
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 3

The Role of Neutrophil Extracellular Traps in Post‐

Injury Inflammation

Eszter Tuboly, Gabrielle D. Briggs and Zsolt J. Balogh

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68906

Abstract

Polymorphonuclear (neutrophil) granulocytes (PMNs) are an essential part of the innate 
immune responses and key instigators and effectors of the underlying pathological 
mechanisms (endothelial damage, interstitial histolysis, cytokine production, phagocy‐
tosis) leading to post‐injury inflammation and secondary tissue injury. In 2004, the for‐
mation of neutrophil extracellular traps (NETs) was identified as an additional defence 
mechanism of PMN against microbes. The understanding of complex regulation of neu‐
trophil functions and NET formation is essential for differentiating between healthy and 
pathological inflammatory response, which frequently determines if patient recovers 
uneventfully or develops catastrophic complications. Recent discoveries have revealed 
the potential role of NETs in the pathogenesis of a wide range of non‐infectious diseases, 
including post‐injury sterile inflammation. In such conditions, both spontaneous NET 
formation and impaired NETosis are documented. In this chapter, we review the evi‐
dence for the role of NETs in post‐injury inflammation, the key molecular and cellular 
participants in pathological NET formation, the clinical relevance of NETs in post‐injury 
complications and the therapeutic potential of NET inhibition/clearance.

Keywords: neutrophil granulocyte, PMN, post‐injury inflammation, neutrophil 
extracellular traps, trauma, injury, multiple organ failure

1. Introduction

Despite recent improvements in the care of the injured, severe trauma remains a major bur‐

den on our society, resulting in the annual death of more than five million people world‐

wide (World Health Organisation. Injuries and violence: the facts. 2014. http://www.who.
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int/violence_injury_prevention/key_facts/en/ Accessed 9 May 2016). Tissue injury, traumatic 
shock and subsequent resuscitation and surgical interventions lead to localised and systemic 
inflammatory responses. Polymorphonuclear (neutrophil) granulocytes (PMNs) are an essen‐

tial part of the innate immune responses and key instigators and effectors of the underlying 
pathological mechanisms (endothelial damage, interstitial histolysis, cytokine production, 

phagocytosis) leading to post‐injury inflammation and secondary tissue injury. In 2004, the 
formation of neutrophil extracellular traps (NETs) was identified as an additional defence 
mechanism of PMN against microbes [1]. Since the initial description of their antibacterial 
function, a series of studies reported the existence of NETs in response to various types of 
sterile inflammations including traumatic injury [2–5]. The precise triggers, contributions and 
outcomes of NETs in trauma patients are not well understood. Given the significant clinical 
impact of sterile inflammation in these patients, understanding the role of NETosis may iden‐

tify novel biomarkers or therapeutic strategies to minimise post‐injury tissue damage and 
hyperinflammation. In this chapter, we summarise our current knowledge and existing gaps 
on post‐injury NET formation.

2. Post‐injury inflammation

2.1. Complications of post‐injury inflammation

Major trauma patients universally develop systemic inflammatory response syndrome (SIRS) 
criteria within 72 h of injury. SIRS is defined by the following criteria:

a. Temperature greater than 38°C or less than 36°C.

b. Heart rate greater than 90 beats/min.

c. Respiratory rate greater than 20/min.

d. White blood cell count (WBC) greater than 12.0 × 109 L−1, or less than 4.0 × 109 L–1 [6].

The degree of the dysfunctional post‐injury inflammation is further complicated by the inva‐

sive nature of surgical procedures. Moreover, those who survive the initial severe tissue injury 
and traumatic shock are at an increased risk of acute respiratory distress syndrome (ARDS), 
multiple organ failure (MOF), nosocomial infections and sepsis. These complications lead to 
excessive resource utilisation and increased risk of death [7–9]. The systemic inflammatory 
response to major trauma can lead to the development of early MOF, which progresses to a 
state of immune paralysis and is viewed as a major factor underlying the increased suscepti‐
bility of trauma patients to hospital‐acquired infections [10, 11]. The possible involvement of 
NETs in post‐injury inflammation has been evaluated in several recent studies. Margraf and 
co‐workers published in 2008 that NET quantities in plasma may predict MOF and sepsis 
on the ICU in patients after multiple trauma [12], and more recently, cell free‐DNA neutro‐

phil extracellular traps (cf‐DNA/NETs) were used in the prediction of mortality in a popula‐

tion of 32 patients with severe burn injury [13]. These associations warrant further research 
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into the precise role and impact of NETosis in the post‐injury inflammatory response. While 
many aspects of the post‐injury inflammatory response have been characterised over the past 
decades, our understanding of how NETosis fits into the picture is still rudimentary.

