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Abstract

Cyanogens and mycotoxins are vital in protecting flora against predation. Nevertheless, 
their increased concentrations and by-products in agricultural soil could result in pro-
duce contamination and decreased crop yield and soil productivity. When exposed to 
unsuitable weather conditions, agricultural produce such as cassava is susceptible to 
bacterial and fungal attack, culminating in spoilage, particularly in arid and semi-arid 
regions, and contributing to cyanogen and mycotoxins loading of the arable land. The 
movement of cyanogen including mycotoxins in such soil can result in sub-surface and/
or groundwater contamination, thus deteriorating the soil’s environmental health and 
negatively affecting wildlife and humans. Persistent cyanogen and mycotoxins loading 
into agricultural soil changes its physico-chemical characteristics and biotic parameters. 
These contaminants and their biodegradation by-products can be dispersed from soil’s 
surface and sub-surface to groundwater systems by permeation and percolation through 
the upper soil layer into underground water reservoirs, which can result in their exposure 
to humans and wildlife. Thus, an assessment and monitoring of cyanogen and myco-
toxins loading impacts on arable land and groundwater in communities with minimal 
resources should be done. Overall, these toxicants impacts on agricultural soil’s biotic 
community, affect soil’s aggregates, functionality and lead to the soil’s low productivity, 
cross-contamination of fresh agricultural produce.
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1. Introduction

Cyanogens have been widely demonstrated to be an important component within the earth’s 
system. These compounds have been reported to have an influential role in the lives of sev-
eral organisms on earth [1]. Cyanogens are characterised by the presence of two elements: a 
carbon: nitrogen functional group held together by a triple bond (─C≡N). The simplest form, 
which is predominant in the environment, is hydrogen cyanide (HCN), with nitriles and 
cyanogenic glycosides (CGs) being other forms of these compounds [2–5]. Generally, free 
cyanide originates from both anthropogenic and natural processes [6]. The anthropogenic 
sources of cyanide range from effluents discharged from municipal wastewater treatment 
plants, agricultural run-off, mining activities and electroplating industries [7, 8], including the 
application of some cyanide containing insecticides in the agricultural industry, which cul-
minates in environmental contamination [9]. Cyanides and CGs have also been generated in 
plants and agricultural produce such as Manihot esculenta (cassava), with the waste generated 
through processing of such produce contributing to the cyanide load into the environment. 
During cassava harvesting and processing, plant-borne hydrolases result in CGs’ conversion 
into by-products which are released into the soil, although sometimes this is due to rot pro-
duce, a consequence of microbial contamination of the produce and wastewater generated for 
processing of such produce [10, 11].

As a result of produce-facilitated microbial decay due to the availability of pathogenic organ-
isms in soil where the produce grows, mycotoxins are produced. Mycotoxins are fungal sec-
ondary metabolites that also have a negative impact on human and animal wellbeing [12–14]. 
They co-occur with other bacterial toxins in spoiled agricultural produce such as cassava. 
Previous studies on mycotoxins revealed that these compounds are hazardous to animals 
and humans. Generally, it has been reported that CGs as well as mycotoxins occur naturally 
in flora and organisms (fungi) as a result of biosynthesis, with their prevalence being quan-
tifiable in many agricultural products, such as cassava, apples, spinach, apricots, cherries, 
peaches, plums, quinces, almonds, sorghum, lima beans, corn, yams, chickpeas, cashews and 
kirsch [15, 16]. Although some microorganisms and plants synthesise these compounds for 
their survival when exposed to harsh environmental conditions, their cumulative production 
can contribute to ecological disturbances. Furthermore, various arthropods and invertebrates 
were also determined to produce cyanogens as a defence mechanism and for a control of 
mating behaviour [17, 18], although on a minute scale, with research by Jones [19] indicating 

that plants including microorganisms are known to be major producers of these compounds 
owing to their physiology. Thus, the presence and loading of these cyanogens and myco-
toxins into terrestrial ecosystems are largely overlooked, although they have some negative 
effects on the physico-chemical and biological properties of soil, particularly arable land as 
well as the environment in general [10, 20].

