conductivity in acid-base reactions [86], the acid-base properties of weak
electrolytes [87], and those of polybasic organic acids [88] have also been recently subject of
study.

The relation between conductometric and the volume of titrant added leads to segmented
linear titration curves, the endpoint being defined by the intersection of the two straight lines
segments. What follows is the application of the possible methods of uncertainty estimation of
the endpoint of data described in the literature as well as experimental measurements carried
out in the laboratory.
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8.1. Conductometric titration of 100 mL of a mixture of acids with potassium hydroxide 0.100 M

Table 5 shows the data [conductance (1/R), volume (x)] published by Carter et al. [69]; Schwartz
and Gelb [65]) and corresponding to the conductometric titration of a mixture of acids, perchloric
acid and acetic acid with potassium hydroxide 0.100 M as titrant agent. The points recorded
belong to the three branches of the titration curve; the first (branch A) corresponds to the
neutralization of perchloric acid, the second (branch B) to the neutralization of acetic acid, and
the third (branch C) to the excess of potassium hydroxide.

Let us focus first on the perchloric acid titration. The plot of conductance data (1/R) versus
volume (x), in general, is not linear due to the dilution effect of the titrant. So that, as it is
carried out in the usual way, it is plotted the product (1/R)(100 + x) versus x (see Figure 1).

Firstly, Schwartz and Gelb [65] select 13 points, six (volume 4-14 mL) for branch A and seven
(volume 20-32 mL) for branch B. The points near to the endpoint of perchloric acid are deviating
from linearity and discarded in the first instance. It is also considered that the data have a
different variance V-(100 + x;)*, being the weighting factor (100 + x;) > (see Table 5).

In the case of acetic titration, six points (volume 35-44 mL) are selected for branch C, at first.
The points of branch B near to the acetic acid endpoint are discarded. Figures 2 and 3 show the
straight line segments with the corresponding selected points.
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Figure 1. Conductometric titration of a mixture of perchloric and acetic acids with potassium hydroxide (data shown in Table 5).
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1/R X Y w; 1/R X Y W;

6.975 4 0.7254 9.246E—05 3.633 24 0.4505 6.504E—05
6.305 6 0.6683 8.900E—05 3.742 26 0.4715 6.299E—05
5.638 8 0.6089 8.573E—05 3.840 28 0.4915 6.104E—05
5.020 10 0.5522 8.264E—05 3.946 30 0.5130 5.917E—05
4.432 12 0.4964 7.972E—-05 4.052 32 0.5349 5.739E—-05
3.865 14 0.4406 7.695E—05 4.097 33 0.5449 5.653E—05
3.610 15 0.4152 7.561E—05 4.145 34 0.5554 5.569E—05
3.415 16 0.3961 7.432E—05 4.280 35 0.5778 5.487E—05
3.328 17 0.3894 7.305E—05 4.445 36 0.6045 5.407E—05
3.330 18 0.3929 7.182E—05 4.772 38 0.6585 5.251E—05
3.370 19 0.4010 7.062E—05 5.080 40 0.7112 5.102E—05
3.420 20 0.4104 6.944E—05 5.380 42 0.7640 4.959E—-05
3.522 22 0.4297 6.719E—05 5.680 44 0.8179 4.823E—-05

Table 5. Data conductance (1/R) and volume (x) corresponding to the titration of a mixture of perchloric acid and acetic
acid with potassium hydroxide.

(1/R) * (100 + V)/1000

Figure 2. Conductometric titration of perchloric acid in the mixture (branches A and B).
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Figure 3. Conductometric titration of acetic acid in the mixture (branches B and C).

Table 6 includes the intermediate results obtained in the calculation of the first endpoint,
corresponding to the neutralization of perchloric acid (Figure 2), in order to follow the pro-
cedures previously detailed. The first endpoint is located at 16.367 mL and therefore
1.637 mmol of HCIO,. The estimated standard error at the endpoint, using the first-order
propagation of variance, is 0.039 mL. The confidence limits are calculated using t = 2.262
(9 degrees of freedom) and correspond to 16.455 and 16.279 mL, respectively, for the upper
and lower limits, being the confidence interval equal to 0.176 mL. The application of Fieller's
theorem leads to the values of 16.455 and 16.278 mL, respectively. Carter et al. [67] give values
of 16.455 and 16.279 mL, identical to the first ones indicated.

The second endpoint, corresponding to the complete neutralization of both perchloric and
acetic acids, is located at 34.197 mL. If x; is the volume in which lines A and B intersect, and
xqry the volume in which lines B and C intersect, the difference x;—x;, (34.1971-16.3665 mL)
corresponds to acetic acid in the sample, 17.831 mL. If the above methodology is used for lines,
B and C (Figure 3) give x ;) & s4 [« equal to 34.197 £ 0.0478, and 34.305 and 34.089 mL for the
confidence limits.