2.2. Mechanisms of post‐injury inflammation

In the bigger picture of the post‐injury inflammatory response, NETosis is considered a 
later phenomenon than the classical neutrophils functions [14–16]. Before the induction of 
NETosis, inflammatory reactions triggered by mechanical injury or disturbances of homeosta‐

sis are mainly propagated by intravascular events, summarised in Figure 1. The acute phase 
is characterised by dramatic changes in the diameter of the capillaries and the activation of 
innate immune cell responses. It is followed by a delayed, subacute reaction, most promi‐
nently characterised by oxido‐reductive burst, hypoxic metabolic pathways, the infiltration of 
leukocytes and phagocytic cells and early cytokine production, while in the late proliferative 
phase, reperfusion injury, further production of late inflammatory agents, tissue remodelling 
and fibrosis occur.

Figure 1. Schematic figure about multiple functions of neutrophils in response to sterile inflammation, where CD11b, 
integrin alpha M; ICAM, intercellular adhesion molecule; IL‐8, interleukin‐8 (chemokine receptor ligand 8); CXCLs, 
chemokine ligands; CXCR, chemokine receptor; DAMP, damage associated molecular pattern; TLR, Toll like receptor; 
IL‐1, interleukin 1; PY2R, purinergic receptor; FPR, formyl peptide receptors; and TNFα, tumor necrosis factor‐alpha.
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Injury leads to the release of damage‐associated molecular patterns (DAMPs) with high 
immunomodulatory potential (extracellular DNA, mitochondrial remnants and the high 
mobility group box 1) and pro‐inflammatory cytokines, such as tumour necrosis factor‐α 
(TNF‐α), or interleukin‐1β (IL‐1β). Release of these components results in Toll‐like recep‐

tor (TLR) activation with an effect after 1–2 h [17]. As this phase ensues, subacute cytokines 
including IL‐6, IL‐8 as well as IL‐12 and IL‐18, chemokines and leukocyte migratory factors 

drive an exaggerated activation of PMN leukocytes, and the increased production of reactive 
oxygen species (ROS) plays important roles in the process [18]. It is also widely accepted that 
the initial pro‐inflammatory phase switches to a later anti‐inflammatory phase with extended 
anti‐inflammatory cytokine release to facilitate regenerative processes; however, the pro‐
inflammatory and anti‐inflammatory forces may ultimately reinforce each other, creating a 
state of increasingly destructive immunologic dissonance [19]. Cytokine signals are crucial in 
the inflammatory cascade by promoting the interactions of PMN leukocytes with endothelial 
cells through the up‐regulation of adhesion molecules, PMN degranulation, respiratory burst, 

lipid mediator synthesis [20] and enhanced migration through the endothelium. Via these 
reactions, the soluble mediators alter the microvascular homeostasis [21, 22] and blood flow, 
which have been associated with multiple organ failure [23]. Of the cytokines, members of 
the low molecular weight chemokine family play a fundamental part in these events by virtue 
of their ability to attract and stimulate leukocytes [24]. These mediators mutually and strictly 
regulate the expression level and generation of each via epigenetic regulation that propagate 
the commencement of repair mechanisms, although numerous cytokines are reported to be 

aberrantly regulated in association with more complicated clinical outcomes [25, 26].

While phagocytosis and degranulation usually take minutes to occur after being exposed to 

the inflammatory signal, NETosis is a more protracted event, takes place from 2–3 h up to 8 h 
from activation [27, 28]. About 20–60% of isolated human neutrophils typically release NETs 
2–4 h after stimulation with microbes or chemicals [2]. However, they were able to respond 
within minutes when activated by LPS‐stimulated platelets under conditions of flow [29]. 
These studies suggest that NET formation might be more characteristic for the subacute/

late phase of post‐injury inflammation and probably more inherent to the senescent PMN 
population. It is hoped that future studies will identify which factors determine the selection 
between these alternative antimicrobial activities and whether these processes can coexist in 
the same cell (Figure 1).