Previous studies have stated that cyanogen and mycotoxin loading in agricultural soil can 
have a serious impact, disturbing the terrestrial ecosystem functionality [10]. Current evidence 
suggests that most studies on agricultural produce such as cassava, known for its high cyano-
gen content, have predominantly focused on the production of the crop for nutritional and 
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industrial purposes, with its effects on soil (including the surrounding environment) over-
looked [2, 10] Accordingly, minimal research has been completed on cyanogen and mycotoxin 
loading, including their behaviour and movement in soil that can culminate in groundwater 
contamination. This is because a large amount of agricultural produce, such as cassava tubers, 
perishes prior to harvesting for a variety of reasons. Although free cyanide and mycotoxin tox-
icity is widely reported, their level of toxicity is also influenced by cumulative exposure and 
the continuation of their release from produce into the environment. Cyanogen and myco-
toxin loads and their movement in soil, including their potential to contaminate groundwater, 
which is used in impoverished communities where cassava is cultivated mostly as a source of 
protein and starch, are largely under-reported.

The highlights of this review are:

• There are similarities in the movement of cyanogens and mycotoxins, including their deg-
radation by-products in soils due to mass transfer processes influenced by the moisture 
content in the soil, thus;

• Cyanogen and mycotoxins distort the soil’s characteristics with seepage into groundwater 
systems being of paramount concern, negatively impacting terrestrial, aquatic life and wa-
ter quality, thus;

• Culminate into prolonged cumulative human and animal exposure.

2. Cyanogen and mycotoxin reduction

Several methods of cyanogen reduction have been proposed and include physical, chemical 
and biological methods [6, 21]. However, it has been reported that some of these methods 
require high input costs and sophisticated knowledge and/or training to implement success-
ful strategies for their reduction [4]. Meanwhile, scientists have embarked on intense research 
and simplify reduction methods for these toxicants in the environment by using techniques 
which are considered environmentally benign, as such novel ways of reducing both cyanogen 
and mycotoxin levels in the environment, including in agricultural produce destined for con-
sumption, are generally considered cost effective when compared with long-term outcomes 
of none implementation of control measures [22–24].

2.1. Biological reduction of cyanogens

The biological reduction of CGs as a source of cyanide, as well as mycotoxins, has gained popu-
larity and has been a huge research focus area [17, 22, 23]. As such, genetically modified cas-
sava cultivars, with a suppressed cytochrome P450 gene (producers of enzymes CYP79D1 and 
CYP79D2) functionality, may inhibit the infiltration of linamarin as it can be converted to free 
cyanide from valine [25].

Furthermore, other biological treatments for free cyanide involve microorganisms; these 
organisms are known to be toxin producers and are organisms, such as Pseudomonas sp., 
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Nocardia sp., Flavobacterium sp., Bdellovibrio sp., as well as nitrifiers, such as Nitrosomonas 

sp., Nitrobacter sp., Sphingomonas sp., Exophiala sp., Bacillus sp., and fungi such as Aspergillus 

sp. and Penicillium sp. [4, 8, 22, 26–28]. Among these microorganisms, Aspergillus sp. and 
Penicillium sp. are the most prevalent species able to grow successfully in stringent weather 
conditions, with some, including Cunninghamella sp. being common in soil [29], with the abil-
ity to grow on a variety of agricultural produce such as maize, peanuts and tubers [30, 31].