1/R x y = (1/R)(100 + x) (100 + x;) 2 1/R x y = (1/R)(100 + x) (100 + x;) 2
6.975 4 0.7254 9.246E—05 3.420 20 0.4104 6.944E—05
6.305 6 0.6683 8.900E—05 3.522 22 0.4297 6.719E—05
5.638 8 0.6089 8.573E—05 3.633 24 0.4505 6.504E—05
5.020 10 0.5522 8.264E—05 3.742 26 0.4715 6.299E—05
4.432 12 0.4964 7.972E—05 3.840 28 0.4915 6.104E—05
3.865 14 0.4406 7.695E—05 3.946 30 0.5130 5.917E—05
4.052 32 0.5349 5.739E—05
N;= 6 [EW/]1= 5.065E—04 Ny= 7 [ZW]2= 4.423E—04
x1(mean)= 8.786 y1(media)= 0.5881 Xp(mean)= 25.746 Yo(mean)= 0.4690
[S(xx)]1= 5.8987E—03 [S(xx)]2= 7.0636E—03
[S(xy)]1= —1.683E—04 [S(xy)]2= 7.323E—-05
[Styy)]1= 4.804E—06 [Syy)]2= 7.594E—07
b= —0.028535824 Ab= 0.038903 by= 0.010367102
a= 0.838792976 Aa= —0.636705 a= 0.202087987
[R2]1= 0.99988 x(I)= 16.3665 [R2]2= 0.99974
Vly/x]1= 1.45580E—10 Vly/x]2= 3.96396E—11
Vi(b1)= 2.468E—08 V[pooled]= 8.67244E—11 Vi(b,)= 5.612E—09
Viay)= 2.193E—-06 V(ay)= 3.809E—-06
Cov(ay, b1)= —2.168E—07 Cov(ay, by)= —1.445E-07
V[Aal= 6.002E—06 V[Aal= 9.640E—06 VIx(D]= 0.0015 FIELLER ax2+bx+c=0
VIAb]= 3.029E—-08 VIAb]= 2.698E—08 s[x())]= 0.0389 a= 1.513E—03 V(u)= 16.455
cov(Aa, Ab)= —3.613E—-07 cov(Aa, Ab)= —4.453E-07 0, 05, 9)= 2.262 b= —4.953E—-02 V()= 16.278
Pooled variances ts[x(l)]= 0.0880 c= 4.053E—01

Table 6. Intermediate results obtained in the calculation of the first endpoint (titration of perchloric acid with potassium hydroxide (Figure 2)).
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However, as it is indicated in the section on “statistical uncertainty of endpoint differences,”
the statistical uncertainty of Ax is not a simple combination of uncertainties for x, and x. The
attempt to deduce equations analogous to Egs. (22) and (25) in order to calculate the confi-
dence limits for Ax, is not applicable since the magnitude analogous to z in Eq. (20) implies, in
this case, the product of random variables.

This quantity is not normally distributed, and therefore, no exact confidence limits can be
calculated in terms of the Student ¢ distribution. The application of (first-order) propagation
of the variance is nonetheless feasible, leading this procedure to an expression for the standard
error of Ax of the same type as Eq. (9) for a single endpoint.

The latter methodology is applied to the optimal case detailed by Schwartz and Gelb [65]. The
corresponding data are shown in Figure 4, and the calculations necessary to locate the equivalence
points, first and second, are shown in Table 7. The results obtained are: first equivalence point
(perchloric acid): x(;, = 16.358 mL, s[x(;] = 0.035 mL, t s [x;)] = 0.078 mL, [I.C.]; = 0.156 mL. Second
equivalence point (mixture of perchloric and acetic acids): x(, = 34.244 mL, s[x)] = 0.027 mL, ¢ s
[x@n] =0.061 mL, [IC];;=0.122 mL. This latter is not correct because it does not take into account the
covariances described in Section 7. If covariances are incorporated into the calculations, we get for
the second point (acetic acid): x =17.887 mL, s[Ax] =0.040 mL; ¢ s[Ax] = 0.086 mL, [IC],=0.172 mL.
The confidence interval, as expected, is higher than that found for x;, despite decreasing the
value of Student's t by increasing the number of degrees of freedom: N; + N, — N3 — 2 x 3=13).

Some points near to the endpoint appear to deviate slightly from linearity. However, it is not
always clear whether or not to omit these problem points in the analysis, which can be done by

0.9
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Figure 4. Illustrative example described by Schwartz and Gelb [65] as optimal. Numerical data are shown in Table 5. First
branch (A), volumes of 4-12 mL, 5 points. Second branch (B), volumes of 22-34 mL, 8 points. Third branch (C), volumes of
35-44 mL, 6 points.



