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Abstract

Isoflavonoids are interesting class of natural products due to their positive effects on 
human health. Isoflavonoids include isoflavones, isoflavanones, isoflavans, rotenoids and 
pterocarpans. Although they are reported from many plant families, most isoflavonoids 
are produced by the subfamily Papilionaceae of the Fabaceae. Various chromatographic 
methods have been applied for the purification of isoflavonoids. Simple Ultra Violet (UV) 
absorption spectra as well as both One and two dimensional NMR (1D-  and 2D-NMR) 
are critical for the identification of isoflavonoids. Each class of isoflavonoids has its 
unique feature in both 1H- and 13C-NMR that enable their proper characterization. High 
Resolution Mass Spectrometry (HRMS) is a substantial tool in such challenge. In vitro 
experiments indicated that isoflavonoids possess antioxidant, antimutagenic, antiprolif-
erative as well as cancer preventive effects. Epidemiological studies provide support for 
some of these effects on human. Members of this class also are reported to have antimi-
crobial activity. In this chapter, isoflavones, isoflavanones, isoflavans, homoisoflavonoids 
and isoflavenes will be discussed in relation to their occurrence, methods of purification, 
spectral characters helpful in structure elucidation as well as their biological importance.

Keywords: isoflavones, isoflavanones, isoflavans, homoisoflavonoids, isoflavenes

1. Introduction

Genstin (1) was the first isolated isoflavone from Genista tinctoria known as Dyer’s Brrom in 
1899 [1]. Later in 1926 [2], the structure was identified. Genstin (1) was isolated from Soybeans 
in 1941 [3]. Although the main source of isoflavonoids is member of the Fabaceae [4], some 
were reported from other families such as Amaranthaceae [5, 6], Rosacease [7] and Poaceae [8]. 
Isoflavonoids were also reported from fungi [9] and Propolis [10]. The dietary  consumption 
of isoflavonoid-rich sources is linked with health advantages toward osteoporosis, post-
menopausal symptoms, cardiovascular diseases and chemo-prevention [11]. People from SE 
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Asia have much lower risk of developing prostate cancer compared to Americans due to high 
consumption of soy rich in isoflavonoids. Upon immigration to the USA and changing the 
dietary components, this difference rapidly disappears [12]. Isoflavonoids are also classified 
as dietary antioxidants [13]. These facts were the driving force behind the use of isoflavonoid-
rich sources as nutraceutical and dietary supplements [14].

Isoflavonoids are a large subclass of the most common plant polyphenols containing 15 car-
bon atoms known as flavonoids [15]. In isoflavonoids (3-phenylchromans), the phenyl ring 
B is attached to heterocyclic ring C at position 3 rather than 2 in flavonoids [16]. Generally, 
flavonoids are biosynthesised via Shikimic acid pathway. Shikimic acid is also a precursor for 
the biosynthesis of phenylpropanoids and aromatic acids. At certain stages, the activity of the 
key enzyme chalcone isomerase (CHI) resulted in the formation of flavanones that converted 
to isoflavonoids under the influence of isoflavone synthase [17]. The biosynthesis of isoflavo-
noids, consequently, is considered as an offshoot from the flavonoids biosynthetic pathway 
[18]. Highest level of isoflavonoids occurs usually in roots, seedlings and seeds [18, 19].

Isoflavonoids are sub-classified into many subclasses based on the oxidation status of ring C 
as well as the formation of a forth ring ‘D’ by coupling between rings B and C. Subclasses free 
from ring D include isoflavones, isoflavanones, isoflavan-4-ol, homoisoflavonoids, isoflavans 
and isoflav-3-ene. Rotenoids, pterocarpans, coumaronochromones and coumaronochromene 
represent the subclasses with additional ring D formation [11].

This chapter will deal with the different aspects of the isoflavonoid subclasses keeping the 
original three-ring skeleton (Figure 1). Occurrence, isolation, key spectroscopic characters 
and biological activities will be covered starting from 2000 to date.

2. Extraction and purification

The most popular method used for extraction of isoflavonoids is maceration with either MeOH 
or EtOH containing various percentages of H2O at room temperature followed by  liquid-liquid 

Figure 1. The skeletons of the isoflavonoids with three-ring structures.
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fractionation using solvents with different polarities [6, 10, 19–32]. Another method of extrac-
tion used MeOH or EtOH under reflux or in soxhlet apparatus [5, 33–36]. Mixture of MeOH 
and CHCl3 or CH2Cl2 (1:1) was also applied for extraction [37–41]. Other research groups 
extracted the plant materials with acetone [42–44], CHCl3 [45, 46], CH2Cl2 [47–50] or diethyl 
ether [51] at room temperature. Successive extraction starting with petroleum ether or hexane, 
CHCl3, EtOAc and MeOH using soxhelt apparatus [52–56] was also reported. The isoflavone 
contents of soybeans were extract using supercritical fluid extraction [57].

The majority of purification and isolation steps utilized silica gel in the form of column, 
Preparative Thin Layer Chromatography (PTLC) or Centrifugal Preparative Thin Layer 
Chromatography (CPTLC) [19, 21, 45]. Combination of silica gel and Sephadex LH-20 was also 
applied for isoflavonoid purification [6, 10, 54, 55]. In addition to silica gel, semi-preparative 
C18 High Performance Liquid Chromatography (HPLC) columns were used for final purifica-
tion of isoflavonoids [23, 30, 31, 38, 48]. The polar n-butanol fraction of Ononis serrata was 
fractionated on C18 silica gel applying the Vacuum Liquid Chromatography (VLC) technique 
followed by normal silica gel column for purification of isoflavonoid glucosides [27]. Two 
isoflavenes were isolated from Lespedeza homoloba after chromatography on porous polymer 
gel Diaion followed by silica gel column. Final purification step was performed on preparative 
C18 HPLC column [36]. Isoflavonoids from Iris germanica were purified by silica gel VLC and 
CC, and final purification was achieved via LiChrolut EN/RP-18 solid phase extraction tubes 
[26]. High-speed counter-current chromatography (HSCCC) was applied for the purification 
of flavan glycoside and isoflavones from Astragalus membranaceus, the seeds of Millettia pachy-

carpa and soy flour [20, 58, 59]. Isolation and identification of isoflavanones, biflavanones and 
bisdihydrocoumarins were achieved using Liquid Chromatography- Mass Spectrometry (LC-
MS), Liquid Chromatography- Solid Phase Extraction- Nuclear Magnetic Resonance (LC-SPE-
NMR) and Electronic Circular Dichroism (ECD). In this method, MS of target compounds was 
measured directly in the LC effluent. For NMR analyses, the peaks were collected from 20 LC 
runs, loaded on SPE cartilages, dried with nitrogen gas and finally eluted with CD3OD [32].