In soil consisting of fungal biocatalysts of different origins, scientific evidence seems to indicate 
that agricultural produce appears to be susceptible to spoilage due to substrate availability, which 
results in the proliferation of microbial spoilage organisms [32, 33]. It has also been reported that 
fruit or produce has trace elements, such as Ca, Na, K and Zn, and low relative molecular weight 
hydrocarbons, including proteins and moisture, providing conditions which facilitate microbial 
growth and thus spoilage [34, 35]. Owing to this, some microorganisms produce hydrolases, 
reducing primary compounds in produce to by-products, furthering physico-chemical changes 
in the environment in which they are leached [30]. These seem to be the ideal conditions in which 
cyanide reduction biocatalysts proliferate, i.e. conditions that are nutrient rich as a result of nutri-
ent availability from decaying produce.

Some of the cyanogens are reduced to by-products such as bicarbonate and ammonia. The 
ammonia formed during the process is further utilised by the microorganisms as a source of 
nitrogen, supporting increased microbial growth [36, 37]. In the agricultural industry, the reduc-
tion of both cyanogens and related compounds is complex, as in-situ quantification of such 
processes is minimally reported. The development of processes and strategies that are environ-
mentally benign; i.e. of biological origin, is gaining popularity due to their simplicity and advan-
tages, as they are considered less harmful, and can be beneficial in the economical management 
urged for, in the improvement of commercial agro-produce manufacturers [28, 38, 39]. Owing to 
the exposure to primary and by-products of cyanogen conversion/transformation, some species 
became tolerant, thus biologically evolve.

For example, Sing et al. [30] successfully isolated a fungus, Cunninghamella sp. UMAS SD12 
from sawdust, with an ability to biodegrade 51.7% pentachlorophenol (PCP) within 15 days 
in a controlled static environment. However, more research needs to be conducted to assess 
direct evolvement of the microbial ecosystem, as other microorganisms that constitute a 
community, for the betterment of soil, can reduce such soils’ viability, and/or result in some 
organisms producing extracellular secondary metabolites such as mycotoxins.

2.2. Biological reduction of mycotoxins

There are numerous mycotoxins known to contaminate agricultural produce such as cas-
sava. Among these mycotoxins, fumonisin B1 and deoxynivalenol (DON) are common. The 
biodegradation of fumonisin B1 and deoxynivalenol (DON) can be achieved through their 
direct conversion using detoxification processes with different pathways [22]. For example, 
fumonisin biodegradation was observed through the elimination of the tricarballylate side 
chains and amino groups. The enzymatic hydrolysis of such mycotoxins might involve car-
boxylesterases and aminotransferases from bacteria such as Sphingomonas and Sphingopyxis 
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normally found in soil, which have the ability to detoxify recalcitrant persistent organic pol-
lutants (PoPs) such as polycyclic aromatic hydrocarbons (PAHs) [40–43]. Other researchers 
have reported degradation or detoxification of fumonisin, including by-products, by oxi-
dative deaminase from Exophiala sp., a common soil organism [42–44]. Bacillus sp., includ-
ing non-Saccharomyces yeast commonly found in soil, were also suggested to destabilise 
these mycotoxins’ structure, and thus reduce their amino acid functional groups albeit at 
elevated pH [45].

In most instances, the biodegradation process of most mycotoxins involves a consortium of 
organisms, which utilises a variety of degradation pathways [42, 44]. Overall, the initial bio-
degradation stage starts at extracellular level by deamination or facilitation by esterase with 
the last biodegradation step involving microbial/enzymatic decoupling of the aliphatic chain 
within the mycotoxin molecule [22]. For example, the first biodegradation steps of DON using 
Curtobacterium sp. and Eubacterium sp. were determined to be initiated by the de-epoxidation 
step which subsequently followed oxidation [22, 46].