1/R x y=1/R)(100+x) (100 +x;)—> 1/R x y=1/R)(100+x) (100 +x;)—>
6.975 4 0.7254 9.246E—05 3.522 22 0.4297 6.719E—05
6.305 6 0.6683 8.900E—05 3.633 24 0.4505 6.504E—-05
5.638 8 0.6089 8.573E—-05 3.742 26 0.4715 6.299E—05
5.020 10 0.5522 8.264E—-05 3.840 28 0.4915 6.104E—05
4.432 12 0.4964 7.972E—05 3.946 30 0.5130 5.917E—-05
4.052 32 0.5349 5.739E—-05
4.097 33 0.5449 5.653E—-05
4.145 34 0.5554 5.569E—05
Ni;= 5 [EW/]1= 4.296E—04 Ny= 8 [EW]2= 4.850E—04
x1(mean)= 7.852 y1(media)= 0.6145 Xp(mean)= 28.362 Yo(mean)= 0.4962
[S(xx)]1= 3.4319E—-03 [S(xx)]2= 8.221E—-03
[S(xy)]1= —9.856E—-05 [S(xy)]2= 8.624E—-05
[S(yy)]1= 2.831E—-06 [S(yy)]2= 9.048E—07
b= —0.028717584 Ab= 0.039208 b2= 0.010490769
al= 0.839983924 Aa= —0.641362 a2= 0.198621917
[R2]1= 0.99989 x(I)= 16.3578 [R2]2= 0.99992
VIy/x]1= 1.03732E—10 Vly/x]2= 1.25234E—11
V(b1)= 3.023E—-08 Vlpooled]= 4.29264E—-11 V(by)= 1.523E—09
V(an)= 2.105E—06 V(ao)= 1.251E-06
cov(ay, by)= -2.373E-07 cov(az, bo)= -4.321E—-08
V[Aal= 3.356E—06 V[Aal= 5.160E—06 VIx(D)]= 0.0012 FIELLER ax2 +bx+c¢=0
VIAb]= 3.175E—08 VIAb]= 1.773E—08 s[x(D]= 0.0347 a= 1.537E—03 V(u)= 16.436
cov(Aa, Ab)=  —2.805E—07  cov(Aa, Ab)= —2.463E—07  t(0, 05, 9)= 2.262 b= —5.029E—02 V()= 16.280
Pooled variances ts[x(D)]= 0.0784 c= 4.113E-01
V(uy= 16.436 V()= 16.279
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1/R x y=1/R)(100+x) (100 +x;)—> 1/R x y=1/R)(100+x) (100 +x;)—>
4.280 35 0.5778 5.487E—05 Ab= 0.016147
4.445 36 0.6045 5.407E—05 Aa= —0.552936
4.772 38 0.6585 5.251E—-05 x(I)= 34.2444
5.080 40 0.7112 5.102E—05 Ax= 17.8866
5.380 42 0.7640 4.959E—-05
5.680 44 0.8179 4.823E—-05 Vlpooled]= 1.12632E—11
N3= 6 [ZWi]1= 3.103E—-04
x3(mean)= 39.022 ys(media)= 0.6851
[S(xx)]1= 3.1199E—-03
[S(xy)]1= 8.311E-05
[S(yy)]1= 2.214E—06
Vix(D)]= 0.0007 0, 05, 9)= 2.262 V(u)y= 34.305
b3= 0.026637531 s[x(D]= 0.0269 t s[x(I)]= 0.0610 V()= 34.183
a3= —0.354313932
[R2]3= 0.99998
Vly/x]3= 9.37285E—12 Vix(D)]= 1.201E-03
V(b3)= 3.004E—09 Vix(I)]= 7.262E—04
V(a3)= 4.605E—06 Cov(Aay, Aax)=  3.871E—03
cov(as, bs)= —1.172E—-07 Cov(Am, Aby)=  —4.674E—03
Cov(Aay, Aby)=  —2.233E—03
V[Aal]= 5.761E—12 V[Aal= 6.659E—06 Cov(Aby, Aby)=  2.696E—03
VIAb]= 4.528E—09 VIAb]= 4.980E—09
cov(Aa, Ab)=  —1.294E—07  cov(Aa, Ab)= —1.797E—07  V[Ax]= 1.587E—03 (0, 05, 13)= 2.160 V(u)= 17.973
Pooled variances s[Ax]= 3.984E—02 t s[Ax]= 0.086 V()= 17.801

Table 7. Evaluation of endpoints in the titration of a mixture of HCIO, and CH;COOH with KOH 0.100 M, optimum case (Figure 4).
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trial and error. The optimal point set (Figure 4) is one that minimizes, for example, the
confidence interval [63].