3. Spectroscopic identification

3.1. Infrared (IR) transmission spectra

Both phenolic hydroxyls and carbonyl groups are present in most of the isoflavonoid classes. 
However, the most characteristic feature of isoflavans and isoflavenes is the lack of carbonyl 
function bands. The absorption bands for the C-4 carbonyl in isoflavones and isoflavanones 
present in the range 1606–1694 cm−1 [9, 23–26]. Differentiation between isoflavones and isofla-
vanones from the position of C-4 carbonyl bands in the IR spectra is not achievable.

3.2. Ultra Violet (UV) absorption spectra

In spite of the tremendous advances in 2D-NMR and MS, the UV absorption spectra in 
MeOH and MeOH with shift reagent still can provide useful information for flavonoids 
 identification. In all isoflavonoids except isoflavenes, ring B has no or little conjugation with 
the main  chromophore composed of rings A and C. This fact is expressed as intense band II 
and diminished band I [60].
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For isoflavones, band II shows absorption at λmax 245–275 nm. Shift reagents can be used to 
detect hydroxylation at ring A. NaOAc induces 6–20 nm bathochromic shift as an indica-
tion of free 7-hydroxyl group. The 10–14 nm shift with AlCl3/HCl is diagnostic for free 5-OH 
group. The absence of any shift with NaOMe is an evidence for the absence of free hydroxyls 
in ring A [19, 27, 28, 50, 60].

The UV spectra of about 28 published isoflavanone were reviewed. Band II absorption was 
found in the range 270–295 nm [5, 9, 23, 25, 29, 33, 39, 41, 43, 44, 47–50, 55, 61, 62]. Among 
these publications, only three used shift reagents with five isolated isoflavanones. Analysis of 
the obtained results revealed that AlCl3 induced 17–23 nm bathochromic shift in band II due 
to the complex formed between C-4 carbonyl and C-OH groups. All the entitled compounds 
contain C-7 free hydroxyl groups, and NaOAc produced 34–37 nm bathochromic shift in 
band II [39, 47, 50]. However, more data are required to draw a solid conclusion.

The few available UV data of homoisoflavonoids showed band II absorption in the same 
range reported for isoflavanones [63].

Isoflavans UV spectra show one prominent maxima representing band II between 270 and 295 
nm [21, 37, 38, 45]. The available UV data of isoflavenes indicated the presence of two bands at 
235–245 and 320–337 nm along with a shoulder 287–300 nm [29, 30, 31, 35, 36].

3.3. Circular Dichroism (CD) Spectroscopy

Saturation of the double bond between C-2 and C-3 creates a new asymmetric center in the 
molecules. The orientation at these centers is in most cases determined from the CD spectra.

Isoflavanones show three absorption maxima at 200–240, 260–300 and 320–352 nm. Determination 
of the absolute configuration at C-3 is based on the n→π* carbonyl transition between 320 and 
352 nm. The positive sign at this region is diagnostic for (3R) orientation with ring B having 
equatorial position. The coupling constant between the trans-diaxial H2β and H3 can confirm 
the equatorial orientation of ring B [64]. Optical inactivity of isoflavanones most probably is a 
result of racemization that can occur during extraction and purification [64]. The isolation of 
two racemic mixtures, 3S- and 3R-7-O-glucosyldiphysolones (2, 3) and (3S)- and (3R)-7,4′-di-
O-glucosyldiphysolones (4, 5), from Ormocarpum kirkii was explained as result of isomerization 
in aqueous solution [32]. The same observation was reported in three isolated isoflavanones 
from Platycelphium voënse and Desmodium canum [41, 47]. Due to the positive cotton effect at 337 
nm, the (3R) orientation was assigned to eryzerin B (6). However, eryzerin A (7) was reported 
in the same publication with undetermined absolute stereochemistry [44]. The (3R) orientation 
was also assigned to 2,3-dihydro-7-demethylrobustigenin (8) and saclenone (9) isolated from 
Erythrina sacleuxii based on the positive cotton effect at 320 and 334 nm, respectively [49].

Isoflavans configuration is much more complicated. The heterocyclic ring C is expected to 
have the half-chair form a fact that can be diagnosed from the vicinal coupling constants 
between H-2, H-3 and H-4 protons. Such J values along with the CD curves can then lead 
to determination of the absolute configuration [64]. (3S)-isoflavans with oxygenation at both 
the A and B rings display positive and negative cotton effects at 240 and 270–280 nm regions, 
respectively. The opposite was observed for the (3R)-enantiomers. The 7-deoxy (3S)-isoflavans 
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with mono- and di-oxygenation at ring B displayed negative cotton effects in both the 230–240 
and 270–290 nm regions, and the opposite was observed for the (3R)-enantiomers [64]. The dif-
ficulty in assigning the absolute configuration of isofalvans was reflected by Bedane et al. [37]. 
The authors isolated two new isoflavans, erylivingstone J (10) and erylivingstone K (11). The 
measured CD spectrum showed negative cotton effect near 306 nm and a positive cotton effect 
near 240 nm supporting (S)-configuration. Three known compounds, 2′-methoxyphaseollini-
soflavan (12), 7,4′-dihydroxy-2′,5-dimethoxy isoflavan (13) and 7,4′-dihydroxy-2′-methoxy-3′-
(3-methylbut-2-enyl) isoflavan (14), with (R)-absolute configuration were isolated from the 
same source in this study. Suspicions about the purity of the new compounds and isolation 
of compounds with (R)-absolute configuration led the authors to report the new compounds 
without absolute configuration [37]. The enantiomer (3S) (+) 2′-O-methylphaseollidinisoflavan 
(15) was isolated from Erythrina caffra along with the (3R) (−) erythbidin A (16). The configura-
tion was assigned based on 1H-NMR J values, optical rotation and CD spectra. However, the 
reported CD data did not cover the lower range of the spectrum near 240 nm [45]. The absolute 
configuration of abruquinone L (17) was successfully assigned by combination of 1H-NMR 
analyses of the J values between ring C protons and the CD spectrum which showed a strong 
positive cotton effect at 202 nm and two negative cotton effects at 212 and 233 nm [38]. Due 
to the positive cotton effect at 337 nm, the (3R) orientation was assigned to eryzerin C (18). 
However, eryzerin D (19) was reported with undetermined absolute stereochemistry [44].