3. Mechanisms of NETosis

As members of the first‐line defence of the immune system, neutrophils are well known to 
interact with other cell types and active cellular crosstalk is followed by release of inflamma‐

tory mediators, stimuli‐specific receptor‐activation and homing. NET formation is described 
to occur in a particularly versatile manner under different pathophysiological conditions, and 
the complexity is just the beginning to be explored. We are yet to clarify which factors are 
required to prevent NET formation of a neutrophil and whether this alternative pro‐inflam‐

matory function of the cells can co‐exist with the classical responses of the same cell. The 
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current view of the role of surrounding cells, soluble mediators and intracellular elements is 
overviewed below.

3.1. Structure and function of NETs

NETosis has been described as a process in which activated neutrophils extrude a chromatin‐
fibre‐based meshwork encompassing their own granules and antimicrobial enzymes, such as 
neutrophil elastase, cathepsin G, α‐defensines and MPO [1]. Mass spectrometry results have 
revealed a series of additional protein components from various types of granules [30]. The 
extrinsic and intrinsic factors contributing to NET formation are summarised in Figure 2.

These structures represent an important strategy to immobilise and kill invading microor‐

ganisms and are considered to be evolutionarily conserved, since they target both Gram‐neg‐

ative and Gram‐positive bacteria, viruses and fungi [31]. Besides humans, the phenomenon 

Figure 2. (A) Representative image of neutrophils forming extracellular traps visualized by fluorescent microscopy 
(Nikon Diaphot 300 Inverted fluorescence & phase contrast microscope, 20× magnification) after staining the cells with 
Sytox Green DNA intercalating dye. (B) Schematic figure on the possible mechanism of NET formation, where DAMP, 
damage‐associated molecular pattern; IL‐8, interleukin 8; TNFα, tumor necrosis factor‐alpha; Raf, rapidly accelerated 
fibrosarcoma kinase; MEK, mitogen‐activated protein kinase; ERK, extracellular signal regulated kinase; NADPH, 
nicotinamide adenine dinucleotide phosphate.and PAD4, protein arginine deiminase 4.
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was proven to be present in insects, various vertebrates including fishes and even in plants 
[32–36]. The NET scaffold consists of chromatin components with a diameter of 15–17 nm 
and the connected proteins and microparticles. To date, nuclear DNA and histones are 
observed to represent the major NET constituents [1]. The exact mechanism through which 
the genetic material is ejected from the cell and decorated by antimicrobial factors is still 

not well understood. Nonetheless, it is considered to be an active process, where the cells 
undergo an apoptosis‐like process with peptidylarginiedeamilase 4 (PAD‐4)‐mediated 
DNA decondensation, membrane disintegration and chromatin realignment [37], and the 

role of ROS formation in the process seems to be inevitable, but the mechanism remains 
controversial [2].

3.2. Post‐injury activators of NETosis

Studies aimed at describing the receptor‐ligand signalling pathways are fundamental in 
sterile NET formation revealed diverse and sometimes controversial mechanistic details. 
Endogenous ligands were described to bind to TLR (mainly TLR4 and TLR9), Fc receptors 
(e.g. FcRIIa) or cytokine receptors (such as IL‐17 R) accompanied by this process [38–40]. 
Complement receptor activation has also been reported to be implicated [41]. Many sterile 
chemical stimuli were proven to induce NETosis in vitro without infection such as TNF‐alpha, 

IL‐8, interferon‐gamma, nicotine certain antibiotics or enhanced ROS generation produced by 
NADPH oxidases [1, 42–46].

As NETs consist of a significant amount of extracellular DNA as a scaffold, injury‐related 
NET formation may cause a further elevated DAMP concentration in the circulation, and 
therefore, it could result in more severe tissue damage [4, 48]. Mitochondrial DNA was sub‐

sequently demonstrated to be a trigger for NETosis after major trauma and demonstrated 
that the signalling was mediated through a TLR9‐dependent pathway, independent of the 
NADPH oxidase system [39]. Our group demonstrated that NETs formed after trauma were 
almost exclusively composed of mtDNA [4]. There has also been a relationship demonstrated 
in NETosis observed in systemic lupus erythematous (SLE) where NETs released were found 
to be highly enriched with oxidised mtDNA [49]. Interestingly, this study also found that 
these NETs resulted in increased production of IFN I, which was dependent on STING path‐

way signalling. This perhaps suggests that mtDNA may play a role in driving autoimmunity 
in a rather novel and previously unstudied way.