The weighting factors are very similar so that the values obtained by weighted linear regres-
sion and the simple one become equivalent.

8.2. Conductometric titration of hydrochloric acid 0.1 M with sodium hydroxide 0.1 M

The data corresponding to the two branches of the conductometric titration of 0.1 M HCl with
0.1 M NaOH is shown in the upper part of Table 8 and plot in Figure 5. The cut-off point of
both lines is (6.414, 0.358) [57, 58, 89].

Table 8 also shows all the operations required to calculate the minimum and maximum values
of the confidence interval by the use of hyperbolic confidence bands for the two linear
branches. The limit x; of the confidence interval is obtained by solving Eq. (36), which in this
case (Table 8) is

1 —9)?
©; = 1.403 — 0.0637x; + 1.943 - 0.010344/ = + (i )
8 168
(54)
1 (x—202)
40.4908 — 0.0517x; +2.353 - 0.00244/ =+ —+—"—=0
5 32.8
leading to xI = 16.264 mL. The highest value is obtained by solving (Eq. (37))
1 02
®, = 1.403 — 0.0637x, +1.943 - 0.010344/ = + M
8 168
(55)
1 (x, —202)

which leads to x, = 16.564 mL. Both equations 0, = 0 and 0, = 0 are resolved by successive
approximations. Different values are tested for the lower and upper limits to get a change of
signin 0; and 0,,.

In the weighted mean method (Table 8), the following equations are solved
0.00405(x;)3 — 0.1332(x;); + 1.09179 = 0 (56)
0.00267(x;)5 — 0.08776(x;), + 0.720 = 0 (57)

being resulted from squaring and reordering the Eqs. (44) and (45), respectively (expressed as a
function of the variances of a;, b; and of the covariance between a; and b;). Once calculated the
solutions of the Egs. (56): 16.630 and 16.487 mL, and (57): 16.206 and 16.339 mL, we have
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x y x y
2 1.265 17 0.388
4 1.141 18 0.441
6 1.028 20 0.544
8 0.906 22 0.644
10 0.777 24 0.752
12 0.641
14 0.51
16 0.372
N1= 8 N2= 5
MEANI1= 9 0.83 MEAN2= 20.2 0.5538
[SXX]1= 168 [SXX]2= 32.8
= -0.06367 1.40300 =ay a= 0.05171 -0.49081 =a,
s(ay)= 0.00080 0.00806 =s(ap) s(ay)= 0.00036 0.00726 =s(ap)
R2= 0.99906 0.01034 =s(y/x) R2= 0.99986 0.00204 =s(y/x)
x(I)= 16.414 y()= 0.358
£(0.05;6)= 1.943 t1 s(y/x)1= 0.0201 £(0.05;3)= 2.353 ty s(y/x)2= 0.0048
0 DIFF-1 DIFF-2 0 DIFF-1 DIFF-2
16.25 0.00164 0.036126 16.50 —0.02736 0.007436
16.26 0.00048 0.034979 16.51 —0.02852 0.006289
16.261 0.00037 0.034864 16.52 V0.02968 0.005141
16.262 0.00025 0.034749 16.53 —0.03084 0.003994
16.263 0.00014 0.034634 16.54 —0.03200 0.002846
16.264 0.0000191 0.034520 16.55 —0.03316 0.001699
16.2641 0.0000075 0.034508 16.56 —0.03432 0.000552
16.2642 —0.0000041 0.034497 16.561 —0.03443 0.000437
16.265 —0.00010 0.034405 16.562 —0.03455 0.000322
16.266 —0.00021 0.034290 16.563 —0.03467 0.000207
16.267 —0.00033 0.034175 16.564 —0.03478 0.000093
16.268 —0.00044 0.034060 16.5648 —0.03487 0.000001
16.269 —0.00056 0.033946 16.5649 —0.03489 —0.000011
16.27 —0.00068 0.033831 16.565 —0.03490 —0.000022
16.265 16.414 16.565

Table 8. Hyperbolic confidence intervals for the two lines: successive approximations.
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Figure 5. Conductometric titration of hydrochloric acid 0.1 M with sodium hydroxide 0.1 M as a titrant (data are shown
in Table 8).

8 — 2)16.630 + (5 — 2)16.487
= 822 +(5-2) = 16.583 mL (58)
8+5—4

(8 —2)16.206 + (5 — 2)16.339

— 16.250 mL 59
8+5_4 m (59)

X] =

8.3. Experimental measurements: conductometric titration of 100 mL of a mixture of
hydrochloric acid and acetic acids with potassium hydroxide 0.100 M

8.3.1. Reagents

Acetic acid (C,H40,) M =60 g/mol (MERCK >99.5%; 1.049 g/mL); hydrochloric acid (HCI) 1 M
(MERCK, analytical grade); potassium hydroxide (KOH) 1 M (MERCK, analytical grade);
potassium hydrogen phthalate (CsHsKO,) M =204.23 g/mol (MERCK > 99.5%).