In case of isoflavan-4-ol, C-4 becomes a new chiral center and 4 isomers could exist. Out of the 
possible isomers, two are cis- and two are trans-. Hata et al. synthesized and compared the CD 
spectra of four stereoisomers. The 3R, 4S-trans-isoflavan-4-ol stereoisomer showed negative 
cotton effect between 250 and 300 nm and positive cotton effect between 220 and 240 nm. The 
other 3S, 4R-trans-isoflavan-4-ol stereoisomer showed CD spectrum having cotton effect at the 
same ranges but with opposite sign. The 3S, 4S cis-isoflavan-4-ol stereoisomer expressed posi-
tive cotton effect between 245 and 300 nm, while the other enantiomer 3R, 4R-isoflavan-4-ol 
has a negative cotton effect at the same region [65].

3.4. Nuclear Magnetic Resonance (NMR) Spectroscopy

3.4.1. 1H- and 13C-NMR

1H- and 13C-NMR spectra provide key information for the identification of the isoflavonoids 
skeleton. The proton and carbon signals for positions 2–4 in ring C (Table 1) provide a unique 
feature for each class.

The simplest ring C spectrum is that of isoflavones as it shows only one downfield proton sin-
glet for H-2. The oxygenated C-2 chemical shift is also characteristic for isoflavones. The wide 
range for C-4 carbonyl resulted from the effect of C-5 substitutions. The lack of C5 free hydroxyl 
resulted in the upfield shift of the C-4 carbonyl chemical shift to a value less than 175.0 ppm in 
most cases [27, 34]. With the presence of C-5 free hydroxyl and formation of hydrogen bond 
C-4 carbonyl, the carbonyl chemical shift value is usually above 180.0 ppm [19, 24, 28].

Saturation of the double bond between C-2 and C-3 of isoflavones leads to the formation 
of the isoflavanone skeleton. Such array contains a CH2-O and CH-aryl and renders the 
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1H-NMR signals of ring C more complex making an AMX spin system. The three protons 
appear as dd with different J values due to ax-ax, ax-eq and/or eq-eq splitting. In some 
cases, some signals may appear as t or interfere with other signals in the molecule [23, 41, 
55, 61, 62]. Absolute configuration of isoflavanones was determined by a simple 1H-NMR 
experiment in the presence of (R)- and (S)-binol as chiral solvating agent. The presence of 
(R)- or (S)-binol produces variable changes in the chemical shifts of the most downfield 
H-2 proton. Comparing these chemical shift changes enables the assignment of the abso-
lute configuration [66].

No significant difference can be observed when the chemical shifts of positions 2–4 are com-
pared in the 1H-and 13C-NMR spectra of isoflavanones and homoisoflavonoids. The splitting 
pattern of H-3 is expected to be much more complex. However, the additional C-9 in homoi-
soflavonoids provides the key evidence for their identification. The H-9 protons appear in the 
range of δ

H
 2.62–3.13 (dd) as a result of coupling with H-3 proton. The C-9 methylene appears 

at δ
C
 31.9–32.2 ppm [63, 67].

Isoflavans lacks the C-4 carbonyl present in isoflavanones with expected two more proton sig-
nals from ring C to form an ABMXZ spin system. Although the H-4 proton signals are more 
upfield compared to H-2 and H-3, the splitting pattern is more complex than the correspond-
ing isoflavanones. This pattern along with the 13C-NMR chemical shifts of C-2, C-3 and C-4 is 
the diagnostic feature for the isoflavan nucleus [20–22]. Isoflavan-4-ol is characterized by two 
oxygenated methines in both 1H- and 13C-NMR spectra.

Formation of double bond between C-3 and C-4 in isoflavans led to the emerging of the iso-
flav-3-ene class. The ring C 1H-NMR signals of isoflavenes is simplified to two singlet for the 
2H of C-2 and 1H of C-4. In some reports, a long-range coupling with small J value (1–2 Hz) 
was observed between H-2 and H-4 protons [35, 36, 43, 56].

3.4.2. 2D-NMR

1H-NMR and different 13C-NMR experiments like Distortionless Enhancement by Polarization 
Transfer (DEPT 45, DEPT 90 and DEPT 135) in most cases enable the identification of the 

Position 2 Position 3 Position 4

1H 13C 1H 13C 1H 13C

Isoflavones 7.82–8.45 s 150.9–155.0 – 121.5–125.5 – 173.9–181.5

Isoflavanones 4.46–4.76 (dd, ax)
4.34–4.63 (dd, eq)

69.6–72.3 3.93–4.32 (dd) 45.3–51.1 – 193.0–198.8

Homoisoflavonoids 4.06–4.32 (dd) 68.8–69.3 2.65–2.80 (m) 46.8–48.7 – 192.7–198.3

Isoflavans 4.33–3.83 (t, ddd, 
tdd, dt, dd)

69.2–71.2 3.36–3.55 (tdd, 
dd, dddd, m)

30.79–33.6 2.64–2.98 (dd, 
ddd)

26.1–31.9

Isoflavan-4-ol 4.21–3.60 (dd, t) 66.8–66.9 3.52–3.49 
(ddd)

40.5–40.6 5.47–5.49 (d) 79.0–79.6

Isoflavenes 4.83–5.25 (s, d) 67.6–68.8 – 127.5–129.6 6.47–6.74 (s, d) 118.3–121.9

Table 1. Key 1H- and 13C-NMR spectral data for identification of isoflavonoid classes.
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main skeleton of the isoflavonoids as well as the substitution pattern. Heteronuclear Single-
Quantum Correlation (HSQC) experiment is applied to correlate protons and carbons through 
one bond. So, assignment of protons and carbons as CH3, CH2 and CH can be confirmed 
undoubtfully. 1H-1H-Correlation Spectroscopy (COSY) or similar experiments are applied to 
identify the spin systems in the compounds. These experiments identified protons separated 
by 3 bonds as well as different arrays present in the aromatic systems. The obtained COSY 
data allow the identification of the adjacent groups in the compounds and substitution pat-
tern in the aromatic systems. Heteronuclear Multiple-Bond Correlation (HMBC) experiment 
acquired at different J values can identify correlation between protons and carbons through 2, 
3 or sometimes 4 bonds especially in the aromatic systems. HMBC data play a key role in the 
determination of substituents location on the main skeleton. For example, the location of the 
furan ring in 4′-O-methylerythrinin C (20) at C-6 was assigned from HMBC correlations [28]. 
The location of the prenyl group at C-8 in erysubin F (21) was also assigned from correlations 
obtained from HMBC experiment [42].