3. Toxicity of cyanide as a cyanogen from cassava

3.1. Toxicity of Manihot esculenta

Worldwide, cassava is utilised as a primary foodstuff for disadvantaged and needy rural com-
munities of Africa, Asia and South America [23, 47, 48]. Cassava’s toxicity is due to cyano-
gens such as linamarin, lotaustralin and 2-((6-O-(b-d-apiofuranosyl)-b-d-glucopyranosyl)
oxy)-2-methylbutanenitrile) that are biologically transformed into hydrogen cyanide [25, 49]. 
As a result of enzymatic hydrolysis, for which the linamarin from the plant tissue is trans-
formed into acetone cyanohydrin through linamarases [3]. At an increased temperature and 
pH of >30°C and 5, respectively, conditions associated with arid regions which are suitable 
for microbial proliferation and thus agricultural produce contamination or spoilage, acetone 
cyanohydrin is released, resulting in its decomposition into acetone and hydrogen cyanide 
[3, 25] (Figure 1). Several studies have been done on the impact of the cultivar on humans as 
a result of direct ingestion [24, 48, 50], as cyanide concentration in the tuber is estimated to 
reach 50 mg/kg [51].

Figure 1. Enzymatic hydrolysis of linamarin to hydrogen cyanide.
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Thus, its prolonged consumption may be toxic. However, there is minimal information on 
hydrogen cyanide loading into irrigable land in which cassava is cultivated. Free metal ions 
in such soil exposed to hydrogen cyanide can form metallic cyanide complexes under suit-
able conditions, further prolonging cyanide-based compounds’ prevalence in the soil, which 
might leach into groundwater.

3.2. Production of mycotoxins

Terrestrial ecosystems are populated by a diversity of microorganisms that contribute to and 
maintain the ecological and biological balance. These organisms contribute to the characteris-
tics of the soil that directly influence soil productivity and crop yield in the agricultural sector 
[52–54], although some have been shown to exhibit pathogenicity toward mature produce. 
For example, during the growth and up to the harvest stage of cassava tubers, several patho-
genic organisms with mycotoxin-production potential can dominate several other types of 
bacteria and fungi on the tuber and in cassava-cultivated soils [30]. Some of these organisms 
are resistant even to the free cyanide in cassava, and with their inherent characteristics, such 
as their predisposition for survival, they produce mycotoxins such as ochratoxin A, aflatox-
ins, fumonisin B, pyranonigrin A, tensidol B, funalenone, naphtho-y-pyrones, deoxynivalenol 
(DON) and malformins [55–57]. Research revealed that exposure to mycotoxins pre/post-har-
vest and their presence in soil can render the cassava tubers inedible [58, 59], leading to their 
cumulative and increased levels due to sustained use of pre-recovery land for cultivation to 
produce an essential food source—a method that will affect the soil’s ecology.

3.3. Mycotoxins’ effects on soil ecology

Soil ecology is influenced by the biochemical including biotic relationships and physical con-
ditions paramount for its good health [52, 54]. The biochemical aspect of soil used for culti-
vation is related to its microbial diversity as well as its chemical/pollutant content [53], with 
the soil’s microbial community playing a transformative role with regard to the soil nutrient 
availability, health and fertility, which enhance the soil’s quality, including its productiv-
ity [52]. The microbial ecology of any soil facilitates nutrient flow through immobilisation 
processes, which may result in its bioaugmentation [54, 60, 61], contributing to suitable soil 
structure that assists in the formation of nutrient-rich aggregates. According to Knudsen [53], 
soil aggregates are created by microbial activity, albeit at a microscopic level, linking soil 
particles, while the external polysaccharide tissues of bacterial cells play a role in holding soil 
aggregates together [52], with subsequent structuring and compaction, parameters influenc-
ing the quality of the soil’s texture, porosity, aeration, moisture permeability, water circula-
tion and organic matter content [52]. Soil grain cohesion, porosity, permeability and organic 
matter content are vital for soil quality and fertility, particularly for soil demarcated for sus-
taining the production of agricultural produce.