3.3. Cell‐cell interactions as regulators of post‐injury NET formation

3.3.1. Interaction with platelets

There is growing evidence on the importance of neutrophil‐neutrophil crosstalk and com‐

munication with other cells related to NET formation. Platelets are far the most characterised 
players in NETosis as many platelet originated ligand/receptor pairs and soluble mediators 

perpetuate neutrophil activation [50]. The proof‐of‐concept in vitro studies demonstrated that 

platelet activation is crucial as the initial step [29, 51]. Human neutrophils isolated from healthy 
volunteers underwent a robust NET formation in the presence of activated platelets treated 
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with thrombin receptor‐activating peptide, while no NETosis occurred with the co‐incuba‐

tion of resting platelets [52]. In the same study, the early event of platelet‐platelet interaction 
was blocked with a glycoprotein IIb/IIIa inhibitor and resulted in reduced NET formation in 
a mice TRALI model [52]. P‐selectin is suspected to largely be responsible for the ability to 
trigger sterile NET formation in human neutrophils [53], but other cell adhesion molecules 

found on platelets are demonstrated to play rather significant role as β2 integrin (CD18) [53, 

54]. Among soluble mediators, chemokines (as CXCL4) and alarmins (as HMGB‐1) produced 
by platelets were observed to activate neutrophils to form NETs in vitro and in animal models 

[54, 55]; however, this feature of platelets is broadly connected to any kind of inflammatory 
response, and therefore, the direct or indirect contribution of this phenomenon is too limited 

to be predictable.

3.3.2. Endothelium‐neutrophil interactions

Circulating neutrophils tend to be quiescent and inactive, while their activation classically 
depends on their communication with endothelial cells. After neutrophil‐endothelial interac‐

tion, the cells can rapidly undergo degranulation, activation of their NADPH oxidase system 
and even NET formation [56, 57]. The importance of this interface is also supported by more 
recent studies, where endothelium‐produced matrix metalloproteinases induced NET forma‐

tion followed by cytotoxicity and vessel dysfunction [58, 59].

3.4. Intracellular and molecular regulators of NETosis

Neutrophil extracellular trap formation is primarily dependent on histone abundance and 

alignment, activation of NADPH oxidase and MPO, interactions between platelets and neu‐

trophils, expression of NET component proteins, and neutrophil autophagy.

3.4.1. The role of chromatin decondensation

Peptidylargininedeiminase 4 (PAD4)‐mediated chromatin decondensation, which occurs 
in the nucleus, is apparently a critical and initial step in NET formation. PAD4 is a nuclear 
enzyme that converts specific arginine residues to citrulline on histone tails [60]. The release 
of NETs strongly depends on PAD4 activity [61] but was surprisingly found not to be essen‐

tial in certain conditions [62]. Neutrophils isolated from PAD4‐deficient mice were unable to 
citrullinate histones, decondense chromatin, and generate NETs [63]. In fact, PAD inhibitors 
have demonstrated efficacy in a variety of immune pathologies [64, 65], supporting the impor‐

tance of this pathway in NET formation.

3.4.2. NADPH‐dependent ROS production, Raf‐MEK‐ERK pathway

Hakkim and co‐workers first described the importance of the Raf/MEK/ERK signalling path‐

way in PMA‐induced NET formation and their data suggest that the Raf‐MEK‐ERK pathway 
might be upstream of NADPH oxidase activation [66]. Other studies pointed out that phos‐

phorylation of ERK both in platelets and in neutrophils is also necessary for the formation of 
NETs mediated by activated platelets [52, 53].
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3.4.3. Toll‐like receptors

Toll‐like receptors are classified according to the types of agonists that bind and the corre‐

sponding response that is activated and several of them were found to facilitate profound 
inflammatory responses after binding endogenous ligands [67]. It was recently reported that 
neutrophil stimulation via TLR activation with various molecules leads to NET production. 
Further to this, the structure of the NETs is characteristic to the type of TLR stimulation [68]. 
TLR4 seems to be responsible for this kind of neutrophil activity in particular as many publi‐
cations demonstrated their interaction via HMGB‐1 [55], superoxide production [69], platelet 

activation [29] or IL‐1β [70]. Oxidised low‐density lipoprotein, which has been implicated as 
an independent risk factor in various acute or chronic inflammatory diseases including SIRS, 
was also found to act as a NETosis trigger via TLRs [71]. More recently, TLR9 has come into 
focus in NET research as mtDNA and other DAMPs that are recognised by TLR9 showed high 
potential to induce NETs in trauma patients [39], in liver ischemia/reperfusion injury [3] or 

due to surgical stress [72].