Nuclear Overhauser Effect (NOE) is an effect observed between protons close to each other in 
space regardless to the number of bonds separating them [68]. The NOE effect can be clarified 
via One dimensional Nuclear Overhauser effect (1D-NOESY), Gradient-Enhanced Nuclear 
Overhauser Effect (GOESY) experiments or the now more favorable 2D-NOESY or Rotating 
Frame Nuclear Overhauser Effect (ROESY) experiments. The NOE effect is sometimes crucial 
for correct assignments of substitutions especially in the absence of significant UV data with 
shift reagents that can give information about OH group positions. The NOE effect in some 
situations is more decisive than HMBC due to the few number of correlations that can be 
observed and the fact that correlations are dependent on distance in space rather than direct 
bond correlations.

The positions of ring B substituents in lysisteisoflavanone (22) were assigned utilizing GOESY 
experiment where irradiation of the OCH3 and H-1″ of the prenyl group resulted in enhance-
ment in their neighboring protons [50]. The NOE enhancement experiment was utilized to 
determine the position of OCH3 in olibergin B (23) [24]. Position of OCH3 in platyisoflavanone 
B (24) [41], vestitol (25), lotisoflavan (26) [21], erypoegin D (27) [43] and eryzerin B (6) [44] was 
assigned based on NOESY experiment results. The NOESY experiment was also employed to 
determine the position of glucose in ormosinoside A (28) [25].

NOESY data were also utilized to analyse the relative stereochemistry of the isoflavanol pum-
ilanol (29) ring C protons [46].

3.5. Mass Spectroscopy (MS)

Mass spectroscopy with different techniques and the great advances in instrumentation can 
provide accurately the molecular weight and the exact molecular formula. In addition, some 
common routes of fragmentation can provide additional evidences about the substitution 
pattern on both rings A and B. The mass fragments derived from a retro-Diels Alder (RDA) 
type cleavage give an idea about the substituent’s on ring A and ring B as well (Figure 2). 
These MS fragments were used for the confirmation of ring A and ring B substitution pat-
tern in the structure elucidation. Observation of MS ion fragments at m/z 177 and 153 as a 
result of RDA type cleavage followed by a hydrogen transfer indicated the location of two 

Isoflavonoids
http://dx.doi.org/10.5772/intechopen.68701

67



methoxyls and a hydroxyl group on the B ring of the isoflavone olibergin A (30) [24]. The 
placement of two hydroxyl group at ring A and methylenedioxy and one methoxyl at ring 
B in the structure of (±)5,7-dihydroxy-2′-methoxy-3′,4′-methylenedioxyisoflavanone (31) was 
confirmed by MS fragments [33]. (S)-Platyisoflavanone A (32) mass spectrum showed frag-
ment at m/z 232 indicating two methoxyls and 3-methylbut-2-enyl group at ring B [41]. The 
base peak in the MS spectrum of uncinanone D (33) at m/z 194 [C11H14O3] resulted from retro-
Diels Alder (RDA) cleavage of ring C supported the presence of 3 methoxyl groups at ring B 
[48]. Similarly, the location of three methoxyl groups on ring B and two hydroxyl groups on 
ring A in the structure of the isoflavanone (±)5,7-Dihydroxy-2′,3′,4′-trimethoxy-isoflavanone 
(34) was supported by MS fragmentation [33]. The fragmentation of 5,7-Dihydroxy-2′,4′,5′-
trimethoxyisoflavanone (35) generated mass fragments at m/z 153 corresponding with ring A 
with two hydroxyls and at m/z 194 for ring B with three methoxyls [39]. The location of the 
methyl group in desmodianone A (36), desmodianone B (37), desmodianone D (38), desmo-
dianone E (39) and 6-methyltetrapterol A (40) at C-6 was confirmed from the MS fragment 
at m/z 167 for A-ring [47]. The MS fragments at m/z 346 [508−163+H]+ and 194 indicated the 
presence of a sugar moiety in the A ring and three methoxyl groups in the B ring in the struc-
ture of 5,7-dihydroxy-2′,3′,4′-trimethoxy-isoflavanone 7-O-β-glucopyranoside (41) [33]. With 
a fragment 30 mass units less at m/z 164 in the spectrum of 5,7-Dihydroxy-2′,4′-dimethoxy-
isoflavanone 7-O-β-glucopyranoside (42), only two methoxyls were assigned to ring B and 
sugar was placed on ring A [33].

In addition to providing the M+ at 328 m/z of 2-methoxyjudaicin (43) the fragment at m/z 297 
due to loss of the two methoxyls was very supportive for the structure since the MS spectrum 
of judaicin (44) show only fragment due to loss of one methoxyl group at C-2’. The MS data 
of judaicin 7-O-glucoside (45) and judaicin 7-O-(6″-O-malonylglucoside) (46) showed com-
mon ion at m/z 298 corresponding to the aglycone part after the loss of the glycosyl moieties 
at C-7 [30, 31].

4. Isolated compounds update

The isolated isoflavonoids from natural sources are presented in Tables 2–6, and their struc-
tures are provided in Figures 3–7. Isoflavones, isoflavanones and isoflavans from 2000 to date 
are arranged according to publication date in Tables 2–4, respectively. Due to the limited 
number of isoflavenes, the current survey includes all isolated members available in the lit-
erature (Table 5). Synthetic compounds are not included in this chapter.

Figure 2. Main fragments of retro-diels–alder (RDA) type cleavage.
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Name Source Ref.

2,3-Dehydrokievitone (47) Erythrina sacleuxii [49]

5′-Prenylpratensein (48) Erythrina latissima [39]

Erysubin F (21) Erythrina suberosa [42]

6″-O-Malonylgenistin (49) Glycine max [59]

Irisolone (50) Polygala stenopetala [69]

Isoerysenegalensein E (51), Alpinumisoflavone (52), Wighteone 
(53)

Erythrina lysistemon [50]

2″,6″-O-Diacetyloninin (54) Glycine max [70]

Isoprunetin 7,4′-di-O-β-D-glucopyranoside (55)
Genistein 7,4′-di-O-β-D-glucopyranoside (56)

Genista morisii [54]

Genistein (57) Desmodium uncinatum [62]

Olibergin A (30), Olibergin B (23), Genistein (57), Formononetin 
(58)
Biochanin A (59)

Dalbergia oliveri [24]

Rothindin(60) Ononis serrata [27]

4′-O-Methylerythrinin C (20), 4′-O-Methylalpinumisoflavone (61)
4′-O-Methyl-2″-hydroxydihydroalpinumisoflavone (62)
7-O-Methylbiochanin A (63)

Lotus polyphyllos [28]

Genistin (1), Genistein (57), Daidzein (64), Daidzin (65)
Glycitein (66), Glycitin (67)

Semen sojae praeparatum [71]

7-O-Geranylbiochanin A (68) Tephrosia tinctoria [72]

Olibergin B (23), Biochanin A (59), 8-C-Geranyl-7-O-
methylbiochanin A (69)

Dalbergia paniculata [73]

