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Abstract

Due to the pollution and health hazards of nonrenewable resource-based energy genera-
tion systems, now focus is on the use of renewable resources. This chapter aims as
providing an automated fault-detection system for increasing the robustness of offshore
located wind farms. The method is based on the use of flexible threshold for calculation of
the collected sample values. A fuzzy inference system (FIS) is designed for the automatic
real-time fault detection system named as FIS-based fault detection system (FFDS) for
offshore wind farms. The method uses the concept of combination-summation (CS) and
flow-directions to determine the extent of fault occurrence in the wind farm. Based on the
working conditions of the wind farm, preventive or corrective measures are suggested to
the remote observer. The performance of these methods is evaluated on MATLAB.

Keywords: wind farm, wireless sensor networks, threshold, fault detection, network
lifetime

1. Introduction

Wind energy is freely available everywhere in abundance. It is a renewable resource that will

never get exhausted. This energy if properly utilized can lead to greener and safer energy

generation compared to coal generated electricity. It is also one of the lowest priced renewable

energy technologies available nowadays [1].

In 2015, energy produced in the United States was about 91% of U.S. energy consumption due

to less import of petroleum [2]. Majority of energy production being due to fossil fuels, i.e.,

coal, petroleum, and natural gas. According to Ref. [2], natural gas contributed 32% of total

generation, petroleum 28%, coal 21%, renewable energy 11%, and nuclear electric power 9%.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



However, using natural gas for energy generation has several issues. First, leakage of methane

during drilling and extraction of natural gas from wells and its transportation in pipelines [3].

Methane is stronger than CO2 at trapping heat and causing global warming. Methane emis-

sions range from 1 to 9% of total life cycle emissions. Natural gas-fired power plants contribute

to acid rain and ground-level ozone, both of which can damage forests and agricultural

crops [4].

The present renewable energy-based generation plants such as offshore wind farms are not

entirely capable of fulfilling the future needs of the society. Due to this reason, wind-based

energy generation is still not very popular and is unable to replace coal or natural gas-based

energy production. The monitoring and control systems used are now obsolete and new

methods are required.

The control and maintenance actions require complete human interference, and it is a time-

consuming process. These challenges lead to extra cost on emergency maintenance, compo-

nent screening, and physical designs.

Wind turbines consist of several components and are subject to various failures of electrical

and mechanical nature [5], e.g., imbalance in electrical controls, gearbox, and yaw system.

Some are more frequent and cause larger downtime of the whole system. These faults cause

rotor imbalance, unbalances and harmonics in air gap flux, increase torque pulsation, and

increase losses and reduction in efficiency by directly affecting the power, current, and voltage

output of the generator. Therefore, monitoring of these critical components should be on the

highest priority so that plant downtime can be reduced. The offshore located wind turbine

generator system requires monitoring of parameters such as sea-surface temperature, wind

velocity, water salinity, wave heights, and strain measurement [6, 7]. However, the monitoring

of wind turbine parts has several practical difficulties, e.g., limited accessibility, large size and

complex geometry of the blades, effect of environmental parameters, etc.

Several papers have discussed methods to detect faults in wind farms, e.g., gearbox fault detection

using discrete wavelet transformation [8]. Similarly, high frequency vibration data collected from

gearbox testing were used to gearbox fault detection in Ref. [9], which included k-means clustering

algorithm. The drawbacks of this system are the assumption that the underlying process is

stationary and the time factor is eliminated. Brandão et al. [10] discuss neural networks for fault

forecasting of wind turbine gearbox. Badihi [11] presents protection of against the decreased power

generation caused by turbine blade erosion and debris on the blades. A fault diagnosis method

based on signal analysis and recognition is presented [12]. Time-frequency representations have

been proposed in the literature [13–15]. These techniques have high complexity and poor resolu-

tion [16]. One approach used Hilbert transformation in a doubly fed induction generator-based

wind turbine [17].

Hence, there should be some automated systems to remotely monitor these parameters and

notify about faults in the system. By using wireless sensor networks (WSNs), we can ensure

reliable operation of wind farm. This helps in reducing manual interference and wind farm can

be completely monitored for 24 hours every day. The following sections discuss how this can

be performed.
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2. Flexible threshold selection scheme

In the past, the monitoring systems used constant threshold to record the data independent of

time of the day or month. The constant threshold is calculated as the average of the dataset. As

a result of several observations, it can be concluded that such a scheme does not give accurate

results if there are changes in the scene or environment pertaining to parameters under

consideration, e.g., the temperature of air during daytime is higher compared to night time.