8.3.2. Instruments

4-decimal point analytical balance (Metler AE200), conductivity meter Crimson (EC-Metro GLP
31), calibrated by standards of 147 uS/cm, 1413 uS/cm, 12.88 mS/cm. Digital burette of 50 mL
(Brand) (accuracy: 0.2%, precision: <0.1%, resolution: 0.01 mL, with standard vent valve at 20°C).

8.3.3. Solutions
- Mixture of hydrochloric and acetic acids 0.015 M.

- Potassium hydroxide 0.1 M.
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8.3.4. Experimental

About 100 mL of mixture of hydrochloric and acetic acids 0.015 M is transferred to a 250 mL
volumetric flask containing 100 mL of distilled water. Then, the mixture is titrated conductome-
trically with KOH 0.0992 + 0.0001 M (n = 3), (previously standardized with potassium hydrogen
phthalate). Table 9 shows the data [conductance, volume] as well as the product of the conduc-
tance by (100 + x)/100 to correct the dilution effect of the titrant. The data are plotted in Figure 6.

V KOH (mL) Conductance Conductance* V KOH Conductance Conductance*
(mS/cm) (mS/cm) (mL) (mS/cm) (mS/cm)
0.0 5.64 5.6400 21.1 2.22 2.6884
1.3 5.30 5.3689 215 2.25 2.7338
2.1 5.10 5.2071 22.0 2.27 2.7694
4.6 4.44 4.6442 23.0 2.34 2.8782
5.5 4.21 4.4416 24.0 2.39 2.9636
6.1 4.05 4.2971 25.0 2.45 3.0625
7.0 3.82 4.0874 26.1 2.51 3.1651
8.0 3.58 3.8664 27.0 2.56 3.2512
9.0 3.32 3.6188 28.0 2.61 3.3408
10.0 3.07 3.3770 29.1 2.67 3.4470
11.0 2.84 3.1524 30.0 2.72 3.5360
12.1 2.58 2.8922 31.0 2.88 3.7728
13.1 2.36 2.6692 32.0 3.03 3.9996
14.0 2.16 24624 33.0 3.19 4.2427
15.0 2.01 2.3115 34.0 3.35 4.4890
15.5 1.97 2.2765 35.0 3.50 4.7250
16.0 1.96 2.2736 36.0 3.63 4.9368
16.5 1.97 2.2951 37.0 3.79 5.1923
17.1 1.99 2.3303 38.0 391 5.3958
17.5 2.01 2.3618 39.0 4.04 5.6156
18.0 2.04 2.4072 40.0 4.19 5.8660
18.5 2.06 2.4411 41.0 4.32 6.0912
19.0 2.09 2.4871 421 4.46 6.3377
19.5 212 2.5334 43.0 4.57 6.5351
20.0 2.15 2.5800 44.0 4.70 6.7680
20.5 2.18 2.6269 45.0 4.82 6.9890

* Conductivity-((100 + V)/100).

Table 9. Conductance and KOH volume data corresponding to the titration of a mixture of hydrochloric and acetic acids

with potassium hydroxide (first assay).
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Figure 6. Conductometric titration of a mixture of hydrochloric and acetic acids with potassium hydroxide (data are
shown in Table 9, first assay). Branch A: V [0-15]. Branch B: V [16-28]. Branch C: V [29.1-45].

The points recorded belong to the three branches of the titration curve; the first (branch A)
corresponds to the neutralization of hydrochloric acid, the second (branch B) to the neutraliza-
tion of acetic acid, and the third (branch C) to the excess of potassium hydroxide.

Figures 7 (hydrochloric acid) and 8 (hydrochloric acid + acetic acid) are the graphs corre-
sponding to the estimation of the endpoints. The points represented in the graph and then

Figure 7. Conductometric titration of hydrochloric acid in the mixture (branches A and B).
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Figure 8. Conductometric titration of acetic acid in the mixture (branches B and C).

used in the calculations are colored yellow (branch A), green (branch B) and blue (branch C) in
Table 9, thus avoiding proximity to the breakpoints. The values obtained for the intersections
of the abscissa are 15.334 mL for hydrochloric acid and 29.743 mL for the sum of hydrochloric
and acetic acids. So, acetic acid corresponds to the difference, 14.410 mL. From the data of
Figure 6, without discarding of points, somewhat different values are obtained: 15.383, 29.582
and 14.189 mL.