Biochanin A (59), 6-Hydroxy-7,4′-dimethoxyflavone (70)
6,7,4′-Trimethoxyflavone (71)

Gynerium sagittatum [8]

4′-O-Methylderrone (72) Lotus polyphyllos [19]

4′,5′-Dimethoxy-6,6-dimethylpyranoisoflavone (73) Millettia pachycarpa [58]

Erypoegin D (27), Alpinumisoflavone (52), Wighteone (53)
5,4′-Dihydroxy-7-methoxy-3′-(3-methylbuten-2-yl)isoflavone (74)
5,2′,4′-Trihydroxy-7-methoxy-5′-(3-methylbuten-2-yl)isoflavone 
(75)
5,4′-Dihydroxy-7-methoxy-3′-(3-methyl-2-hydroxybuten-3-yl)
isoflavone (76)
3′-Formyl-5,4′-dihydroxy-7-methoxyisoflavone (77)
5-Hydroxy-3″-hydroxy-2″,2″dimethyldihydropyrano[5″,6″:3′,4′]
isoflavone (78)
3′-Isoprenylgenistein (79), Isolupabigenin (80)

Erythrina poeppigiana [74]

Genistein (57), Formononetin (58), Biochanin A (59), Calycosin (81)
Ononin (82), Sissotrin (83)

Cicer arietinum [75]

Tlatlancuayin (2′,5-dimethoxy-6,7-methylenedioxyisoflavone) (84) Iresine herbstii [5]

2′-Hydroxygenistein (85), 3′-Omethylorobol (86)
7-O-Methyltectorigenin (87), Prunetin (88), Licoagroisoflavone (89)
Cajanin (90), Lachnoisoflavone A (91)

Crotalaria lachnophora [76]
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Pierreione A (92), Pierreione B (93), Pierreione C (94), Pierreione 
D(95)

Antheroporum pierrei [77]

Genistein 5-O-β-glucopyranoside (96), Prunetin 5-O-β-
glucopyranoside (97)

Potentilla astracanica [7]

Erysubin F (21), Erythraddison I (98), Erythraddison II (99)
Echrenone b10 (100)

Erythrina addisoniae [23]

Ormosinosides A (28), Genistein (57), Biochanin A (59), Daidzein 
(64)
Daidzin (65), Sissotrin (83), 7-O-Methylbiochanin A (63)
Isoformononetin (101), 4′,7-Di-O-methyldaidzein (102), Isoprunetin 
(103)
Sophoricoside (104), Isoprunetin-7-O-β-D-glucoside (105)
6″-β-D-Xylose-genistin (106)

Ormosia henryi [25]

Genistein (57),Biochanin A (59), Daidzein (64)
3′-Hydroxydaidzein-7-O-glucopyranoside (107)
Calycosin-7-O-glucopyranoside (108)

Trifolium scabrum [78]

5,6-Dihydroxy-7,8,3′,5′-tetramethoxyisoflavone (109) Iris pseudacorus [79]

Formononetin (58), Ononin (82), Calycosin (81)
Calycosin-7-O-glucopyranoside (108)

Astragalus mongholicus [80]

Formononetin (58) Dalbergia oliveri [53]

Genistein (57), Biochanin A (59), Calycosin-7-O-glucopyranoside 
(108)

Dalbergia odorifera [81]

Neobavaisoflavone (110) Erythrina excels,
Erythrina senegalensis 

[40]

Biochanin A (59) Dothideomycetes fungus
CMU-99

[9]

Neoraudiol (111) Neorautanenia mitis [52]

Genistin (1), Daidzein (64), Daidzin (65), Puerarin (112) Pueraria lobata [34]

Formononetin (58), Ononin (82), 3-(4-(Glucopyranosyloxy)-5-
hydroxy-2-methoxyphenyl)-7-hydroxy-4H-chromen-4-one (113)

Ononis angustissima [82]

7,2′,5′-Trimethoxy-3′,4′-methylenedioxyisoflavone (114)
6,7-Dimethoxy-3′,4′-methylenedioxyisoflavone (115)
5,4′-Dihydroxy-7,2′,5′-trimethoxyisoflavone (116)

Piscidia carthagenensis [83]

Isosideroxylin (117) Leiophyllum buxifolium [84]

Achyranthoside A (118), Achyranthoside B (119) Achyranthes bidentata [6]

Genistein (57), Biochanin A (59), Prunetin (88), Tectorigenin (120) Dalbergia odorifera [85]

8-Hydroxyirilone 5-methyl ether (121), 8-Hydroxyirilone (122)
Irilone 4′-methyl ether (123), Irilone (124), Irisolidone (125)
Irigenin S (126), Irigenin (127), Iridin S (128), Iridin (129)
4′-O-β-d-glucopyranoside (130)

Iris germanica [26]

Table 2. Isolated isoflavones from natural sources since 2000 to date.
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(R)-2,3-Dihydro-7-demethylrobustigenin (8), (R)-saclenone (9) Erythrina sacleuxii [49]

5,7-Dihydroxy-2′,4′,5′-trimethoxyisoflavanone (35) Erythrina latissima [39]

Bolusanthol B (131), Bolusanthol C (132)
5,7,3′-Trihydroxy-4′-methoxy-5′-γ,γ-dimethylallylisoflavanone (133)
5,7,2′-Trihydroxy-4′-methoxy-6,5′-di(γ,γ-dimethylallyl)isoflavanone (134)
5,7,2′,4′-Tetrahydroxy-8,3′-di(γ,γ-dimethylallyl)-isoflavanone (135)

Bolusanthus speciosus [86]

Lysisteisoflavanone (22) Erythrina lysistemon [50]

Seputheisoflavone (136) Ptycholobium contortum [87]

Dihydrodaidzin (137), Dihydrogenistin (138) Glycine max [70]

Erypoegin C (139), Erypoegin D (140) Erythrina poeppigiana [43]

Eryzerin B (6), Eryzerin A (7) Erythrina zeyheri [44]

Erypoegin G (141) Erythrina poeppigiana [61]

Cajanol (142) Crotalaria lachnophora [76]

7,4′-Dihydroxy-2′-methoxy-6-geranylisoflavanone (143)
2′,4′-Dihydroxy-6″-methyl-6″-(4‴-methylpent-3-enyl) pyrano(3″,2″:6,7)-
isoflavanone (144)

Lespedeza bicolor [88]

Desmodianone A (36), Desmodianone B (37), Desmodianone D (38)
Desmodianone E(39), 6-Methyltetrapterol A (40)

Desmodium canum [47]

Uncinanone A (145), Uncinanone B (146), Uncinanone C (147) Desmodium uncinatum [62]