Similar variation is true during different seasons, e.g., average temperature during winter

season is different from the average temperature during summer season. Hence, if constant or

fixed threshold value is chosen for the entire dataset, it is likely to give unoptimized results for

both the scenes. Moreover, if the chosen fixed threshold value is very high, it will result in

many missed detections, and if it is very low, it will lead to many false positives.

Hence, threshold value should be selected using an appropriate scheme that allows dynamic

change in the threshold value to accommodate the variations in time of data recording. This

method gives better performance in terms of sensed parameters. The threshold provides a

reference for finding values that are higher or lower than the threshold both of which may

indicate health failures in the wind farm.

The WSN topology in wind farm consists of tower fixed nodes [18]. These are wireless sensor

nodes attached to the tower nodes that can continuously sense the parameter values (samples)

throughout the day and night. This information is converted into data packets that are trans-

mitted to the sink node by taking multiple hops through the scattered sensor nodes. The sink

node is located at the end of the wind farm. Every tower-fixed node is allocated a fixed local

unique address called as RTN id (row-tower-node), which is transmitted as an identification of

the originator of packet.

Suppose XD is a set of samples collected by the tower-fixed sensor nodes during the day

period, where

XD ¼ {X1, X2, X3,…, Xi,…, XN} ð1Þ

and YN is a set of samples collected by the tower-fixed sensor nodes during the night period,

where

YN ¼ {Y1, Y2, Y3,…, Yi,…, YN} ð2Þ

The samples collected during the night period.

The decision of choosing a new threshold for the dataset depends on the correlation between

the datasets. The correlation is the measure of the similarity content between the two datasets.

If the correlation of the two datasets is high, it means that the two datasets correspond to the

similar time duration of the collected data and hence eliminate the need for calculating another

threshold for the new dataset. Similarly, low correlation is indicative of large variations and

necessitates the calculation of new thresholds for better data interpretation.

The correlation between the two datasets RðXD, YNÞ can be expressed as [19]:
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RðXD, YNÞ ¼
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where Xi and Yi are the values of datasets XD and YN at “i” time instant. Xm and Ym are the

average values of the datasets, XD, YN , and N is the number of samples in each dataset which

should be the same for XD and YN.

Figure 1 shows the scatter plot for wind speed dataset and its computed correlation coefficient.

Table 1 shows the degree of similarity between the datasets depending on the calculated

correlation coefficients.

To calculate the thresholds, TX and TY , the method prefers geometric mean of the datasets with

“N” samples, instead of arithmetic mean given as below:

TX ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � x2 � :::: � xNN
p ð4Þ

TY ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y1 � y2 � :::: � yNN
p ð5Þ

We consider geometric mean because the datasets are characterized by a majority of similar

Figure 1. Scatter plots wind speed. Corr_coeff = �0.07846169 [18].
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values and relatively very few extreme values. Being strongly influenced by few extreme

observations, the threshold values calculation based on arithmetic means would fail to provide

a real means of identifying the extreme values.

The use of a geometric mean normalizes the range being averaged, so that no range dominates

the weighting, and a given percentage change in any of the properties has the same effect on

the geometric mean. Table 2 shows the calculated threshold values for the flexible threshold

method and the mean method (MM).

Furthermore, the method requires ranging of the infinite sample values into discrete levels

without changing the meaning of information using quantization. To do this, first, the distance

matrices dX and dY are calculated as below

dX ¼ ½XD � TX� ð6Þ

dY ¼ ½YN � TY� ð7Þ

where these matrices represent the values of XD and YN after thresholding where,

dX ¼ {x1
0, x2

0, x3
0,…, xi

0,…, xN
0} ð8Þ

dY ¼ {y1
0, y2

0, y3
0,…, yi

0,…, yN
0} ð9Þ

Finally, the quantization is performed on the above values independently with respect to their

maximum and minimum values. This can be expressed as

QαðmaxðdÞ �minðdÞÞ ð10Þ

where Q is the number of quantization levels for distance matrix d.

Sl. No. Corr_coeff. Degree of similarity New threshold required

1 �0.7 to +0.7 Low Yes

2 Less than �0.71 High No

3 More than +0.71 High No

Table 1. Criterion for new threshold selection [18].

SRC Variation range Wind speed

Range values Corr. coeff FTS (TFTS) MM (TMM) TFTS � TMM

1(X) (Min) 0.4000 �0.0784 10.6938 5.9778 4.7160

(Max) 12.6000

2(Y) (Min) 0.1000 12.6125 6.6347

(Max) 14.4000

Table 2. Threshold values [18].
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The present scenario considers five quantization levels 0, 1, 2, 3, and 4 calculated as from

Eq. (10). If the variation in the datasets and the total number of samples in it is large, the

number of levels may also increase for better accuracy in fault prediction. This would

lead to increase in the size of transmitted packets because the number of bits required to

encode each level into binary will also increase. This would cause greater energy deple-

tion in packet transmission, reception by the sensor nodes thus lowering the WSN net-

work lifetime. Thus, the choice of the number of quantization levels should be able to

provide accurate fault prediction without compromising the network lifetime. Each level

carries a significant and distinct meaning regarding the sensed value, e.g., level “0”

indicates that there is no difference between the sample value and the threshold. Simi-

larly, levels “2,” “3,” and “4” indicate increased levels of variation. Figure 2 depicts the

above method.