All these parameters are indispensable for sustainable use of arable soil for food production 
and productivity for crop yield [52, 53]. Additionally, soil health can also be affected by sur-
face, subsurface and groundwater supply, including quality.
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Soil moisture content is vital for soil functionality as it serves as a water reservoir for the ter-
restrial ecosystem, playing a major role in the water cycle between surface and subsurface 
water, thus affecting the quality of groundwater [62, 63]. High mycotoxin loading into the 
soil may impact its functionality. Thus, the interaction of microorganisms, invertebrates, ver-
tebrates, and planted crops, which eventually leads to the depletion of groundwater quality, 
leads to sustained leaching or periodic contamination of the water, which can easily lead to 
human exposure. The disturbance in a terrestrial hydrological movement may have long-
term disastrous consequences for surface, subsurface and groundwater supplies [62, 64].

Previous studies on mycotoxin mobility in soil revealed that the movement of these contami-
nants is influenced by processes such as deposition, decomposition, distribution and accu-
mulation [2, 65], while the compounds’ concentration increases with depth. A soil with a 
high moisture content creates conditions that lead to the furtherance of the contaminants’ 
ability to be transferred, based on processes such as infiltration, percolation and leaching into 
groundwater [62, 63]. The detoxification bioprocesses and strategies may involve extended 
periods during which the land is unusable. Furthermore, several studies on the effects of cas-
sava effluents on soil, including microbiota, stated that a high mycotoxin concentration in soil 
is harmful to these soil microorganisms. Some of these mycotoxins are produced because of 
inhibitive competition, i.e. organisms will produce these mycotoxins to limit the proliferation 
of others, particularly under nutrient-depleted conditions.

A study by Knudsen [53] revealed that mycotoxins from cassava are mobile in soil and destroy 
the resident soil’s organisms. Additionally, Okechi et al. [10] showed that the effects of cassava 
effluents on soil microbial populations revealed a discrepancy in bacterial and fungal popula-
tions at different pH levels and soil depths. This indicates that the bacterial populations from 
the upper layers of soil counts revealed an increase in comparison with those recorded in the 
lower soil layers, with high concentrations of the mycotoxins observed on the lower soil lay-
ers, a process furthered by leaching. Similar total fungal population counts revealed a similar 
phenomenon with surface, subsurface and deeper soil layers.

3.4. Impacts of hydrovgen cyanide on biochemical and physical properties of agricultural 

soil

Although the conditions and diversity of habitats contribute to and thus influence the bio-
chemical and physical properties of arable soil [62, 64], a high cyanogen load in soil can have 
a negative impact on soil microbial populations, with sustained exposure and an increased 
concentration of cyanogens hindering the microbial activity, and thus the functionality of 
soil microorganisms, leading to the deformation of the biochemical and physical properties 
of the soil. A high hydrogen cyanide concentration load in such soil was determined to con-
tribute to an increase in the total oxygen carbon (TOC) and chemical oxygen demand (COD), 
reducing the ability of Nitrobacter sp. to sustain nitration processes [29, 64]. Therefore, an 
increase in the hydrogen cyanide loading could lead to an imbalance between Nitrospira 
and Nitrobacter sp., resulting in a higher count of species with a hydrogen cyanide-resistant 
ability. The change in the microbial population balance could lead to stunted growth and/
or variations in the growth of a cultivar. This can easily culminate in the dominance of the 
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species, which can be a spoilage organism with free cyanide-resistant characteristics contrib-
uting to spoilage patterns/microbial contamination of the produce of interest.