(±)5,7-Dihydroxy-2′-methoxy-3′,4′-methylenedioxyisoflavanone (31)
(±)5,7-Dihydroxy-2′,3′,4′-trimethoxy-isoflavanone (34)
5,7-Dihydroxy-2′,3′,4′-trimethoxy-isoflavanone 7-O-β-glucopyranoside 
(41)
5,7-Dihydroxy-2′-methoxy-3′,4′-methylenedioxyisoflavanone 7-O-β-
glucopyranoside (148)
5,7-Dihydroxy-2′,4′-dimethoxy-isoflavanone 7-O-β-glucopyranoside (42)
5,7,4′-Trihydroxy-2′,3′-dimethoxy-isoflavanone 7-O-β-glucopyranoside 
(149)

Desmodium styracifolium [33]

Uncinanone D (33), Uncinanone E (150) Desmodium uncinatum [48]

Ferreirin (151), Dihydrocajanin (152), Dalbergioidin (153)
Dihydrobiochanin A (154)

Gynerium sagittatum [8]

5,7-Dihydroxy-2′-methoxy-3′,4′-methylenedioxyisoflavanone (31)
Uncinanone A (37), Dalbergioidin (153)
4′,5-Dihydroxy-2′,3′-dimethoxy-7-(5-hydroxyoxychromen-7yl)-
isoflavanone (155), Parvisoflavanone (156), Isoferreirin (157)

Uraria picta [55]

Dalhorridin (158), Dalhorridinin (159) Dalbergia horrida [89]

5,3′-Dihydroxy-4′-methoxy-5′-(3-methyl-1,3-butadienyl)-2″,2″-
dimethylpyrano[5, 6:6,7]isoflavanone (160)
5,3′-Dihydroxy-5′-(3-hydroxy-3-methyl-1-butenyl)-4′-methoxy-2″,2″-
dimethylpyrano[5, 6:6,7]isoflavanone (161)

Erythrina costaricensis [90]

Sophoronol A (162), Sophoronol B (163), Sophoronol C (164)
Sophoronol D (165), Sophoronol E (166), Sophoronol F (167)

Sophora mollis [91]
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3-Hydroxy-kenusanone B (168), Sophoraisoflavanone A (169)
Kenusanone H (170)

Echinosophora koreensis [92]

Desmodianone F (171), Desmodianone G (172) Desmodium canum [93]

5,7,3′-Trihydroxy-4′-methoxy-6,5′-di(γ, γ-dimethylallyl)-isoflavanone 
(173)
5,3′-Dihydroxy-4′-methoxy-5′-γ,γ-dimethylallyl-2″,2″-dimethylpyrano[5, 
6: 6,7]isoflavanone (174)
5,3′-Dihydroxy-2″,2″-dimethylpyrano[5, 6: 6,7]-2′″,2′″-dimethylpyrano[5, 
6: 5,4]isoflavanone (175)

Erythrina costaricensis [94]

Glabraisoflavanone A (176), Glabraisoflavanone B (177) Glycyrrhiza glabra [95]

Isodarparvinol B (178), Dalparvin (179), (3S)-Sativanone (180) Dalbergia parviflora [96]

2′,2,5-Trimethoxy-6,7-methylenedioxyisoflavanone (181) Iresine herbstii [5]

Erythraddison III (182), Erythraddison IV (183) Erythrina addisoniae [23]

Dalbergioidin (153) Lespedeza cyrtobotrya [29]

3(R)-2′-Methoxyl-5,7,4′-trihydroxy-6-(3-methylbut-2-enyl)-isoflavanone 
(184)
3′-Geranyl-3,5,7,2′,4′-pentahydroxyflavonol (185)

Campylotropis hirtella [97]

Triquetrumone E (186), Triquetrumone F (187) Tadehagi triquetrum [98]

Hirtellanine H (188), Hirtellanine I (189), Hirtellanine J (190) Campylotropis hirtella [99]

Ormosinol (191) Ormosia henryi [25]

7-O-Glucosyldiphysolone (2, 3), (3R)-7,4′-Di-O-glucosyldiphysolone (4)
(3S)-7,4′-Di-O-glucosyldiphysolone (5), 4″-hydroxydiphysolone (192)

Ormocarpum kirkii [32]

Platyisoflavanone B (24), Platyisoflavanone A) (32)
Platyisoflavanone C (193), Platyisoflavanone D (113)
Sophoraisoflavanone A (169), Glyasperin F (194)

Platycelphium voënse [41]

(+)-Violanone (195) Dalbergia oliveri [53]

(3S)-2′,4′-Dimethoxy-3,7-dihydroxyisoflavanone (196)
(3S)-2′,4′,5′-Trimethoxy-7-hydroxyisoflavanone (197)
(3R)-4′-Methoxy-2′,3,7-trihydroxyisoflavanone (198)
(3R)-Violanone (199), (3R)-3′-O-methylviolanone (200)
(3R)-Sativanone (201)

Dalbergia odorifera [100]

Dalbergioidin (153)
(3R) 5,7,3′,4′-Tetrahydroxy-2′-methoxyisoflavanone (202)
(3R) 5′,8-Di-(γ,γ-dimethylallyl)-2′,5-dihydroxyl-4′,7-dimethoxyl-
isoflavanone (203)
5,7-Dihydroxy-2′,4′-dimethoxyisoflavanone (204)

Uraria clarkei [101]

Uncinanone E (150)
5,7-dihydroxy-2′-methoxy-3′,4′-methylenedioxy isoavanone (155)
(3R) 7,2′,4′-Trihydroxy-3′-methoxy-5-methoxycarbonylisoflavanone (205)
(3R) 7,2′-Dihydroxy-3′,4′-dimethoxy-5-methoxycarbonylisoflavanone 
(206)

Cassia siamea [102]

Sigmoidin H (207) Erythrina excels,
Erythrina senegalensis 

[40]

6,3′-di(3-hydroxy-3-methylbutyl)-5,7,2′, 4′-tetrahydroxyisoflavanone (208)
3(R)-6,3′-di(3-hydroxy-3-methylbutyl)-2′-methoxyl-5,7,4′-
trihydroxyisoflavanone (209)

Campylotropis hirtella [103]
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5,7-Dimethoxy-3-(4-hydroxybenzyl)-4-chromanone (219)
5,6-Dihydroxy-7-methoxy-3-(4-hydroxybenzyl)-4-chromanone (220)
7-O-Methyl-3,9-dihydropunctatin (221)
5,7-Dihydroxy-3-(4-hydroxybenzyl)-4-chromanone (222)

Drimiopsis burkei

Drimiopsis maculata

[63]

Table 4. Isolated homoisoflavonoids from natural sources since 2000 to date.