2.1. Simulation results and discussion

The flexible threshold selection (FTS) method is compared with the mean method (MM). We

have considered a total of 72 samples collected during daytime and nighttime for wind

speed. The sampling frequency is 1 sample per 10 minutes over a period of 12 hours daytime

and 12 hours nighttime. As observed by the simulation results, the flexible threshold method

gives a better performance and accurate results for parameter monitoring. Table 2 depicts

the range of collected samples and their calculated thresholds using flexible threshold selec-

tion (FTS) and mean method (MM). As observed, the datasets for source 1(X) and source 2(Y)

have small variations. If both the datasets from the sources are instead, considered to be one

single dataset, the variation of values is large. This causes the static threshold selected using

the MM method tends to be biased toward the higher values. However, this is not the case

with dynamic threshold. We can calculate different thresholds for datasets collected at

different times, which will adapt with the true variations of the values known to nature.

Hence, the flexible method is unbiased toward any extreme values and gives a balanced

view of the data under consideration. The MM method does not consider computing new

threshold every time but it remains unchanged for any dataset making it an unrealistic

choice.

Two different thresholds for both the sources find the correlation between them by considering

them individually.

It is clear from the above discussion that the choice of appropriate threshold has a large impact

on the quantization levels. The MM method for threshold selection is only able to detect large

variation in the values, i.e., levels “2” and “3” whereas in the FTS method the detected levels

have a distributed pattern, i.e., it can detect both small and large variations. Also, the levels

detected by the FTS method is consistent compared to the MM method, which provides a very

accurate status of the conditions of the wind farm.

Figure 2 shows that the FTS method suggests a majority of level “0” occurrences over other

levels unlike the MM method where the majority is level “2” occurrences. Thus, it can be

concluded that the flexible method is unbiased toward the larger values in the datasets and
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hence provides better accuracy of monitored parameters. The graph in Figure 2 is generated

from real-time data from the Burbon-Nysted wind farm, Denmark.

Figure 2. Comparison between MM and flexible method for monitored parameter wind speed [19, 20]. (i) Collected

samples of maximum and minimum wave heights, (ii) quantized levels using the FTS method, and (iii) quantized levels

using the MM method.

Automated Fault Detection System for Wind Farms
http://dx.doi.org/10.5772/intechopen.68844

319



3. Fault detection scheme

This system is called a fuzzy inference system (FIS)-based fault detection method (FFDS). This

is an automated system, gives precise information of the health condition of the wind farm to

the remote observer, and gives alarms for taking corrective or preventive measures for

maintaining the reliability of the farm.

The observer needs not observe all the properties of the parameter values as a single signal,

rather, the degree of similarity between the values finds the basis for choosing a new threshold.

This is a simple method that helps in finding real-time data for monitoring purposes. These

data when analyzed can predict all possible fault occurrences.

3.1. Automatic fault diagnosis method

The fault detection scheme uses combination-summation (CS) and flow directions (FDs) to

design the FIS [9]. This aids to derive significant information from the quantized levels about

fault event occurrence in the monitored data samples of offshore wind farm. The received

quantized levels corresponding to monitored data samples represent the surrounding envi-

ronmental conditions in offshore wind farm. The received values being fuzzy in form use FIS

to provide accurate interpretation of the environmental conditions.

For determining the CS and FD, five consecutive received levels are considered in one period

of time “T” where
T ¼ t1 þ t2 þ t3 þ t4 þ t5 ð11Þ

which represents five consecutive time intervals. Depending on the permutation and the

summation of the levels, fuzzy logic is used to predict fault occurrences. For example, consider

the levels received at “t” times are lt1 ,lt2 , lt3 , lt4 , and lt5 then the summation of levels is

CS ¼
Xi¼t5

i¼t1

li ¼ lt1 þ lt2 þ lt3 þ lt4 þ lt5 ð12Þ

where the range of CS is [0–20]. The numeral 20 indicates constant occurrence of level 4, i.e.,

44,444. The obtained levels can be either repeating or nonrepeating, e.g., 22,222, 31,224, 01,234,

and 43,210 as depicted in Figure 3. The CS for these levels is 10, 12, 10, and 10. As observed,

this alone is not sufficient for fault prediction. Fault prediction can give accurate results if the

corresponding FD is also considered with the values. Here, FD means whether the received

levels are in state of increasing, decreasing, remaining stable, or varying constantly. For exam-

ple, if the CS is 10, it has multiple values, but if FD has raising edge, it means the combination

suggests fault event occurrence in the future and calls for immediate preventive action. If the

levels increase constantly, then FD is considered to be raising edge shown by arrow in upward

direction (Figure 3).