Table 10 shows in detail all the calculations necessary to estimate the confidence limits of the
abscissa of the breakpoint. The first-order variance propagation method [60] leads to the
following volumes =+ confidence limits: 15.334 £ 0.0619 (first endpoint), 29.743 £ 0.151 (second
endpoint), and 14.410 £ 0.142 (difference). In the second case, the confidence limits cannot
refer to the difference (acetic acid), since the covariates involved are not taken into account (as
previously explained in Section 7). Three decimal numbers were considered to compare and
check calculations.

The application of Fieller’s theorem leads to the same results as those obtained by the law of
propagation of errors, not being applicable to the estimation of confidence limits of the differ-
ence of volumes. The fundamentals of the first-order variance propagation method and
Fieller’s theorem are much stronger than those based on the use of hyperbolic confidence
bands, which lead to higher confidence intervals and limits (not applied in this case).

The conductometric titration was carried out in triplicate, on different days, obtaining the
results included in Tables 11 and 12, and also represented in Figures 9 and 10. Again, the data



Ny= 13 [ZW,]1= 13 N2= 18 [ZW]2= 18
x1(mean)= 7.985 y1(media)= 3.8527 Xo(mean)= 21.350 Yo(media)= 2.7175
[S(xx)]1= 194.9369 [S(xx)]2= 209.5250
[S(xy)]1= —44.9940 [S(xy)]2= 19.5426
[Styy)]1= 10.3870 [S(yy)]2= 1.8246
b= —0.230813226 Ab= 0.324084 b= 0.093270863
a;= 5.695614832 Aa= —4.969405 a2= 0.726209860
[R2]1= 0.99983 x(I)= 15.3337 [R2]2= 0.99897
Vly/x]1= 1.60452E—04 Vly/x]2= 0.000117906
V(bl)= 8.231E—07 V[pooled]= 0.000135239 V(b2)= 5.627E—07
V(al)= 6.482E—05 V(a2)= 2.631E—04
cov(ay, by)= —6.572E—06 cov(as, by)= —1.201E—-05
V[Aal= 3.279E—-04 VI[Aal= 3.564E—04 VIx(D]= 0.0007 FIELLER ax2 +bx +c=0
VIAb]= 1.386E—06 VIAb]= 1.339E—-06 s[x()]= 0.0274 a= 1.050E—01 V(u)= 15.390
cov(Aa, Ab)= —1.859E—-05 cov(Aa, Ab)= —1.932E—-05 (0, 05, 27)= 2.052 b= —3.221E+00 V()= 15.278
Pooled variances ts[x(I)]= 0.0562 c= 2.469E + 01
V(u)= 15.390 V()= 15.278

Table 10. Evaluation of endpoints in the titration of a mixture of HCl and CH;COOH with KOH 0.0992 M (data Table 9).
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V KOH Conductance Conductance* V KOH Conductance Conductance*
(mL) (mS/cm) (mS/cm) (mL) (mS/cm) (mS/cm)
0.0 5.71 5.7100 22.0 2.27 2.7694
1.0 5.47 5.5247 23.0 2.33 2.8659
2.0 5.17 5.2734 24.0 2.39 2.9636
3.0 4.90 5.0470 25.0 2.45 3.0625
4.0 4.61 4.7944 26.0 2.51 3.1626
5.0 4.34 4.5570 27.0 2.57 3.2639
6.0 4.06 4.3036 28.0 2.62 3.3536
7.0 3.79 4.0553 29.0 2.67 3.4443
8.0 3.52 3.8016 30.0 2.78 3.6140
9.0 3.28 3.5752 31.0 2.94 3.8514
10.0 3.02 3.3220 32.0 3.10 4.0920
111 2.75 3.0553 33.0 3.27 4.3491
12.0 2.53 2.8336 34.0 3.42 4.5828
13.0 2.29 2.5877 35.0 3.57 4.8195
14.0 2.10 2.3940 36.0 3.73 5.0728
15.0 1.96 2.2540 37.0 3.88 5.3156
15.5 1.94 2.2453 38.0 4.03 5.5614
16.0 1.95 2.2585 39.0 417 5.7963
16.5 1.96 2.2869 40.0 4.30 6.0200
17.0 1.99 2.3248 41.0 4.44 6.2604
17.5 2.01 2.3618 42.0 4.57 6.4894
18.0 2.04 2.4072 43.0 4.70 6.7210
19.0 2.10 2.4990 44.0 4.83 6.9552
20.0 2.16 2.5920 45.0 4.95 71775
21.0 2.22 2.6862

* Conductivity-((100 + V)/100).