Name Source Ref.

Uncinanone D (33), Desmodianone E (144), Desmodianone F (171)
Grabraisoflavanone A (176)
(3R)-7-Hydroxy-4′-methoxy-5-methoxycarbonyl-isoflavanone (210)
(3R)-8-Hydroxy-4′-methoxy-7-methoxycarbonyl-isoflavanone (211)
(3R)-7,2′,4′-Trihydroxy-3′-methoxy-5-methoxycarbonyl-isoflavanone 
(205)

Desmodium oxyphyllum [104]

Glycitein (66), Dihydrodaidzein (133), Dihydrogenistein (134)
Dothideoisoflavanone (212), (3S)-3,4′,7-trihydroxyisoflavanone (213)

Dothideomycetes fungus 
CMU-99

[9]

Neotenone (214) Neorautanenia mitis [52]

Eryvarins Y (215), Eryvarins Z (216), Orientanol E (217)
2,3-Dihydroauriculatin (218)

Erythrina variegata [105]

Table 3. Isolated isoflavonones from natural sources since 2000 to date.

Name Source Ref.

Bolusanthol A (223) Bolusanthus speciosus [86]

Neocandenatone (224) Dalbergia congestiflora [22]

(3R)-(−)-7,2′-Dihydroxy-3′,4′-dimethylisoflavan-7-O-β-D-
glucopyranoside (225)

Astragalus membranaceus [20]

Eryzerin C (18), Eryzerin D (19) Erythrina zeyheri [44]

6-Desmethyldesmodian A (226), Desmodian A (227)
Desmodian B (228), 6-Desmethylesmodian B (229)
Desmodian C (230), 3′-Hydroxydesmodian B (231)

Desmodium canum [106]

Pumilanol (29) Tephrosia pumila [46]

Salisoflavan (232) Salsola imbricata [107]

Desmodian A (227), Desmodian D (233) Desmodium canum [93]

3S (+) 2′-O-Methylphaseollidinisoflavan (15)
3R(-)Erythbidin A (16)

Erythrina caffra [45]

Vestitol (25), Neovestitol (234) Brazilian propolis [10]

(3S,4R)-4′-Hydroxy-6,3′-dimethoxyisoflavan-4-ol (235) Taxus yunnanensis [108]

Cordifoliflavanes A (236), Cordifoliflavanes B (237) Codonopsis cordifolioidea [109]

Vestitol (25), Lotisoflavan (26) Lotus lalambensis [21]

Abruquinone A (238), Abruquinone D (239), Abruquinone J (240)
Abruquinone K (241), Abruquinone L (17)

Abrus precatorius [38]
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Erylivingstone J (10), Erylivingstone K (11)
2′-Methoxyphaseollinisoflavan (12)
7, 4′-Dihydroxy-2′,5′-dimethoxy isoflavan (13)
7,4′-Dihydroxy-2′-methoxy-3′-(3-methylbut-2-enyl) isoflavan (14)

Erythrina livingstoniana [37]

Kotstrigoisoflavanol (242) Kotschya strigosa [110]

Table 5. Isolated isoflavans from natural sources since 2000 to date.

Name Source Ref.

Neorauflavene (243) Neorautanenia edulis [51]

Sepiol (244), 2′-O-Methylsepiol (245) Gliricidia speium [111]

Dimethoxytrihydroxyisoflavene (246) Baphia nitida [56]

Haginin A (247), Haginin B (248) Lespedeza cyrtobotrya [35]

7,3′,4′-Triacetoxy-6′-methoxyisoflav-3-ene (249)
7, 2′-Diacetoxy-4′-methoxyisoflav-3-ene (250)

Millettia sp. [112]

2-Methoxyjudaicin (43) Cicer bijugum [30]

Judaicin (44), Judaicin 7-O-glucoside (45)
Judaicin 7-O-(6″-O-malonylglucoside) (46)

Cicer judaicum [31]

Haginin C (251), Haginin D (252) Lespedeza cyrtobotrya [113]

Haginin D (253), Haginin E (Phenoxodiol) (254) Lespedeza homoloba [36]

Erypoegin A (255), Erypoegin B (256) Erythrina poeppigiana [43]

Glabrene (257) Glycyrrhiza glabra [114]

Haginin A (247) Lespedeza cyrtobotrya [29]

Haginin E (Phenoxodiol) (254) Dothideomycetes fungus CMU-99 [9]

Table 6. Isolated isoflavenes from natural sources.
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Figure 3. Isolated isoflavones from natural sources since 2000 to date.
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Figure 4. Isolated isoflavanones from natural sources since 2000 to date.
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Figure 5. Isolated homoisoflavonoids from natural sources since 2000 to date.

Figure 6. Isolated isoflavans from natural sources since 2000 to date.
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5. Biological activities

Isoflavonoids are reported to have a variety of bioprotective effects, including antioxidant, 
antimutagenic, anticarcinogenic and antiproliferative activities. Isoflavonoids may protect the 
body from hormone-related cancers, like breast, endometrial (uterine) and prostatic [115–119]. 
Isoflavonoids have gained a lot of public interest due to the possible correlation between their 
dietary consumption and health beneficial effects toward osteoporosis and post-menopausal 
symptoms [120, 121].

Among the isoflavonoids isolated from dothideomycetes fungus CMU-99, Biochanin A 
(59) showed weak cytotoxic activity against lung cancer cells (NCI-H137) and noncancer-
ous Vero cells. Dothideoisoflavanone (212) exhibited cytotoxic effect against oral human 
carcinoma (KB) but was non-toxic against noncancerous Vero cells [9]. Among the isofla-
vonoids isolated from Erythrina addisoniae, Echrenone b10 (100) was found to be more than 
three times as potent as tamoxifen against MCF7/ADR and MDA-MB-231. Erythraddison 
III (182) was twice as potent as tamoxifen [23]. The isoflavanone Ormosinol (191) signifi-
cantly inhibited adenocarcinomic human alveolar basal epithelial cells (A549) and human 
hepatic cell line (HepG2) [25]. Neobavaisoflavone (110) and Sigmoidin H (207) were selec-
tively active in vitro against the resistant cancer cells 6/9, 4/9, CCRF-CEM, HCT116 (p53+/+), 

Figure 7. Isolated isoflavenes from natural sources since 2000 to date.
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MDA-MB-231-BCRP and U87MG [40]. Platyisoflavanone A (32) showed cytotoxic effect 
against noncancerous Vero cells [41]. 2″,6″-O-diacetyloninin (54) was active against human 
stomach carcinoma (Hs 740.T, Hs 756 T), breast adenocarcinoma (Hs 578 T, Hs 742.T) and 
prostate carcinoma (DU 145, LNCaP-FGC) cell lines [70]. Pierreione A (79) and Pierreione 
B (93) demonstrated selective toxicity to solid tumor cell lines with minimal cytotoxicity 
[77]. Isosideroxylin (117) was selectively active against the against ER− MDA-MB-231 breast 
cancer cell line [84]. (3R) 5′,8-Di-(γ,γ-dimethylallyl)-2′,5-dihydroxyl-4′,7-dimethoxyl-
isoflavanone (203) isolated from Uraria clarkei possessed good activity against the tested 
Hela, K562 and HL60 cell lines [101].