4. Pathophysiology of post‐injury NETs

4.1. The role of NETs in sterile inflammation

Recent discoveries have revealed the potential role of NETs in the pathogenesis of a wide 
range of non‐infectious diseases, in particular sterile chronic inflammatory conditions such 
as systemic lupus erythematous [38, 73], small vessel vasculitis [74] and psoriasis [75]. In 
such conditions, both spontaneous NET formation and impaired NETosis were evident. 
Reduced ability of PMNs for to undergo NETosis was described in diabetes mellitus patients 
who were exposed to bacterial infections [76] that might be a possible explanation for why 

this population is more susceptible to life‐threatening infections. In another recent study 
conducted on diabetes patients, spontaneous release of isolated PMN NETs was increased, 

suggesting that a chronic pro‐inflammatory condition during hyperglycaemia favours con‐

stitutive NET formation [77]. Chronic inflammation is also characteristic in cardiovascular 
diseases and indeed, NETosis was found to contribute to the pathomechanism of deep 

vein thrombosis [78], acute myocardial ischemia/reperfusion in a mouse model [79], and 

NETs were observed to be localised in limb artherosclerotic plaques [80]. Furthermore, the 
content of plasma MPO‐DNA complexes was found to be associated with an increased risk 
of coronary stenosis in patients with severe coronary arthelosclerosis [81]. Interestingly, 
healthy conditions but with an altered metabolic and oxygen consumption rate were also 

described to be associated with elevated NETosis of isolated PMNs. In a very recent paper, 
NET formation and neutrophil pro‐NETotic priming were found to be augmented dur‐

ing the course pregnancy in healthy women when compared to matching non‐pregnant 

control donors [82]. What was found to be elevated in the mother, seemed to be blocked 
in the foetus, as newborn neutrophils isolated from umbilical cord blood on the day of 

delivery did not form NETs when stimulated [83]. In the latter study, the authors identi‐
fied a unique protein in the umbilical cord blood‐called neonatal NET‐inhibitory factor  
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(nNIF) that would raise a very interesting question of a novel foetal adaptation mechanism 
and therapeutic approach. Acute injuries such as AKI and ALI were both described to be 
relevant pathologies to study increased NETosis in humans. NET biomarkers were present 
in transfusion‐related acute lung injury patients’ blood, and in fact, NETs were produced 

in vitro by primed human neutrophils when challenged with anti‐neutrophil alloantigen‐

3a antibodies previously implicated in TRALI [84]. In another human study, the cfDNA/
NET content of 31 critically ill patient’s blood was in a significant positive correlation with 
the severity of acute kidney injury [85]. This result encouraged the evaluation of serum (or 
plasma) NETs concentration as an early predictive biomarkers of complicated outcomes 
on the ICU.

4.2. Pathophysiology of trauma‐related NET formation

The potential role of NETs in the mechanical injury driven inflammatory response has recently 
been proposed [47, 86]. Similarly, the presence of NETs was demonstrated in a mixed inten‐

sive care unit population with systemic inflammatory response syndrome [87]. NETs have 
also been implicated in the pathogenesis of acute lung injury and in sterile transfusion‐related 

acute lung injury, which are often antecedents of MOF [52]. Recently, Grimberg‐Peters et al. 
published that neutrophils isolated from severely injured patients (days 1–2 after trauma) 
showed markedly elevated NET formation after pharmacological activation, and this effect 
was successfully attenuated by the treatment with hyperbaric oxygen [88]. This result indi‐
cates the potential importance of oxido‐reductive burst in NETosis after traumatic injury, and 
it is well established that in such conditions, NET formation is generally NADPH oxidase‐
dependent [48]. However, the exact molecular mechanism behind is not fully understood, as 
indicated in a study by Itagakai and co‐worker, where human PMNs from young and elderly 
trauma patients formed NETs in a great number, via TLR9 activation, but independently from 
NADPH oxidase activation [39].