Table 11. Conductance and KOH volume data corresponding to the titration of a mixture of hydrochloric and acetic
acids with potassium hydroxide (second assay).

used in the detailed calculations are colored in the tables. The results obtained (and intermedi-
ate calculations) for the second assessment are shown in Table 13: 14.913 + 0.041 (propagation
of errors and Fieller), 29.372 + 0.120 (approximate method of propagation of errors) and 14.458
+ 0.113 (propagation of errors). In the third assessment: 15.032 + 0.043, 29.414 + 0.146, and
14.383 + 0.140 mL.
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V KOH Conductance Conductance* V KOH Conductance Conductance*
(mL) (mS/cm) (mS/cm) (mL) (mS/cm) (mS/cm)
0.0 5.81 5.8100 22.0 2.29 2.7938
1.0 5.51 5.5651 23.0 2.34 2.8782
2.0 5.22 5.3244 24.0 2.40 2.9760
3.0 4.94 5.0882 25.0 2.45 3.0625
4.0 4.66 4.8464 26.0 2.52 3.1752
5.0 4.38 4.5990 27.0 2.57 3.2639
6.0 411 4.3566 28.0 2.63 3.3664
7.0 3.85 4.1195 29.0 2.68 3.4572
8.0 3.59 3.8772 30.0 2.75 3.5750
9.0 3.32 3.6188 31.0 2.92 3.8252
10.0 3.07 3.3770 32.0 3.09 4.0788
11.0 2.82 3.1302 33.0 3.26 4.3358
12.0 2.58 2.8896 34.0 342 4.5828
13.0 2.33 2.6329 35.0 3.56 4.8060
14.0 2.13 2.4282 36.0 3.71 5.0456
14.5 2.05 2.3473 37.0 3.86 5.2882
15.0 1.99 2.2862 38.0 4.00 5.5200
16.0 1.96 2.2748 39.0 4.14 5.7546
16.5 1.98 2.3020 40.0 428 5.9920
17.0 2.00 2.3377 41.0 4.40 6.2040
17.5 2.03 2.3853 42.0 4.54 6.4468
18.0 2.05 2.4190 43.0 4.67 6.6781
19.0 2.11 2.5109 44.0 4.80 6.9120
20.0 2.17 2.6040 45.0 4.92 7.1340
21.0 2.23 2.6983

* Conductivity-((100 + V)/100).

Table 12. Conductance and KOH volume data corresponding to the titration of a mixture of hydrochloric and acetic
acids with potassium hydroxide (third assay).

If the series corresponding to the first equivalence point are analyzed: 15.334, 14.913 and 15.032,
one of the data seems to be very distant from the other two, but the values of Q of Dixon 0.717
and of G of Grubbs 1.110 are lower than tabulated values for P = 0.05, that is, Q. = 1.155 and Gy,
=1.15 (although the G, and Gy, values are practically the same). The mean =+ confidence limits
of the values are 15.093 £ 0.217 mL for hydrochloric acid (first endpoint) and 14.417 £ 0.038 mL
for acetic acid (difference), which leads to molarity values of the solutions of hydrochloric and
acetic acids of 0.01497 + 0.00022 M and 0.01430 4+ 0.00004 M. If the most distant values were
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Figure 9. Conductometric titration of a mixture of hydrochloric and acetic acids with potassium hydroxide (data are
shown in Table 10, second assay).
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Figure 10. Conductometric titration of a mixture of hydrochloric and acetic acids with potassium hydroxide (data are
shown in Table 9, third assay).

discarded, the results obtained would be very close to 14.973 & 0.084 M and 14.421 + 0.053 M,
although the accuracy would improve considerably in the first case.