Haginin E (Phenoxodiol) (254) inhibits cell proliferation of a wide range of human can-
cer cell lines including leukemia, breast and prostate carcinomas, and is 5–20 times more 
potent than genistein [122]. Primary ovarian cancer cells resistant to conventional chemo-
therapy undergo apoptosis following Haginin E (Phenoxodiol) (254) treatment. Haginin E 
(Phenoxodiol) (254) is an efficient inducer of cell death in ovarian cancer cells and sensitizes 
the cancer cells to Fas-mediated apoptosis [123]. Haginin E (Phenoxodiol) (254) also exhibits 
significant ability to induce cell death in the prostate cancer cell lines LNCaP, DU145 and 
PC3 that utilize different signaling pathways than those reported in ovarian cancer studies 
[124]. Haginin E (Phenoxodiol) (254) development as an antitumor drug was based to a large 
extent on its low toxicity in normal tissues, but potent topoisomerase-II inhibitory effects in 
rapidly dividing tumor cells. This advantage led to its fast-track FDA approval for Phase II/
III clinical trials [125].

Platyisoflavanone A (32) showed antibacterial activity against Mycobacterium tuberculosis 
(TB) in the microplate alamar blus assay (MABA) [41]. Isoflavonoids isolated from roots 
of Erythrina zeyheri were tested against methicillin-resistant Staphylococcus aureus (MRSA). 
Anti-MRSA potency of the isoflavan Eryzerin C (18) was the highest followed by Eryzerin 
D (19) [44]. 5,7,3′-Trihydroxy-4′-methoxy-6,5′-di(γ, γ-dimethylallyl)-isoflavanone (173) iso-
lated from Erythrina costaricensis was also active on MRSA [94]. The two isoflavans 3S (+) 
2′-O-Methylphaseollidinisoflavan (15) and 3R(-)Erythbidin A (16) isolated from E. caffra as 
well as the two isoflavanones 5,7-Dihydroxy-2′-methoxy-3′,4′-methylenedioxyisoflavanone 
(31) and 4′,5-Dihydroxy-2′,3′-dimethoxy-7-(5-hydroxyoxychromen-7yl)-isoflavanone (155) 
isolated from Uraria picta were active against S. aureus [45, 55]. The isoflavone Neoraudiol 
(111) displayed antimicrobial activity on Bacillus subtilis, Salmonella typhii and Candida albicans 
[52]. Lachnoisoflavone A (91) from Crotalaria lachnophora showed moderate inhibitory activi-
ties against Escherichia coli and Klebsiella pneumonia [76].

Isoflavanones from the Stem of Cassia siamea were evaluated for their anti-tobacco mosaic virus 
(Anti-TMV) activities [102]. (3R) 7,2′,4′-Trihydroxy-3′-methoxy-5-methoxycarbonylisoflavanone 
(205) was the most active among the tested compounds [102]. In addition to anti-TMV, cordifo-
liflavanes A (236) cordifoliflavanes B (237) expressed anti-HIV-1 activities [109].

As a part of plant phenolics, isoflavonoids are expected to have antioxidant activities. Ormosinol 
(191) showed significant antioxidant activity against DPPH radicals [25]. The isoflavene 
Haginin A (247) and the isoflavonones dalbergioidin (153) showed antioxidant properties in 
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both 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 1,1-Diphenyl-2-picryl-
hydrazyl (DPPH) assays [29]. Seputheisoflavone (132) from Ptycholobium contortum was active 
in the ABTS assay [87]. Isoflavones from the Astragalus mongholicus were examined for anti-
oxidant potential in DPPH assay. Results indicated that Calycosin (81) and Calycosin-7-O-
glucopyranoside (108) are more active than Formononetin (58) [80].

The in vitro antiprotozoal activity of isoflavan quinines from Abrus precatorius was tested 
against Plasmodium falciparum (K1 strain), Trypanosoma brucei rhodesiense (STIB 900 strain), 
Trypanosoma cruzi (Tulahuen strain C2C4 w/LacZ) and Leishmania donovani (strain MHOM/
ET/67/L82). Abruquinone D (239) and abruquinone K (241) were the most active against 
T. brucei rhodesiense [38]. Pumilanol (29), an isoflavan from Tephrosia pumila, exhibited sig-
nificant antiprotozoal activities against T. brucei rhodesiense, T. cruzi and L. donovani [46]. 
Sophoronol C (164) and Sophoronol E (166) exhibited moderate anitplasmodial activity 
against the CQS D10 strain of P. falciparum [91].

Daidzein (64) and Daidzin (65) possess a vasorelaxant action through opening of K+ channels 
and inhibition of Ca2+ influx in the vascular smooth muscle cells. This cerebral vasodilator 
activity may be beneficial to patients with obstructive cerebrovascular diseases [126].

Other studies reported on the effects of isoflavonoids on specific enzymes are presented in 
Table 7.

Dedication

Professor Dr. Ahmed A. Seif El-Dien, Department of Pharmacognosy, College of Pharmacy, 
Alexandria University, Alexandria 21215, Egypt. (Born in: 9 September 1948–passed away in: 
19 December 2016).

Compound name Activity Significance Ref.

Tlatlancuayin (84)
2′,2,5-Trimethoxy-6,7-
methylenedioxyisoflavanone (181)

a-glucosidase inhibitory Weak [5]

Achyranthoside A (118)
Achyranthoside B (119)

Lipopolysaccharide (LPS)-induced nitric 
oxide (NO) production

Significant 
inhibition

[6]

Erysubin F (21), Erythraddison II (99)
Echrenone b10 (100), Erythraddison III (182)
Erythraddison IV (183)

Protein tyrosine phosphatase 1B (PTP1B) Significant 
inhibition

[23]

Sophoraisoflavanone A (169)
Kenusanone H (170)

Alcohol dehydrogenase (ADH)
Aldehyde dehydrogenase (ALDH)

Significant 
activation

[92]

Glabrene (257) Tyrosinase inhibition Significant 
inhibition

[114]

Table 7. Effect of isoflavonoids on specific enzyme activities.
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