For mitigation strategies in the post-harvesting period, preparation of soil for re-cultivation 
could lead to inadequate organic matter (OM), variation in total nitrogen (TN) content and 
availability, which could interfere with soil biochemical and physical properties [64]. Research 
on the physico-chemical characteristics of cassava-cultivated soil has shown a correlation 
between continuous cassava cultivation and a decline in the soil’s physico-chemical properties 
(Haplic Acrisols) [64]. Therefore, continuous cultivation of cassava, which normally happens 
in impoverished communities, could result in a decrease in soil quality, bulk density, organic 
carbon (OC), OM, trace elements, moisture, infiltration rate, including holding capacity, and 
aggregate stability. Howeler [66] further reported that the average nutrient removal rate per 
ton of cassava tuber harvested is equivalent to: N=2.53 (38%), P=0.37 (49%), K=2.75 (56%), 
Ca=0.44 (16%) and Mg=0.26 (30%). Thus, cyanogen loading indirectly has an impact on C:N 
ratio, which will result in a pH increase with depth, while OC, nitrogen (N) and OM distor-
tions will be entrenched.

Similarly, Boadi et al. [67] examined the relationship between cyanogen concentration, pH and 
soil moisture, determining that with an increase in cyanogen values, soil pH increases with 
moisture content, further supporting the retention of cyanogens at a lower pH. The concentra-
tion of cyanogenic compounds was shown to be varied from soil to groundwater and from one 
site to another [61–63, 68], which suggested that the discrepancies in distribution could be due 
to the mobility of the contaminant [67].

3.5. Behaviour of cyanogen and mycotoxin in soil

Cyanogen and mycotoxin behaviour in soil, groundwater and the environment is largely con-
trolled by a multitude of chemical reactions and processes. There are similarities and dif-
ferences between the processes involved for the behaviour of each contaminant, which is 
largely controlled by conditions the contaminant undergoes when in soil and groundwater. 
These processes are primarily influenced by numerous biochemical processes and by the com-
pounds’ structures, properties and behaviour in the environment. According to Kjeldsen [65], 
the behaviour of cyanogen and mycotoxins from soil into groundwater is largely influenced 
by processes such as deposition, dissolution, infiltration, leaching, degradation, transforma-
tion and complexation (see Figure 2).

Furthermore, human, wildlife exposure and environmental contamination are directly associated 
with other pathways, such as volatilisation, dermal contact and ingestion of other degradation 
by-products from the transformation of the primary source due to the transportation pathways 
facilitated by leaching mechanisms into groundwater [62, 65]. Thus, when not monitored, the 
environmental prevalence and exposure of these contaminants can be harmful to human health/
wildlife. For example, the concentration of leached iron-cyanide complexes in groundwater 
ranged between 2 and 12 mg/L [59, 69]. The prevalence of such complexes is influenced by the 
reactivity of free metal ions and free hydrogen cyanide from cassava. These compounds may 
be transformed (through decomposition) to free cyanide at a later stage, although most are sta-
ble with longer half-life, thus they enter an aquifer through processes such as infiltration and 
leaching.
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It is also important to point out that the behaviour of contaminant movement in terrestrial or/
and aquatic ecosystems and the environment in general is also influenced by parameters such 
as wash-off, periodic moisture saturation and time. Based on the stability of each individual 
contaminant, including its by-products, the mobility can also be spontaneously influenced by 
the rate of conversion, thus degradation, and can even become volatilised under suitable con-
ditions [65, 70], depending on vapour pressure. Time or length of exposure is a very impor-
tant aspect, particularly where human exposure is assessed, which is generally neglected 
or unclear in many recent studies. Similarly, contamination gradients must be established 
because of groundwater variations in the water flow, as well as the influence of the insolation 
surrounding the water body that might contribute to acute exposure levels. Furthermore, 
from produce itself, volatilised compounds can undergo photodecomposition due to UV 
effects contributing to pseudohalogen accumulation in the troposphere/stratosphere.