Moreover, the DAMP release after trauma might be fundamental in further promoting NET 
production. Besides its role in sterile inflammation, mitochondrial DNA may have another 
pivotal role in worsening the inflammatory response, via NET formation. Our recent data 
show NETs observed after injury and subsequent surgery can be composed of mitochondrial 
DNA [4], and other authors have found the same phenomenon under certain conditions [89]. 
The exact molecular mechanism of mtDNA‐NET release is unclear; however, when a ROS 
production inhibitor (diphenyleneiodonium) was used, mitochondrial DNA‐NET formation 
was also blocked, and no DNA was released [89, 90].

4.3. NETs as therapeutic target for post‐injury inflammation

To date, the contribution of NET formation on the pathomechanism of a wide range of clinical 

conditions is evident, and there is emerging evidence about the potential therapeutic useful‐
ness of pharmacological NET inhibition. While animal experiments and in vitro cell culture 

studies are promising, it is yet unknown if NET‐targeting therapies can be effective in clinical 
practice. As many protective physiological and pathophysiological processes require NET 
formation, the harm/benefit ratio of NET formation inhibition is unclear.
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4.3.1. Chemical inhibition of NETosis

There are several drugs already used in clinical practice in autoimmune diseases that have 
potential for NETosis inhibition. Plaquenil Sulphate (hydroxychloroquine, HQ) is a disease‐
modifying anti‐rheumatic drug, which inhibits prostaglandin and cytokine synthesis, and 

most of all induces a blockade in TLR signalling [91]. Juvenile‐onset systemic lupus erythe‐

matosus patients’ isolated PMNs showed augmented NET formation, which was significantly 
modulated with HQ treatment [92]. N‐acetylcisteine (NAC), which is a commonly recom‐

mended supplement to treat various autoimmune symptoms, was described to inhibit NET 
release by PMA stimulated human neutrophils in a ROS‐dependent manner [93]. The appli‐
cation of NAC had similar effect in other recently published studies [70, 94], which supports 

the usage of other free radical scavengers as adjuvant therapy on the ICU trauma patients. 
Monoclonal antibodies such as the complement inhibitor Eculizumab might open up a new 
perspective in drug therapies targeting NETosis based on the findings that plasma NET 
markers of paroxysmal nocturnal haemoglobinuria patients with thrombosis history were 

significantly elevated than that of controls or patients without thrombosis history, while the 
Eculizumab treatment normalised the values to the control level [95]. Another FDA‐approved 
monoclonal antibody, Rituximab was also demonstrated to be protective against adverse NET 
formation in different human studies [96].

The inhibition of histone decondensation via PAD4 targeting of the PMNs is another potential 
NET‐based therapeutic target, as PAD overexpression and upregulated enzyme activity have 
been observed in several diseases [97], and or PAD4‐mediated NET formation was described 
to be not essential against infection [62].

The direct inhibition of the granule and protein components of NETs is another way to manip‐

ulate NET formation. However, these are essential antimicrobial peptides and mediate impor‐

tant physiological pathways. Currently, the literature is conflicting as to whether MPO, NE 
and the other compounds connected to the NET scaffold are appropriate targets. In one study, 
MPO‐facilitated ROS‐generation was proven to be required for neutrophil extracellular trap 
formation in humans and pharmacological inhibition of MPO delays and reduces NET for‐

mation [28, 98, 99], but recently more evidence revealed the opposite or conditional effect 
[100–102].

4.3.2. The therapeutic effect of DNAse treatment

The fact that extrachromosomal DNA and particularly mtDNA have such potent immu‐

nostimulatory effects makes it an exciting and very rational target for immunomodulation 
therapy and silencing NET formation is one of the many possible trends. Whether nDNA or 
mtDNA are conjugated with NETs, both are readily digestible with DNAse. There is certainly 
good evidence to suggest that focally targeting NETs with DNAse have yielded a reduction 
in associated inflammatory lung damage in a mouse model of transfusion‐related acute lung 
injury (TRALI) [52]. Human recombinant DNAse therapy has been used to good effect when 
nebulised in cystic fibrosis (CF) patients by enhancing sputum solubilisation [103]. This effect 
may be beneficial to other conditions with excessive NETosis, as several studies have recently 
demonstrated that NETs and NET‐associated proteins are present in CF sputum [104–107]. 