It is worth noting the fact that when the covariance between the intercept and slope of the
straight lines obtained by the least squares method is not taken into account, the propagation
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Ni= 13 [EW/]1= 13 Ny= 15 [EW,]2= 15
x1(mean)= 7.008 y1(mean)= 4.0562 Xp(mean)= 22.200 Ya2(mean)= 2.8029
[S(xx)]1= 182.8092 [S(xx)]2= 244.9000
[S(xy)]1= -44.7709 [S(xy)]2= 22.9477
[Syy)]1= 10.9651 [Syy)I2= 2.1514
b= —0.24491 Ab= 0.33861 b= 0.09370
a= 5.77243 Aa= —5.04972 ay= 0.72272
[R2]1= 0.99996 x(I)= 14.9132 [R2]2= 0.99948
Vly/x]1= 4.175E—05 Vly/x]2= 8.57549E—05
V(b1)= 2.284E—07 V[pooled]=  6.5584E—05 V(by)= 3.502E—-07
V(ay)= 1.443E-05 V(ay)= 1.783E—04
cov(ay, by)=  —1.600E—06 cov(ay, by)=  —7.774E—06
V[Aa]= 1.927E-04  V[Aa]= 1.590E-04  VIx()]= 0.0004 FIELLER ax2+bx+c=0
V[Ab]= 5.785E—07  V[Ab]= 6.266E—-07  s[x(I)]= 0.0200 a= 1.147E-01
cov(Aa, Aby=  —9.374E—06 cov(Aa, Aby= —8.459E—06 (0, 05, 24)= 2.064 b= —3.420E+00
Pooled variances ts[x(D)]= 0.0414 c= 2.550E+01
Vol (u)= 14.955 Vol (u)= 14.955
Vol (I)= 14.872 Vol (I)= 14.872
N3= 15 [ZW]]1= 15
xz(media)=  37.000 ys(media)=  5.3001 Ab= 0.145555
[S(xx)]1= 280.0000 Aa= —4.275169
[S(xy)]1= 66.9920 x(I)= 29.3716
[Syy)11= 16.0306 Ax= 14.4584
b= 0.2393 V[pooled]=  0.000132481
az= —3.5525
[R2]3= 0.9999
VIy/x]3= 1.792E—-04 Vix(ID]= 0.0034 t(0, 05, 26)=  2.056
V(bs)= 6.400E—07 slx(ID)]= 0.0587 ts[x(ID)]= 0.1207
V(as)= 8.881E—04 Vol (u)= 29.492
cov(as, bz)=  —2.368E—05 Vol ()= 29.251
Vix(Dl= 4.017E—04
Vix(ID)]= 3.447E-03
Cov(Aay, Aay)=  7.014E—03
Cov(Aay, Aby)= —9.265E—03
Cov(Aay, Aby)= —4.704E—03
Cov(Aby, Aby)=  6.224E—03
V[Aal= 1.583E—-07  V[Aal]= 9.320E-04  V[Ax]= 3.116E-03  #0, 05,37)= 2.026
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Ni= 13 [EW]1= 13 Ny= 15 [EW]2= 15

VIAb]= 9.902E—-07  V[Ab]= 1.014E—-06  s[Ax]= 5.583E—02 ts[Ax]= 0.113

cov(Aa, Aby= —2.893E—05 cov(Aa, Ab)= —2.952E—05 Vol (u)= 14.571
Pooled variances Vol ()= 14.345

Table 13. Evaluation of endpoints in the titration of a mixture of HCl and CH;COOH with KOH 0.0992 M (data
Table 11).

of the error leads to values of much larger confidence limits, 0.429 in the example of Massart
(1997) versus 0.104, or 0.648 by Liteanu and Rica [58] versus only 0.113, in this book chapter,
for the same data. As in many monographs, the covariance in the propagation of errors is not
taken into account, and this is perhaps the reason why the estimates of the uncertainties of the
intersection abscissa in the analytical literature do not abound.

9. Final comments

The advance of instrumental methods of endpoint detection increases the importance and
the worth of titrimetric analysis. Physicochemical methods are intensively developed
nowadays. However, titration continues to maintain its importance for chemical analysis.
Plotting two straight line graphs from experimental data i.e., the conductivity versus
volume added and determining the corresponding intersection point of the two branches
allow locating the endpoint in a conductometric titration. The estimation of uncertainty
of endpoint from linear segmented titration curves may be easily carried out by first-
order propagation of variance, that is, by applying random error propagation law.
The weighted linear regression procedure as being applied to the two branches of the
conductometric titration curves leads to results similar to those obtained by the
unweighted (single) linear regression procedure. The weighting factors are very similar
to each other.

The covariance of measurements can be as important as the variance and both contribute
significantly to the total analytical error. In particular, the strong correlation existing
between the estimated slope and intercept of a straight line obtained by the least squares
method must not be ignored. The inclusion of the covariance term on this respect is of vital
importance, being usually a subtractive character lowering, in this case, the confidence limits
of the abscissa of the intersection point. Perhaps this omission, which leads to too greater
uncertainties, may be the cause for a small number of times that uncertainty is reported in
this context.

The algebra associated with the Fieller’s theorem is simple, and no problem is observed
with its derivation in this particular case of intersecting straight lines. However, the
statistical uncertainty of endpoint differences is a complex problem. Attempt to derive
the confidence limits by applying Fieller’s theorem fails in this case, being necessary to
resort to the first-order propagation of variance (random error propagation law).



Intersecting Straight Lines: Titrimetric Applications
http://dx.doi.org/10.5772/intechopen.68827

Nevertheless, the algebra associated in this case is simple but cumbersome, as some
terms in covariance need to be derived. As a matter of fact, greater accuracy and firmer
statistical justification make first-order propagation of variance (random error propaga-
tion law) and Fieller’s theorem methods preferable to methods based on intersecting
confidence bands.
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