The remote observer is able to predict meaningful information from these received quantized

levels based on the fuzzy-logic rules as presented in Table 3.
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In this system, the fuzzy-set “F” can be described [7, 8] as

F ¼ {ω, mðωÞjω∈U} ð13Þ

U ¼ {0� 3, 1} ð14Þ

Figure 3. Illustrations of repeating-level and nonrepeating-level combinations. (a) Stable flow, (b) average flow, and

(c) raising/dropping flow.
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m : ω! ½Normal operation, Low risk, High risk� ð15Þ

where ω is the combination-summation and flow-directions of the received levels by the

remote observer, m(ω) is the membership function for the received level and U is the universal

set representing the set of all levels, as shown in Table 3. The membership function alerts the

remote observer whenever the probability of fault occurrence becomes high (Figure 4). It can

be formulated with risk Ri as

ðFDi,CSiÞ ! Ri ð16Þ

This method is very simple to implement and efficient in enhancing the WSN lifetime.

Table 4 shows the comparison for wind speed data computed from Figure 2. The results

confirm the belief that FFDS is able to predict accurate conditions of the wind farm. As shown,

it predicts normal operation of the farm, whereas MM is only able to detect extreme values of

level “0” and “3.” This leads to false alarm for corrective measures due to inaccurate calcula-

tions. Thus, it can be concluded that the FTS method is unbiased toward the larger values in

the datasets and hence provides better accuracy of monitored parameters.

3.2. Simulations and discussion

Table 5 provides the details of simulation parameters used in the study. The sink node is

located at the farthest point in the field. Figure 5 shows the round in which all the nodes in

the area become dead (network-lifetime).

The method FTS gives an accurate view of the parameter values in real time and the threshold

selection does not indicate any biasing toward a particular value, which is confirmed from

Table 4. Also, as observed from Figure 5, the network lifetime of WSN network is also

increased by nearly 10 times with a packet size of 23 bits.

Sl. No. Flow directions Combination-summations Result (MF)

1 Stable (S) 0, 5 Normal

2 Stable 10 Low risk

3 Stable 15 High risk

4 Stable 20 Very high risk

5 Rising (R) 10 High risk

6 Dropping (D) 10 Low risk

7 Average (A) 1–4 Normal

8 Average 5–6 Low risk

9 Average 7–9 High risk

10 Average ≥ 10 Very high risk

Table 3. Fuzzy rule base.
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Figure 4. Flowchart to depict working of fuzzy inference system.

Levels Number of quantized levels Number of consistent quantized levels

FTS MM FTS prediction MM Prediction

“0” 136 19 32 Normal operation 1 Fault has occurred (corrective measures)

“1” 5 37 0 3

“2” 2 37 0 3

“3” 1 51 0 9

Table 4. Wind speed [19].

Sl. No. Parameter Value

1. Area size 1000 m � 1000 m, 2000 m � 2500 m, 300 m � 4500 m, 4000 m � 6000 m

2. Total number of nodes 416–1216

3. Total number of fixed nodes 216

4. Total number scattered nodes 200–1000

5. Total number of turbines 72

Table 5. Simulation parameters.
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These observations conclude that the flexible threshold selection method improves WSN

network-lifetime by increasing energy savings with respect to earlier methods. Moreover, it is

suitable for automated monitoring for all area sizes, large number of nodes and if amount of

information to be transmitted is large.

4. Conclusions

This chapter discusses the flexible threshold selection method for efficient environment mon-

itoring of the offshore wind farm. It uses degree of similarity between the previous and the

current datasets for calculating geometric mean-based flexible threshold as it does not get

biased due to extreme values in the datasets. The method is compared with the static threshold

mean method of threshold selection and the performance is seen to be enhanced.

Also, the automated fault detection method is presented in this chapter. This is a simple

method that uses small integer values for indicating faulty conditions of the wind farm in real

time. The method uses fuzzy inference system that takes integer values as input and gives

output in the form of fault status prediction of the farm. Based on these predictions, the system

suggests corrective or preventive measures. The method is proved to be very accurate in

predicting the fault condition based on sensed parameter values. In addition, this method

allows reduction in the size of the transmitted data packets to 23 bits, which help in increasing

the overall network lifetime of the WSN system deployed in the wind farm.

Figure 5. Round in which all the nodes become dead [21].
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