Role of Neutrophils in Disease Pathogenesis52



However, there might be dangerous consequences if the extracellular DNA is not cleared up 
perfectly or if the freely floating pro‐inflammatory peptides have entered the bloodstream. 
Dubois and colleagues have demonstrated that DNase administration to CF sputum dramati‐
cally increased elastase activity [108]. Thus, the combined administration of DNase and spe‐

cific inhibitor could be useful to avoid the deleterious effects of excessive proteases. With 
such an emergent role of mtDNA in NETs associated with trauma [4] and more recently in 

SLE [49], the investigation of DNAse therapy in different inflammatory conditions including 
post‐injury inflammation would be very reasonable. Nevertheless, a long‐term DNase ther‐

apy presents side effects to patients [109] including dramatic increase in other antimicrobial 

activities [108] or further impedance of the immune system which makes the host susceptible 

to disseminated and lethal infections [110, 111]. The latter has notable consideration in the 
management of major trauma patient as 39.5% of trauma deaths occur in the hospital mainly 
due to nosocomial infections [112].

4.3.3. The clinical predictive value of NETs

The number of studies investigating the presence or the predictive value of NETs and NET 
components alongside extracellular DNA concentration as potential biomarkers in different 
human body fluids has grown significantly in recent years. Serum and plasma certainly are 
the most investigated materials, as being the natural habitat for PMNs, although it raises some 
concern whether activated NET‐forming PMNs are representative enough in the blood.

In cases of acute injuries, such as major trauma, quantification of NETs from blood seems to 
be a trustworthy biomarker for clinical prediction. Margraf and co‐workers published in 2008 
that NETs quantities in plasma may predict multiple organ failure and sepsis on the ICU in 
patients after multiple trauma [12]. This ground breaking work was followed by other papers, 
such as the one of Altrichter and co‐workers who described that circulating free‐DNA neutro‐

phil extracellular traps (cf‐DNA/NETs) could be used in the prediction of mortality in a popu‐

lation of 32 patients with severe burn injury [13]. Similarly, early diagnosis of septic arthritis 
by cfDNA/NETs measurement could guide the surgical team to rescue the joint by deciding to 
perform an immediate operation [99]. However, in these cases, the dynamic profile of circulat‐
ing neutrophils and NETs in the acute and subacute phase of inflammation should be taken 
into consideration when determining the optimal timing of biomarker measurement. It is 
also important to note that NET components, namely DNA complexes and elastase, may also 
accumulate in the blood during other programs of cell death, for example, during endothelial 

cell apoptosis or macrophage necrosis [81].

Beyond blood‐based extracellular trap identification, Mohanty and co‐workers described a 
new approach to non‐invasive NET‐associated biomarker research, which showed the pres‐

ence of numerous neutrophils in morning saliva had undergone NETosis [113]. Tear fluid 
might also be informative. In a study conducted on dry eye disease (DED) patients and match‐

ing controls, tear fluid nuclease activity was decreased significantly in DED patients, whereas 
the amount of extracellular DNA, histones, cathelicidin, and neutrophil elastase on the ocular 
surface was increased significantly [114]. A similar paper characterised the activated neutro‐

phil‐specific biomarkers in the tear fluid among ocular graft versus host disease patients, and 

a marked increase in both NE and MPO concentrations was evident [115].
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5. Final remarks

In this chapter, we summarised the mechanism, regulation and clinical significance of neu‐

trophil granulocytes and the complex process of extracellular trap formation. The relevant lit‐
erature shows that a highly specialised population of neutrophils facilitate NET formation in 

response to infection and also sterile inflammation. Interest in the potential role of NETs in the 
posttraumatic injury setting and their possible role in the subsequent inflammatory response 
has gained significant attention lately. To date, the contribution of NET formation on the 
pathomechanism of a wide range of clinical conditions was proven to be inevitable and the 
observation of NETosis became more important in post‐injury clinical outcome prediction.

For the better understanding of the exact mechanistic details and the role of NETs in normal 
recovery and disease, improved methodology and quantification are urgently needed. The 
current techniques combine fluorescent microscopy or fluorescent intensity measurements 
and generally use DNA‐intercalating dyes, while taking the risk of visualising necrotic cells 
with dye permeable cell membrane. Antibody‐based techniques are required to detect acti‐
vated, non‐necrotic cells with intact cell membrane, such as flow cytometry‐cell‐sorting, sup‐

ported by microscopic imaging. Additionally, a consensus on the structural and behavioural 
definition of NET formation is essential for future NET research, due to their fragility, their 
highly dynamic nature and their morphological heterogeneity.
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