3.6. Cyanogen and mycotoxin effects on humans and animals

The focus of this review is that cassava can be toxic when consumed in large quantities owing 
to its cyanogen content [49]. The prolonged consumption of cassava in different forms can be 
harmful for humans in particular, owing to inadequacies in post-harvest treatment techniques 
[8, 21]. For instance, studies on cassava-cyanide effects in humans revealed that a permanent 
consumption of low-level concentrations of cyanide from poorly processed cassava could 
result in goitres and Tropical Ataxic Neuropathy (TAN) [24, 59], whereas a high consumption 

Figure 2. Cassava cyanogen and mycotoxin movement in agricultural soil. Key: NO
3
− (nitrate), NO

2
− (nitrite), Fe(II)(CN)63− 

(ferrocyanide), Fe(III)(CN)64− (ferricyanide), SCN (thiocyanide), NH
4
-N (ammonium nitrogen), CN- (cyanide ion), -OCN 

(cyanate), N
2
O (nitrous oxide) and N

y
O

x
 (nitrogen oxides).
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of the produce could result in neurological disorders, such as konzo [23, 50]. Most post-harvest 
cyanogen removal techniques focus on free-cyanide removal techniques, without accounting 
for transformed varieties of the cyanogens (see Figure 2), such as thiocyanate, etc.

A team of researchers conducting studies on the thiocyanate concentration in urine samples 
of pupils, who consumed cassava in Mozambique, revealed that a mean concentration of 
urinary thiocyanate in school children ranged from 225 to 384 mol/L, whereas mean total 
cyanogen concentrations in processed cassava flour varied with seasons and years from 26 to 
186 mg/L [71]. Similarly, a study by Shifrin et al. [59] revealed that mycotoxin can easily be 
absorbed through dermal contact, ingestion and inhalation. Some mycotoxins are hazardous 
and are proposed to be carcinogens facilitating mutation in human cells—an effect that can be 
postulated to suggest their facilitation of cell mutation in humans.

In animals, on the other hand, an increased consumption of tuber debris and waste by-prod-
ucts of produce processing could lead to neuronal disturbances, weight loss and dysfunc-
tional thyroid [23, 50, 72]. Observations reported by Wade et al. [73] on cassava waste in fish, 
i.e., in the Nile tilapia (Oreochromis niloticus), revealed that some cyanogens caused oedema, 
gill lamellae telangiectasia, gill enlargement, formation of vacuoles and liver cell deteriora-
tion. Similar health outcomes for humans and animals observed in acute mycotoxin exposure, 
including ingestion, were inter alia, weight loss, internal organ bleeding, respiratory diseases 
(asthma, pneumonia), diarrhoea, liver and kidney cancer and skin irritation [74–76]. Therefore, 
a large-scale propagation of agricultural produce with cyanogens, which is susceptible to a 
high concentration of spoilage organisms, particularly mycotoxin producers, requires con-
tinuous monitoring to ascertain its quality. Such produce should be free of both cyanogen and 
mycotoxins, primarily if it is destined for human and animal consumption and/or exposure. 
In this case, required strategies for the reduction of exposure must be implemented.

4. Conclusion

Cassava, in general, and cassava tubers, in particular, are indispensable for daily self-nour-
ishment of several poor communities worldwide owing to their nutritional value. However, 
when exposed to environmental processes and bacterial and fungal attacks that can occur 
prior to harvesting, the produce is susceptible to release cyanogen and mycotoxin compounds 
that are hazardous to humans, animals and the environment. These contaminants and their 
by-product mobility into the terrestrial ecosystem are similar and are facilitated by environ-
mental processes such as transformation, complexation, percolation and volatilisation as they 
can travel from surface and subsurface to groundwater level, which can result in exposure to 
both animals and humans. The presence of these compounds in arable land can lead to their 
accumulation, which can negatively affect soil properties, groundwater quality and the envi-
ronment, thus contributing to a decline in the production of useful produce, such as cassava. 
Monitoring, particularly in communities that use such arable soil on a continuous basis, can 
mitigate intoxication of humans and animals, by effectively implementing suitable reduction 
strategies thus prevent environmental pollution. Therefore, continuous monitoring, quality 
assurance and a novel in-situ biological method (for treatment of the contaminants) are para-
mount to ensure a healthier agricultural soil, clean surface and groundwater quality.
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